Skip to main content
Top
Published in: Molecular Autism 1/2015

Open Access 01-12-2015 | Letter to the Editor

Thoughts about sex and gender differences from the next generation of autism scientists

Author: Lauren Singer

Published in: Molecular Autism | Issue 1/2015

Login to get access

Abstract

According to the CDC, males are four times more likely to be diagnosed with autism than females. New studies have shown that girls need a higher burden of genetic mutation to be diagnosed with autism than males. These findings are leading researchers to a new avenue of investigation called the female protective effect. This theory holds that even when females carry mutations in autism-linked genes, the effect of the mutations is prevented when the level of genetic disruption is low. Understanding the biology behind this protective effect and studying females independently from males could lead to major advancements in the prevention and treatment of ASD in both males and females.
Literature
1.
go back to reference Developmental Disabilities Monitoring Network Surveillance Year Principal, I, C. Centers for Disease, and Prevention, Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ. 2014;63(2):1–21. Developmental Disabilities Monitoring Network Surveillance Year Principal, I, C. Centers for Disease, and Prevention, Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ. 2014;63(2):1–21.
3.
go back to reference Halladay AK, Bishop S, Constantino J, Daniels A, Koenig K, Palmer K, et al. Sex and gender differences in autism spectrum disorder: summarizing evidence gaps and identifying emerging areas of priority. Mol Autism. 2015;6:36.PubMedCentralCrossRefPubMed Halladay AK, Bishop S, Constantino J, Daniels A, Koenig K, Palmer K, et al. Sex and gender differences in autism spectrum disorder: summarizing evidence gaps and identifying emerging areas of priority. Mol Autism. 2015;6:36.PubMedCentralCrossRefPubMed
4.
go back to reference Baron-Cohen S, Auyeung B, Norgaard-Pedersen B, Hougarrd DM, Abdallah MW, Melgaard L, et al. Elevated fetal steroidogenic activity in autism. Mol Psychiatry. 2015;20(3):369–76.PubMedCentralCrossRefPubMed Baron-Cohen S, Auyeung B, Norgaard-Pedersen B, Hougarrd DM, Abdallah MW, Melgaard L, et al. Elevated fetal steroidogenic activity in autism. Mol Psychiatry. 2015;20(3):369–76.PubMedCentralCrossRefPubMed
5.
go back to reference De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515(7526):209–15.PubMedCentralCrossRefPubMed De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515(7526):209–15.PubMedCentralCrossRefPubMed
6.
go back to reference Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515(7526):216–21.PubMedCentralCrossRefPubMed Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515(7526):216–21.PubMedCentralCrossRefPubMed
7.
go back to reference Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J, et al. De novo gene disruptions in children on the autistic spectrum. Neuron. 2012;74(2):285–99.PubMedCentralCrossRefPubMed Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J, et al. De novo gene disruptions in children on the autistic spectrum. Neuron. 2012;74(2):285–99.PubMedCentralCrossRefPubMed
8.
go back to reference Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha K, Sabo A, et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature. 2012;485(7397):242–5.PubMedCentralCrossRefPubMed Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha K, Sabo A, et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature. 2012;485(7397):242–5.PubMedCentralCrossRefPubMed
9.
go back to reference O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe B, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485(7397):246–50.PubMedCentralCrossRefPubMed O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe B, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485(7397):246–50.PubMedCentralCrossRefPubMed
10.
go back to reference Sanders SJ, Murtha M, Gupta A, Murdoch J, Raubeson M, Willsey AJ, et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 2012;485(7397):237–41.PubMedCentralCrossRefPubMed Sanders SJ, Murtha M, Gupta A, Murdoch J, Raubeson M, Willsey AJ, et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 2012;485(7397):237–41.PubMedCentralCrossRefPubMed
11.
go back to reference Jacquemont S, Coe BP, Hersch M, Duyzend MH, Krumm N, Bergmann S, et al. A higher mutational burden in females supports a “female protective model” in neurodevelopmental disorders. Am J Hum Genet. 2014;94(3):415–25.PubMedCentralCrossRefPubMed Jacquemont S, Coe BP, Hersch M, Duyzend MH, Krumm N, Bergmann S, et al. A higher mutational burden in females supports a “female protective model” in neurodevelopmental disorders. Am J Hum Genet. 2014;94(3):415–25.PubMedCentralCrossRefPubMed
12.
go back to reference Levy D, Ronemus M, Yamrom B, Lee YH, Leotta A, Kendall J, et al. Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron. 2011;70(5):886–97.CrossRefPubMed Levy D, Ronemus M, Yamrom B, Lee YH, Leotta A, Kendall J, et al. Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron. 2011;70(5):886–97.CrossRefPubMed
13.
go back to reference Frazier TW, Georgiades S, Bishop SL, Hardan AY. Behavioral and cognitive characteristics of females and males with autism in the Simons Simplex Collection. J Am Acad Child Adolesc Psychiatry. 2014;53(3):329–40 e1-3.PubMedCentralCrossRefPubMed Frazier TW, Georgiades S, Bishop SL, Hardan AY. Behavioral and cognitive characteristics of females and males with autism in the Simons Simplex Collection. J Am Acad Child Adolesc Psychiatry. 2014;53(3):329–40 e1-3.PubMedCentralCrossRefPubMed
14.
go back to reference Nordahl CW, Iosif A, Young GS, Perry LM, Dougherty R, Lee A, et al. Sex differences in the corpus callosum in preschool-aged children with autism spectrum disorder. Mol Autism. 2015;6:26.PubMedCentralCrossRefPubMed Nordahl CW, Iosif A, Young GS, Perry LM, Dougherty R, Lee A, et al. Sex differences in the corpus callosum in preschool-aged children with autism spectrum disorder. Mol Autism. 2015;6:26.PubMedCentralCrossRefPubMed
Metadata
Title
Thoughts about sex and gender differences from the next generation of autism scientists
Author
Lauren Singer
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2015
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-015-0046-8

Other articles of this Issue 1/2015

Molecular Autism 1/2015 Go to the issue