Skip to main content
Top
Published in: Trials 1/2019

Open Access 01-12-2019 | Thoracic Trauma | Research

Using an incentive spirometer reduces pulmonary complications in patients with traumatic rib fractures: a randomized controlled trial

Authors: Shao-Kai Sum, Ya-Chuan Peng, Shun-Ying Yin, Pin-Fu Huang, Yao-Chang Wang, Tzu-Ping Chen, Heng-Hsin Tung, Chi-Hsiao Yeh

Published in: Trials | Issue 1/2019

Login to get access

Abstract

Background

An incentive spirometer (IS) is a mechanical device that promotes lung expansion. It is commonly used to prevent postoperative lung atelectasis and decrease pulmonary complications after cardiac, lung, or abdominal surgery. This study explored its effect on lung function and pulmonary complication rates in patients with rib fractures.

Methods

Between June 2014 and May 2017, 50 adult patients with traumatic rib fractures were prospectively investigated. Patients who were unconscious, had a history of chronic obstructive pulmonary disease or asthma, or an Injury Severity Score (ISS) ≥ 16 were excluded. Patients were randomly divided into a study group (n = 24), who underwent IS therapy, and a control group (n = 26). All patients received the same analgesic protocol. Chest X-rays and pulmonary function tests (PFTs) were performed on the 5th and 7th days after trauma.

Results

The groups were considered demographically homogeneous. The mean age was 55.2 years and 68% were male. Mean pretreatment ISSs and mean number of ribs fractured were not significantly different (8.23 vs. 8.08 and 4 vs. 4, respectively). Of 50 patients, 28 (56%) developed pulmonary complications, which were more prevalent in the control group (80.7% vs. 29.2%; p = 0.001). Altogether, 25 patients had delayed hemothorax, which was more prevalent in the control group (69.2% vs. 29.2%; p = 0.005). Two patients in the control group developed atelectasis, one patient developed pneumothorax, and five patients required thoracostomy. PFT results showed decreased forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) in the control group. Comparing pre- and posttreatment FVC and FEV1, the study group had significantly greater improvements (p < 0.001).

Conclusions

In conclusion, the use of an IS reduced pulmonary complications and improved PFT results in patients with rib fractures. The IS is a cost-effective device for patients with rib fractures and its use has clinical benefits without harmful effects.

Trial registration

ClinicalTrials.gov, NCT04006587. Registered on 3 July 2019.
Literature
1.
go back to reference Karadayi S, Nadir A, Sahin E, Celik B, Arslan S, Kaptanoglu M. An analysis of 214 cases of rib fractures. Clinics (Sao Paulo). 2011;66:449–51.CrossRef Karadayi S, Nadir A, Sahin E, Celik B, Arslan S, Kaptanoglu M. An analysis of 214 cases of rib fractures. Clinics (Sao Paulo). 2011;66:449–51.CrossRef
2.
go back to reference Stitzel JD, Kilgo PD, Weaver AA, Martin RS, Loftis KL, Meredith JW. Age thresholds for increased mortality of predominant crash induced thoracic injuries. Ann Adv Automot Med. 2010;54:41–50.PubMedPubMedCentral Stitzel JD, Kilgo PD, Weaver AA, Martin RS, Loftis KL, Meredith JW. Age thresholds for increased mortality of predominant crash induced thoracic injuries. Ann Adv Automot Med. 2010;54:41–50.PubMedPubMedCentral
3.
go back to reference Brown SD, Walters MR. Patients with rib fractures: use of incentive spirometry volumes to guide care. J Trauma Nurs. 2012;19:89–91.CrossRef Brown SD, Walters MR. Patients with rib fractures: use of incentive spirometry volumes to guide care. J Trauma Nurs. 2012;19:89–91.CrossRef
4.
go back to reference Baker SP, O’Neill B, Haddon W, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974;14:187–96.CrossRef Baker SP, O’Neill B, Haddon W, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974;14:187–96.CrossRef
5.
go back to reference Garcia VF, Gotschall CS, Eichelberger MR, Bowman LM. Rib fractures in children: a marker of severe trauma. J Trauma. 1990;30:695–700.CrossRef Garcia VF, Gotschall CS, Eichelberger MR, Bowman LM. Rib fractures in children: a marker of severe trauma. J Trauma. 1990;30:695–700.CrossRef
6.
go back to reference Segers P, Van Schil P, Jorens P, Van Den Brande F. Thoracic trauma: an analysis of 187 patients. Acta Chir Belg. 2001;101:277–82.PubMed Segers P, Van Schil P, Jorens P, Van Den Brande F. Thoracic trauma: an analysis of 187 patients. Acta Chir Belg. 2001;101:277–82.PubMed
7.
go back to reference Wilson RF, Murray C, Antonenko DR. Nonpenetrating thoracic injuries. Surg Clin North Am. 1977;57:17–36.CrossRef Wilson RF, Murray C, Antonenko DR. Nonpenetrating thoracic injuries. Surg Clin North Am. 1977;57:17–36.CrossRef
8.
go back to reference Ziegler DW, Agarwal NN. The morbidity and mortality of rib fractures. J Trauma. 1994;37:975–9.CrossRef Ziegler DW, Agarwal NN. The morbidity and mortality of rib fractures. J Trauma. 1994;37:975–9.CrossRef
9.
go back to reference Flagel BT, Luchette FA, Reed RL, Esposito TJ, Davis KA, Santaniello JM, et al. Half-a-dozen ribs: the breakpoint for mortality. Surgery. 2005;138:717–23.CrossRef Flagel BT, Luchette FA, Reed RL, Esposito TJ, Davis KA, Santaniello JM, et al. Half-a-dozen ribs: the breakpoint for mortality. Surgery. 2005;138:717–23.CrossRef
10.
go back to reference Sharma O, Oswanski M, Jolly S, Lauer SK, Dressel R, Stombaugh HA. Perils of rib fractures. Am Surg. 2008;74:310–4.PubMed Sharma O, Oswanski M, Jolly S, Lauer SK, Dressel R, Stombaugh HA. Perils of rib fractures. Am Surg. 2008;74:310–4.PubMed
11.
go back to reference Alexander JQ, Gutierrez CJ, Mariano MC, Vander Laan T, Gaspard DJ, Carpenter CL, et al. Blunt chest trauma in the elderly patient: How cardiopulmonary disease affects outcome. Am Surg. 2000;66:854–7. Alexander JQ, Gutierrez CJ, Mariano MC, Vander Laan T, Gaspard DJ, Carpenter CL, et al. Blunt chest trauma in the elderly patient: How cardiopulmonary disease affects outcome. Am Surg. 2000;66:854–7.
12.
go back to reference Bartlett RH, Brennan ML, Gazzaniga AB, Hanson EL. Studies on the pathogenesis and prevention of postoperative pulmonary complications. Surg Gynecol Obstet. 1973;137:925–33.PubMed Bartlett RH, Brennan ML, Gazzaniga AB, Hanson EL. Studies on the pathogenesis and prevention of postoperative pulmonary complications. Surg Gynecol Obstet. 1973;137:925–33.PubMed
13.
go back to reference Barnea Y, Kashtan H, Skornick Y, Werbin N. Isolated rib fractures in elderly patients: mortality and morbidity. Can J Surg. 2002;45:43–6.PubMedPubMedCentral Barnea Y, Kashtan H, Skornick Y, Werbin N. Isolated rib fractures in elderly patients: mortality and morbidity. Can J Surg. 2002;45:43–6.PubMedPubMedCentral
14.
go back to reference Jones KM, Reed RL 2nd, Luchette FA. The ribs or not the ribs: which influences mortality. Am J Surg. 2011;202:598–604.CrossRef Jones KM, Reed RL 2nd, Luchette FA. The ribs or not the ribs: which influences mortality. Am J Surg. 2011;202:598–604.CrossRef
15.
go back to reference Legare C, Sawatzky JA. Dyspnea in the thoracic trauma patient: a human response to illness. J Trauma Nurs. 2010;17:36–42.CrossRef Legare C, Sawatzky JA. Dyspnea in the thoracic trauma patient: a human response to illness. J Trauma Nurs. 2010;17:36–42.CrossRef
16.
go back to reference Dohi S, Gold MI. Comparison of two methods of postoperative respiratory care. Chest. 1978;73:592–5.CrossRef Dohi S, Gold MI. Comparison of two methods of postoperative respiratory care. Chest. 1978;73:592–5.CrossRef
17.
go back to reference Renault JA, Costa-Val R, Rossetti MB. Respiratory physiotherapy in the pulmonary dysfunction after cardiac surgery. Rev Bras Cir Cardiovasc. 2008;23:562–9.CrossRef Renault JA, Costa-Val R, Rossetti MB. Respiratory physiotherapy in the pulmonary dysfunction after cardiac surgery. Rev Bras Cir Cardiovasc. 2008;23:562–9.CrossRef
18.
go back to reference Wilkins RL. Lung expansion therapy. In: Wilkins RL, Stoller JK, Kacmarek RM, editors. Egan’s fundamentals of respiratory care. 9th ed. St. Louis: Mosby Elsevier; 2009. Wilkins RL. Lung expansion therapy. In: Wilkins RL, Stoller JK, Kacmarek RM, editors. Egan’s fundamentals of respiratory care. 9th ed. St. Louis: Mosby Elsevier; 2009.
19.
go back to reference Westwood K, Griffin M, Roberts K, Williams M, Yoong K, Digger T. Incentive Spirometer decreases respiratory complications following major abdominal surgery. Surgeon. 2007;5:339–42.CrossRef Westwood K, Griffin M, Roberts K, Williams M, Yoong K, Digger T. Incentive Spirometer decreases respiratory complications following major abdominal surgery. Surgeon. 2007;5:339–42.CrossRef
20.
go back to reference Agostini P, Naidu B, Cieslik H, Steyn R, Rajesh PB, Bishay E, et al. Effectiveness of incentive Spirometer in patients following thoracotomy and lung resection including those at high risk for developing pulmonary complications. Thorax. 2013;68:580–5.CrossRef Agostini P, Naidu B, Cieslik H, Steyn R, Rajesh PB, Bishay E, et al. Effectiveness of incentive Spirometer in patients following thoracotomy and lung resection including those at high risk for developing pulmonary complications. Thorax. 2013;68:580–5.CrossRef
21.
go back to reference Pasquina P, Tramer MR, Granier JM, Walder B. Respiratory physiotherapy to prevent pulmonary complications after abdominal surgery: a systematic review. Chest. 2006;130:1887–99.CrossRef Pasquina P, Tramer MR, Granier JM, Walder B. Respiratory physiotherapy to prevent pulmonary complications after abdominal surgery: a systematic review. Chest. 2006;130:1887–99.CrossRef
22.
go back to reference Rollins KE, Aggarwal S, Fletcher A, Knight A, Rigg K, Williams AR, et al. Impact of early incentive spirometer in an enhanced recovery program after laparoscopic donor nephrectomy. Transplant Proc. 2013;45:1351–3.CrossRef Rollins KE, Aggarwal S, Fletcher A, Knight A, Rigg K, Williams AR, et al. Impact of early incentive spirometer in an enhanced recovery program after laparoscopic donor nephrectomy. Transplant Proc. 2013;45:1351–3.CrossRef
23.
go back to reference Torgerson DJ, Roberts C. Randomisation methods: concealment. BMJ. 1999;319:375–6.CrossRef Torgerson DJ, Roberts C. Randomisation methods: concealment. BMJ. 1999;319:375–6.CrossRef
24.
go back to reference Ruppel G. Manual of Pulmonary Function Testing. 9th ed. St. Louis: Mosby; 2008. Ruppel G. Manual of Pulmonary Function Testing. 9th ed. St. Louis: Mosby; 2008.
25.
go back to reference Restrepo RD, Wettstein R, Wittnebel L, Tracy M. Incentive spirometry: 2011. Respir Care. 2011;56:1600–4.CrossRef Restrepo RD, Wettstein R, Wittnebel L, Tracy M. Incentive spirometry: 2011. Respir Care. 2011;56:1600–4.CrossRef
26.
go back to reference Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91.CrossRef Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91.CrossRef
27.
go back to reference Byun JH, Kim HY. Factors affecting pneumonia occurring to patients with multiple rib fractures. Korean J Thorac Cardiovasc Surg. 2013;46:130–4.CrossRef Byun JH, Kim HY. Factors affecting pneumonia occurring to patients with multiple rib fractures. Korean J Thorac Cardiovasc Surg. 2013;46:130–4.CrossRef
28.
go back to reference Shulzhenko NO, Zens TJ, Beems MV, Jung HS, O'Rourke AP, Liepert AE, et al. Number of rib fractures thresholds independently predict worse outcomes in older patients with blunt trauma. Surgery. 2017;161:1083–9.CrossRef Shulzhenko NO, Zens TJ, Beems MV, Jung HS, O'Rourke AP, Liepert AE, et al. Number of rib fractures thresholds independently predict worse outcomes in older patients with blunt trauma. Surgery. 2017;161:1083–9.CrossRef
29.
go back to reference Ekpe EE, Eyo C. Effect of analgesia on the changes in respiratory parameters in blunt chest injury with multiple rib fractures. Ann Afr Med. 2017;16:120–6.CrossRef Ekpe EE, Eyo C. Effect of analgesia on the changes in respiratory parameters in blunt chest injury with multiple rib fractures. Ann Afr Med. 2017;16:120–6.CrossRef
31.
go back to reference Butts CA, Brady JJ 3rd, Whilhelm S, Castor L, Sherwood A, McCall A, et al. Do simple beside lung function tests predict morbidity after rib fractures. Am J Surg. 2017;213:473–7.CrossRef Butts CA, Brady JJ 3rd, Whilhelm S, Castor L, Sherwood A, McCall A, et al. Do simple beside lung function tests predict morbidity after rib fractures. Am J Surg. 2017;213:473–7.CrossRef
32.
go back to reference Chauny JM, Émond M, Plourde M, Guimont C, Le Sage N, Vanier L, et al. Patients with rib fractures do not develop delayed pneumonia: a prospective, multicenter cohort study of minor thoracic injury. Ann Emerg Med. 2012;60:726–31.CrossRef Chauny JM, Émond M, Plourde M, Guimont C, Le Sage N, Vanier L, et al. Patients with rib fractures do not develop delayed pneumonia: a prospective, multicenter cohort study of minor thoracic injury. Ann Emerg Med. 2012;60:726–31.CrossRef
33.
go back to reference Renault JA, Costa-Val R, Rosseti MB, Houri NM. Comparison between deep breathing exercises and incentive spirometer after CABG surgery. Rev Bras Cir Cardiovasc. 2009;24:165–72.CrossRef Renault JA, Costa-Val R, Rosseti MB, Houri NM. Comparison between deep breathing exercises and incentive spirometer after CABG surgery. Rev Bras Cir Cardiovasc. 2009;24:165–72.CrossRef
34.
go back to reference Alaparthi GK, Augustine AJ, Anand R, Mahale A. Comparison of diaphragmatic breathing exercise, volume and flow incentive spirometer, on diaphragm excursion and pulmonary function in patients undergoing laparoscopic surgery: a randomized controlled trial. Minim Invasive Surg. 2016;2016:1967532.PubMedPubMedCentral Alaparthi GK, Augustine AJ, Anand R, Mahale A. Comparison of diaphragmatic breathing exercise, volume and flow incentive spirometer, on diaphragm excursion and pulmonary function in patients undergoing laparoscopic surgery: a randomized controlled trial. Minim Invasive Surg. 2016;2016:1967532.PubMedPubMedCentral
35.
go back to reference Rollin KE, Aggarwal S, Fletcher A, Knight A, Rigg K, Williams AR, et al. Impact of early incentive spirometry in an enhanced recovery program after laparoscopic donor nephrectomy. Transplant Proc. 2013;45:1351–3.CrossRef Rollin KE, Aggarwal S, Fletcher A, Knight A, Rigg K, Williams AR, et al. Impact of early incentive spirometry in an enhanced recovery program after laparoscopic donor nephrectomy. Transplant Proc. 2013;45:1351–3.CrossRef
36.
go back to reference Koo M, Hwang S. Comparison of effects of exhalation and inhalation breathing exercises on pulmonary function and complications in elderly patients with upper-abdominal surgery. J Korean Acad Nurs. 2016;46:514–22.CrossRef Koo M, Hwang S. Comparison of effects of exhalation and inhalation breathing exercises on pulmonary function and complications in elderly patients with upper-abdominal surgery. J Korean Acad Nurs. 2016;46:514–22.CrossRef
37.
go back to reference Moon D, Kim KH, Lee S. Effects of deep breathing with incentive spirometer on pulmonary function and O2 saturation by time process in patients with rib fracture. J Korea Contents Assoc. 2015;15:174–83.CrossRef Moon D, Kim KH, Lee S. Effects of deep breathing with incentive spirometer on pulmonary function and O2 saturation by time process in patients with rib fracture. J Korea Contents Assoc. 2015;15:174–83.CrossRef
38.
go back to reference Misthos P, Kakaris S, Sepsas E, Athanassiadi K, Skottis I. A prospective analysis of occult pneumothorax, delayed pneumothorax and delayed hemothorax after minor blunt thoracic trauma. Eur J Cardiothorac Surg. 2004;25:859–64.CrossRef Misthos P, Kakaris S, Sepsas E, Athanassiadi K, Skottis I. A prospective analysis of occult pneumothorax, delayed pneumothorax and delayed hemothorax after minor blunt thoracic trauma. Eur J Cardiothorac Surg. 2004;25:859–64.CrossRef
40.
go back to reference Brasel KJ, Moore EE, Albrecht RA, deMoya M, Schreiber M, Karmy-Jones R, et al. Western trauma association critical decisions in trauma: management of rib fractures. J Trauma Acute Care Surg. 2017;82:200–3.CrossRef Brasel KJ, Moore EE, Albrecht RA, deMoya M, Schreiber M, Karmy-Jones R, et al. Western trauma association critical decisions in trauma: management of rib fractures. J Trauma Acute Care Surg. 2017;82:200–3.CrossRef
41.
go back to reference Wartolowska K, Collins GS, Hopewell S, Judge A, Dean BJF, Rombach I, et al. Feasibility of surgical randomised controlled trials with a placebo arm: a systematic review. BMJ Open. 2016;6:e010194.CrossRef Wartolowska K, Collins GS, Hopewell S, Judge A, Dean BJF, Rombach I, et al. Feasibility of surgical randomised controlled trials with a placebo arm: a systematic review. BMJ Open. 2016;6:e010194.CrossRef
Metadata
Title
Using an incentive spirometer reduces pulmonary complications in patients with traumatic rib fractures: a randomized controlled trial
Authors
Shao-Kai Sum
Ya-Chuan Peng
Shun-Ying Yin
Pin-Fu Huang
Yao-Chang Wang
Tzu-Ping Chen
Heng-Hsin Tung
Chi-Hsiao Yeh
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Trials / Issue 1/2019
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-019-3943-x

Other articles of this Issue 1/2019

Trials 1/2019 Go to the issue