Skip to main content
Top
Published in: Neurotherapeutics 1/2016

01-01-2016 | Review

Therapeutic Advances and Future Prospects in Progressive Forms of Multiple Sclerosis

Authors: Afsaneh Shirani, Darin T. Okuda, Olaf Stüve

Published in: Neurotherapeutics | Issue 1/2016

Login to get access

Abstract

Identifying effective therapies for the treatment of progressive forms of multiple sclerosis (MS) is a highly relevant priority and one of the greatest challenges for the global MS community. Better understanding of the mechanisms involved in progression of the disease, novel trial designs, drug repurposing strategies, and new models of collaboration may assist in identifying effective therapies. In this review, we discuss various therapies under study in phase II or III trials, including antioxidants (idebenone); tyrosine kinase inhibitors (masitinib); sphingosine receptor modulators (siponimod); monoclonal antibodies (anti-leucine-rich repeat and immunoglobulin-like domain containing neurite outgrowth inhibitor receptor-interacting protein-1, natalizumab, ocrelizumab, intrathecal rituximab); hematopoetic stem cell therapy; statins and other possible neuroprotective agents (amiloride, riluzole, fluoxetine, oxcarbazepine); lithium; phosphodiesterase inhibitors (ibudilast); hormone-based therapies (adrenocorticotrophic hormone and erythropoietin); T-cell receptor peptide vaccine (NeuroVax); autologous T-cell immunotherapy (Tcelna); MIS416 (a microparticulate immune response modifier); dopamine antagonists (domperidone); and nutritional supplements, including lipoic acid, biotin, and sunphenon epigallocatechin-3-gallate (green tea extract). Given ongoing and planned clinical trial initiatives, and the largest ever focus of the global research community on progressive MS, future prospects for developing targeted therapeutics aimed at reducing disability in progressive forms of MS appear promising.
Appendix
Available only for authorised users
Literature
4.
go back to reference Feinstein A, Freeman J, Lo AC. Treatment of progressive multiple sclerosis: what works, what does not, and what is needed. Lancet Neurol 2015;14:194–207.PubMedCrossRef Feinstein A, Freeman J, Lo AC. Treatment of progressive multiple sclerosis: what works, what does not, and what is needed. Lancet Neurol 2015;14:194–207.PubMedCrossRef
6.
go back to reference Browne P, Chandraratna D, Angood C, et al. Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity. Neurology 2014;83:1022–1024.PubMedPubMedCentralCrossRef Browne P, Chandraratna D, Angood C, et al. Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity. Neurology 2014;83:1022–1024.PubMedPubMedCentralCrossRef
7.
go back to reference Thompson AJ. A much-needed focus on progression in multiple sclerosis. Lancet Neurol 2015;14:133–135.PubMedCrossRef Thompson AJ. A much-needed focus on progression in multiple sclerosis. Lancet Neurol 2015;14:133–135.PubMedCrossRef
9.
go back to reference Fox RJ, Thompson A, Baker D, et al. Setting a research agenda for progressive multiple sclerosis: the International Collaborative on Progressive MS. Mult Scler 2012;18:1534–1540.PubMedPubMedCentralCrossRef Fox RJ, Thompson A, Baker D, et al. Setting a research agenda for progressive multiple sclerosis: the International Collaborative on Progressive MS. Mult Scler 2012;18:1534–1540.PubMedPubMedCentralCrossRef
10.
go back to reference Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol 2015;14:183–193.PubMedCrossRef Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol 2015;14:183–193.PubMedCrossRef
11.
12.
go back to reference Davies AL, Desai RA, Bloomfield PS, et al. Neurological deficits caused by tissue hypoxia in neuroinflammatory disease. Ann Neurol 2013;74:815–825.PubMedCrossRef Davies AL, Desai RA, Bloomfield PS, et al. Neurological deficits caused by tissue hypoxia in neuroinflammatory disease. Ann Neurol 2013;74:815–825.PubMedCrossRef
13.
go back to reference Hametner S, Wimmer I, Haider L, Pfeifenbring S, Bruck W, Lassmann H. Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol 2013;74:848–861.PubMedPubMedCentralCrossRef Hametner S, Wimmer I, Haider L, Pfeifenbring S, Bruck W, Lassmann H. Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol 2013;74:848–861.PubMedPubMedCentralCrossRef
14.
go back to reference Hawker K, O'Connor P, Freedman MS, et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol 2009;66:460–471.PubMedCrossRef Hawker K, O'Connor P, Freedman MS, et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol 2009;66:460–471.PubMedCrossRef
15.
go back to reference Magliozzi R, Howell O, Vora A, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 2007;130:1089–1104.PubMedCrossRef Magliozzi R, Howell O, Vora A, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 2007;130:1089–1104.PubMedCrossRef
16.
go back to reference Choi SR, Howell OW, Carassiti D, et al. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain 2012;135:2925–2937.PubMedCrossRef Choi SR, Howell OW, Carassiti D, et al. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain 2012;135:2925–2937.PubMedCrossRef
17.
go back to reference Kowarik MC, Pellkofer HL, Cepok S, et al. Differential effects of fingolimod (FTY720) on immune cells in the CSF and blood of patients with MS. Neurology 2011;76:1214–1221.PubMedCrossRef Kowarik MC, Pellkofer HL, Cepok S, et al. Differential effects of fingolimod (FTY720) on immune cells in the CSF and blood of patients with MS. Neurology 2011;76:1214–1221.PubMedCrossRef
18.
go back to reference Ontaneda D, Fox RJ, Chataway J. Clinical trials in progressive multiple sclerosis: lessons learned and future perspectives. Lancet Neurol 2015;14:208–223.PubMedPubMedCentralCrossRef Ontaneda D, Fox RJ, Chataway J. Clinical trials in progressive multiple sclerosis: lessons learned and future perspectives. Lancet Neurol 2015;14:208–223.PubMedPubMedCentralCrossRef
19.
go back to reference Brinar VV, Barun B. Challenges in multiple sclerosis; how to define occurence of progression. Clin Neurol Neurosurg 2013;115(Suppl. 1):S30-S34.PubMedCrossRef Brinar VV, Barun B. Challenges in multiple sclerosis; how to define occurence of progression. Clin Neurol Neurosurg 2013;115(Suppl. 1):S30-S34.PubMedCrossRef
20.
21.
go back to reference Lassmann H, Bruck W, Lucchinetti CF. The immunopathology of multiple sclerosis: an overview. Brain Pathol 2007;17:210–218.PubMedCrossRef Lassmann H, Bruck W, Lucchinetti CF. The immunopathology of multiple sclerosis: an overview. Brain Pathol 2007;17:210–218.PubMedCrossRef
22.
23.
go back to reference Confavreux C, Vukusic S. Natural history of multiple sclerosis: a unifying concept. Brain 2006;129:606–616.PubMedCrossRef Confavreux C, Vukusic S. Natural history of multiple sclerosis: a unifying concept. Brain 2006;129:606–616.PubMedCrossRef
24.
25.
go back to reference Kantarci OH, Lebrun C, Siva A, et al. Primary progressive MS evolving from radiologically isolated syndrome. Ann Neurol 2015. doi:10.1002/ana.24564. Kantarci OH, Lebrun C, Siva A, et al. Primary progressive MS evolving from radiologically isolated syndrome. Ann Neurol 2015. doi:10.​1002/​ana.​24564.
26.
go back to reference Okuda DT. Immunosuppressive treatments in multiple sclerosis. Handb Clin Neurol 2014;122:503–511. Okuda DT. Immunosuppressive treatments in multiple sclerosis. Handb Clin Neurol 2014;122:503–511.
27.
go back to reference Anon. Double-masked trial of azathioprine in multiple sclerosis. British and Dutch Multiple Sclerosis Azathioprine Trial Group. Lancet 1988;2:179–183. Anon. Double-masked trial of azathioprine in multiple sclerosis. British and Dutch Multiple Sclerosis Azathioprine Trial Group. Lancet 1988;2:179–183.
28.
go back to reference Anon. Efficacy and toxicity of cyclosporine in chronic progressive multiple sclerosis: a randomized, double-blinded, placebo-controlled clinical trial. The Multiple Sclerosis Study Group. Ann Neurol 1990;27:591–605.CrossRef Anon. Efficacy and toxicity of cyclosporine in chronic progressive multiple sclerosis: a randomized, double-blinded, placebo-controlled clinical trial. The Multiple Sclerosis Study Group. Ann Neurol 1990;27:591–605.CrossRef
29.
go back to reference Anon. The Canadian cooperative trial of cyclophosphamide and plasma exchange in progressive multiple sclerosis. The Canadian Cooperative Multiple Sclerosis Study Group. Lancet 1991;337:441–446. Anon. The Canadian cooperative trial of cyclophosphamide and plasma exchange in progressive multiple sclerosis. The Canadian Cooperative Multiple Sclerosis Study Group. Lancet 1991;337:441–446.
30.
go back to reference Hommes OR, Sorensen PS, Fazekas F, et al. Intravenous immunoglobulin in secondary progressive multiple sclerosis: randomised placebo-controlled trial. Lancet 2004;364:1149–1156.PubMedCrossRef Hommes OR, Sorensen PS, Fazekas F, et al. Intravenous immunoglobulin in secondary progressive multiple sclerosis: randomised placebo-controlled trial. Lancet 2004;364:1149–1156.PubMedCrossRef
31.
go back to reference Pohlau D, Przuntek H, Sailer M, et al. Intravenous immunoglobulin in primary and secondary chronic progressive multiple sclerosis: a randomized placebo controlled multicentre study. Mult Scler 2007;13:1107–1117.PubMedCrossRef Pohlau D, Przuntek H, Sailer M, et al. Intravenous immunoglobulin in primary and secondary chronic progressive multiple sclerosis: a randomized placebo controlled multicentre study. Mult Scler 2007;13:1107–1117.PubMedCrossRef
32.
go back to reference Noseworthy JH, O'Brien P, Erickson BJ, et al. The Mayo Clinic–Canadian Cooperative trial of sulfasalazine in active multiple sclerosis. Neurology 1998;51:1342–1352.PubMedCrossRef Noseworthy JH, O'Brien P, Erickson BJ, et al. The Mayo Clinic–Canadian Cooperative trial of sulfasalazine in active multiple sclerosis. Neurology 1998;51:1342–1352.PubMedCrossRef
33.
go back to reference Andersen O, Elovaara I, Farkkila M, et al. Multicentre, randomised, double blind, placebo controlled, phase III study of weekly, low dose, subcutaneous interferon beta-1a in secondary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 2004;75:706–710.PubMedPubMedCentralCrossRef Andersen O, Elovaara I, Farkkila M, et al. Multicentre, randomised, double blind, placebo controlled, phase III study of weekly, low dose, subcutaneous interferon beta-1a in secondary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 2004;75:706–710.PubMedPubMedCentralCrossRef
34.
go back to reference Panitch H, Miller A, Paty D, Weinshenker B, North American Study Group on Interferon beta-1b in Secondary Progressive MS. Interferon beta-1b in secondary progressive MS: results from a 3-year controlled study. Neurology 2004;63:1788–1795.PubMedCrossRef Panitch H, Miller A, Paty D, Weinshenker B, North American Study Group on Interferon beta-1b in Secondary Progressive MS. Interferon beta-1b in secondary progressive MS: results from a 3-year controlled study. Neurology 2004;63:1788–1795.PubMedCrossRef
35.
go back to reference Anon. Placebo-controlled multicentre randomised trial of interferon beta-1b in treatment of secondary progressive multiple sclerosis. European Study Group on interferon beta-1b in secondary progressive MS. Lancet 1998;352:1491–1497.CrossRef Anon. Placebo-controlled multicentre randomised trial of interferon beta-1b in treatment of secondary progressive multiple sclerosis. European Study Group on interferon beta-1b in secondary progressive MS. Lancet 1998;352:1491–1497.CrossRef
36.
go back to reference Wolinsky JS, Narayana PA, O'Connor P, et al. Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, double-blind, placebo-controlled trial. Ann Neurol 2007;61:14–24.PubMedCrossRef Wolinsky JS, Narayana PA, O'Connor P, et al. Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, double-blind, placebo-controlled trial. Ann Neurol 2007;61:14–24.PubMedCrossRef
37.
go back to reference Noseworthy JH, Wolinsky JS, Lublin FD, et al. Linomide in relapsing and secondary progressive MS: part I: trial design and clinical results. North American Linomide Investigators. Neurology 2000;54:1726–1733.PubMedCrossRef Noseworthy JH, Wolinsky JS, Lublin FD, et al. Linomide in relapsing and secondary progressive MS: part I: trial design and clinical results. North American Linomide Investigators. Neurology 2000;54:1726–1733.PubMedCrossRef
38.
go back to reference Rice GP, Filippi M, Comi G. Cladribine and progressive MS: clinical and MRI outcomes of a multicenter controlled trial. Cladribine MRI Study Group. Neurology 2000;54:1145–1155.PubMedCrossRef Rice GP, Filippi M, Comi G. Cladribine and progressive MS: clinical and MRI outcomes of a multicenter controlled trial. Cladribine MRI Study Group. Neurology 2000;54:1145–1155.PubMedCrossRef
39.
go back to reference Freedman MS, Bar-Or A, Oger J, et al. A phase III study evaluating the efficacy and safety of MBP8298 in secondary progressive MS. Neurology 2011;77:1551–1560.PubMedCrossRef Freedman MS, Bar-Or A, Oger J, et al. A phase III study evaluating the efficacy and safety of MBP8298 in secondary progressive MS. Neurology 2011;77:1551–1560.PubMedCrossRef
40.
go back to reference Zajicek J, Ball S, Wright D, et al. Effect of dronabinol on progression in progressive multiple sclerosis (CUPID): a randomised, placebo-controlled trial. Lancet Neurol 2013;12:857–865.PubMedPubMedCentralCrossRef Zajicek J, Ball S, Wright D, et al. Effect of dronabinol on progression in progressive multiple sclerosis (CUPID): a randomised, placebo-controlled trial. Lancet Neurol 2013;12:857–865.PubMedPubMedCentralCrossRef
41.
go back to reference Bot A, Smith D, Bot S, et al. Plasmid vaccination with insulin b chain prevents autoimmune diabetes in nonobese diabetic mice. J Immunol 2001;167:2950–2955.PubMedCrossRef Bot A, Smith D, Bot S, et al. Plasmid vaccination with insulin b chain prevents autoimmune diabetes in nonobese diabetic mice. J Immunol 2001;167:2950–2955.PubMedCrossRef
42.
go back to reference Coles AJ, Cox A, Le Page E, et al. The window of therapeutic opportunity in multiple sclerosis: evidence from monoclonal antibody therapy. J Neurol 2006;253:98–108.PubMedCrossRef Coles AJ, Cox A, Le Page E, et al. The window of therapeutic opportunity in multiple sclerosis: evidence from monoclonal antibody therapy. J Neurol 2006;253:98–108.PubMedCrossRef
43.
go back to reference Lublin FD, Miller D, Freedman M, et al. Oral fingolimod versus placebo in patients with primary progressive multiple sclerosis (PPMS): results of the INFORMS phase III trial. . The 67th Annual Meeting of the American Academy of Neurology, Washington, DC, April 18–25, 2015. Lublin FD, Miller D, Freedman M, et al. Oral fingolimod versus placebo in patients with primary progressive multiple sclerosis (PPMS): results of the INFORMS phase III trial. . The 67th Annual Meeting of the American Academy of Neurology, Washington, DC, April 18–25, 2015.
44.
go back to reference Wiendl H, Hohlfeld R. Therapeutic approaches in multiple sclerosis: lessons from failed and interrupted treatment trials. BioDrugs 2002;16:183–200.PubMedCrossRef Wiendl H, Hohlfeld R. Therapeutic approaches in multiple sclerosis: lessons from failed and interrupted treatment trials. BioDrugs 2002;16:183–200.PubMedCrossRef
45.
go back to reference Arnason BG, Berkovich R, Catania A, Lisak RP, Zaidi M. Mechanisms of action of adrenocorticotropic hormone and other melanocortins relevant to the clinical management of patients with multiple sclerosis. Mult Scler 2013;19:130–136.PubMedPubMedCentralCrossRef Arnason BG, Berkovich R, Catania A, Lisak RP, Zaidi M. Mechanisms of action of adrenocorticotropic hormone and other melanocortins relevant to the clinical management of patients with multiple sclerosis. Mult Scler 2013;19:130–136.PubMedPubMedCentralCrossRef
46.
go back to reference Stafstrom CE, Arnason BG, Baram TZ, et al. Treatment of infantile spasms: emerging insights from clinical and basic science perspectives. J Child Neurol 2011;26:1411–1421.PubMedCrossRef Stafstrom CE, Arnason BG, Baram TZ, et al. Treatment of infantile spasms: emerging insights from clinical and basic science perspectives. J Child Neurol 2011;26:1411–1421.PubMedCrossRef
47.
go back to reference Catania A. Neuroprotective actions of melanocortins: a therapeutic opportunity. Trends Neurosci 2008;31:353–360.PubMedCrossRef Catania A. Neuroprotective actions of melanocortins: a therapeutic opportunity. Trends Neurosci 2008;31:353–360.PubMedCrossRef
48.
go back to reference Said HM. Biotin: the forgotten vitamin. Am J Clin Nutr 2002;75:179–180.PubMed Said HM. Biotin: the forgotten vitamin. Am J Clin Nutr 2002;75:179–180.PubMed
49.
go back to reference Ozand PT, Gascon GG, Al Essa M, et al. Biotin-responsive basal ganglia disease: a novel entity. Brain 1998;121:1267–1279.PubMedCrossRef Ozand PT, Gascon GG, Al Essa M, et al. Biotin-responsive basal ganglia disease: a novel entity. Brain 1998;121:1267–1279.PubMedCrossRef
50.
go back to reference Tabarki B, Al-Shafi S, Al-Shahwan S, et al. Biotin-responsive basal ganglia disease revisited: clinical, radiologic, and genetic findings. Neurology 2013;80:261–267.PubMedCrossRef Tabarki B, Al-Shafi S, Al-Shahwan S, et al. Biotin-responsive basal ganglia disease revisited: clinical, radiologic, and genetic findings. Neurology 2013;80:261–267.PubMedCrossRef
51.
go back to reference Sedel F, Challe G, Vignal C, Assouad R, Bellanger A, Galanaud D. A novel biotin-sensitive leukodystrophy (BSL). J Inherit Metab Dis 2011;34:S267. Sedel F, Challe G, Vignal C, Assouad R, Bellanger A, Galanaud D. A novel biotin-sensitive leukodystrophy (BSL). J Inherit Metab Dis 2011;34:S267.
52.
go back to reference Sedel F, Papeix C, Bellanger A, et al. High doses of biotin in chronic progressive multiple sclerosis: a pilot study. Mult Scler Relat Disord 2015;4:159–169.PubMedCrossRef Sedel F, Papeix C, Bellanger A, et al. High doses of biotin in chronic progressive multiple sclerosis: a pilot study. Mult Scler Relat Disord 2015;4:159–169.PubMedCrossRef
53.
go back to reference Tourbah A, Frenay CL, Edan G, et al. Effect of MD1003 (high doses of biotin) in progressive multiple sclerosis: results of a pivotal phase III randomized double blind placebo controlled study. The 67th Annual Meeting of the American Academy of Neurology, Wasgington, DC, April 18–25, 2015. Tourbah A, Frenay CL, Edan G, et al. Effect of MD1003 (high doses of biotin) in progressive multiple sclerosis: results of a pivotal phase III randomized double blind placebo controlled study. The 67th Annual Meeting of the American Academy of Neurology, Wasgington, DC, April 18–25, 2015.
54.
go back to reference Vergo S, Craner MJ, Etzensperger R, et al. Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model. Brain 2011;134:571–584.PubMedCrossRef Vergo S, Craner MJ, Etzensperger R, et al. Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model. Brain 2011;134:571–584.PubMedCrossRef
55.
go back to reference Friese MA, Craner MJ, Etzensperger R, et al. Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med 2007;13:1483–1489.PubMedCrossRef Friese MA, Craner MJ, Etzensperger R, et al. Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med 2007;13:1483–1489.PubMedCrossRef
56.
go back to reference Cheah BC, Vucic S, Krishnan AV, Kiernan MC. Riluzole, neuroprotection and amyotrophic lateral sclerosis. Curr Med Chem 2010;17:1942–1199.PubMedCrossRef Cheah BC, Vucic S, Krishnan AV, Kiernan MC. Riluzole, neuroprotection and amyotrophic lateral sclerosis. Curr Med Chem 2010;17:1942–1199.PubMedCrossRef
57.
go back to reference Zhang F, Zhou H, Wilson BC, Shi JS, Hong JS, Gao HM. Fluoxetine protects neurons against microglial activation-mediated neurotoxicity. Parkinsonism Relat Disord 2012;18(Suppl. 1):S213-S217.PubMedCrossRefPubMedCentral Zhang F, Zhou H, Wilson BC, Shi JS, Hong JS, Gao HM. Fluoxetine protects neurons against microglial activation-mediated neurotoxicity. Parkinsonism Relat Disord 2012;18(Suppl. 1):S213-S217.PubMedCrossRefPubMedCentral
58.
go back to reference Lim CM, Kim SW, Park JY, Kim C, Yoon SH, Lee JK. Fluoxetine affords robust neuroprotection in the postischemic brain via its anti-inflammatory effect. J Neurosci Res 2009;87:1037–1045.PubMedCrossRef Lim CM, Kim SW, Park JY, Kim C, Yoon SH, Lee JK. Fluoxetine affords robust neuroprotection in the postischemic brain via its anti-inflammatory effect. J Neurosci Res 2009;87:1037–1045.PubMedCrossRef
59.
go back to reference Alme MN, Wibrand K, Dagestad G, Bramham CR. Chronic fluoxetine treatment induces brain region-specific upregulation of genes associated with BDNF-induced long-term potentiation. Neural Plast 2007;2007:26496.PubMedPubMedCentral Alme MN, Wibrand K, Dagestad G, Bramham CR. Chronic fluoxetine treatment induces brain region-specific upregulation of genes associated with BDNF-induced long-term potentiation. Neural Plast 2007;2007:26496.PubMedPubMedCentral
60.
go back to reference Rudick RA, Mi S, Sandrock AW, Jr. LINGO-1 antagonists as therapy for multiple sclerosis: in vitro and in vivo evidence. Expert Opin Biol Ther 2008;8:1561–1570.PubMedCrossRef Rudick RA, Mi S, Sandrock AW, Jr. LINGO-1 antagonists as therapy for multiple sclerosis: in vitro and in vivo evidence. Expert Opin Biol Ther 2008;8:1561–1570.PubMedCrossRef
61.
go back to reference Mi S, Miller RH, Lee X, et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 2005;8:745–751.PubMedCrossRef Mi S, Miller RH, Lee X, et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 2005;8:745–751.PubMedCrossRef
62.
63.
go back to reference Cadavid D, Balcer L, Galetta S, et al. Evidence of remyelination with the anti-LINGO-1 monoclonal antibody BIIB033 after acute optic neuritis. The 67th Annual Meeting of the American Academy of Neurology, Wasgington, DC, April 18–25, 2015. Cadavid D, Balcer L, Galetta S, et al. Evidence of remyelination with the anti-LINGO-1 monoclonal antibody BIIB033 after acute optic neuritis. The 67th Annual Meeting of the American Academy of Neurology, Wasgington, DC, April 18–25, 2015.
64.
go back to reference Fitzgerald P, Dinan TG. Prolactin and dopamine: what is the connection? A review article. J Psychopharmacol 2008;22:12–19.PubMedCrossRef Fitzgerald P, Dinan TG. Prolactin and dopamine: what is the connection? A review article. J Psychopharmacol 2008;22:12–19.PubMedCrossRef
65.
go back to reference Phan H, DeReese A, Day AJ, Carvalho M. The dual role of domperidone in gastroparesis and lactation. Int J Pharm Compd 2014;18:203–207.PubMed Phan H, DeReese A, Day AJ, Carvalho M. The dual role of domperidone in gastroparesis and lactation. Int J Pharm Compd 2014;18:203–207.PubMed
66.
go back to reference Zhornitsky S, Yong VW, Weiss S, Metz LM. Prolactin in multiple sclerosis. Mult Scler 2013;19:15–23.PubMedCrossRef Zhornitsky S, Yong VW, Weiss S, Metz LM. Prolactin in multiple sclerosis. Mult Scler 2013;19:15–23.PubMedCrossRef
67.
go back to reference Zhornitsky S, Johnson TA, Metz LM, Weiss S, Yong VW. Prolactin in combination with interferon-beta reduces disease severity in an animal model of multiple sclerosis. J Neuroinflamm 2015;12:55.CrossRef Zhornitsky S, Johnson TA, Metz LM, Weiss S, Yong VW. Prolactin in combination with interferon-beta reduces disease severity in an animal model of multiple sclerosis. J Neuroinflamm 2015;12:55.CrossRef
68.
go back to reference Coyle PK. Multiple sclerosis in pregnancy. Continuum (Minneap Minn) 2014;20:42–59. Coyle PK. Multiple sclerosis in pregnancy. Continuum (Minneap Minn) 2014;20:42–59.
69.
go back to reference Brines M, Cerami A. Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci 2005;6:484–494.PubMedCrossRef Brines M, Cerami A. Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci 2005;6:484–494.PubMedCrossRef
70.
go back to reference Bartels C, Spate K, Krampe H, Ehrenreich H. Recombinant human erythropoietin: novel strategies for neuroprotective/neuro-regenerative treatment of multiple sclerosis. Ther Adv Neurol Disord 2008;1:193–206.PubMedPubMedCentralCrossRef Bartels C, Spate K, Krampe H, Ehrenreich H. Recombinant human erythropoietin: novel strategies for neuroprotective/neuro-regenerative treatment of multiple sclerosis. Ther Adv Neurol Disord 2008;1:193–206.PubMedPubMedCentralCrossRef
71.
go back to reference Li W, Maeda Y, Yuan RR, Elkabes S, Cook S, Dowling P. Beneficial effect of erythropoietin on experimental allergic encephalomyelitis. Ann Neurol 2004;56:767–777.PubMedCrossRef Li W, Maeda Y, Yuan RR, Elkabes S, Cook S, Dowling P. Beneficial effect of erythropoietin on experimental allergic encephalomyelitis. Ann Neurol 2004;56:767–777.PubMedCrossRef
72.
go back to reference Ehrenreich H, Fischer B, Norra C, et al. Exploring recombinant human erythropoietin in chronic progressive multiple sclerosis. Brain 2007;130:2577–2588.PubMedCrossRef Ehrenreich H, Fischer B, Norra C, et al. Exploring recombinant human erythropoietin in chronic progressive multiple sclerosis. Brain 2007;130:2577–2588.PubMedCrossRef
73.
go back to reference Radaelli M, Merlini A, Greco R, et al. Autologous bone marrow transplantation for the treatment of multiple sclerosis. Curr Neurol Neurosci Rep 2014;14:478.PubMedCrossRef Radaelli M, Merlini A, Greco R, et al. Autologous bone marrow transplantation for the treatment of multiple sclerosis. Curr Neurol Neurosci Rep 2014;14:478.PubMedCrossRef
74.
go back to reference Harris VK, Sadiq SA. Stem cell therapy in multiple sclerosis: a future perspective. Neurodegener Dis Manag 2015;5:167–170.PubMedCrossRef Harris VK, Sadiq SA. Stem cell therapy in multiple sclerosis: a future perspective. Neurodegener Dis Manag 2015;5:167–170.PubMedCrossRef
75.
go back to reference Fassas A, Anagnostopoulos A, Kazis A, et al. Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: first results of a pilot study. Bone Marrow Transplant 1997;20:631–638.PubMedCrossRef Fassas A, Anagnostopoulos A, Kazis A, et al. Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: first results of a pilot study. Bone Marrow Transplant 1997;20:631–638.PubMedCrossRef
76.
go back to reference Nash RA, Bowen JD, McSweeney PA, et al. High-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation for severe multiple sclerosis. Blood 2003;102:2364–2372.PubMedPubMedCentralCrossRef Nash RA, Bowen JD, McSweeney PA, et al. High-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation for severe multiple sclerosis. Blood 2003;102:2364–2372.PubMedPubMedCentralCrossRef
77.
go back to reference Fassas A, Kimiskidis VK, Sakellari I, et al. Long-term results of stem cell transplantation for MS: a single-center experience. Neurology 2011;76:1066–1070.PubMedCrossRef Fassas A, Kimiskidis VK, Sakellari I, et al. Long-term results of stem cell transplantation for MS: a single-center experience. Neurology 2011;76:1066–1070.PubMedCrossRef
78.
go back to reference Nash RA, Hutton GJ, Racke MK, et al. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for relapsing-remitting multiple sclerosis (HALT-MS): a 3-year interim report. JAMA Neurol 2015;72:159–169.PubMedCrossRef Nash RA, Hutton GJ, Racke MK, et al. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for relapsing-remitting multiple sclerosis (HALT-MS): a 3-year interim report. JAMA Neurol 2015;72:159–169.PubMedCrossRef
79.
go back to reference Connick P, Kolappan M, Crawley C, et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 2012;11:150–156.PubMedPubMedCentralCrossRef Connick P, Kolappan M, Crawley C, et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 2012;11:150–156.PubMedPubMedCentralCrossRef
80.
go back to reference Gibson LC, Hastings SF, McPhee I, et al. The inhibitory profile of Ibudilast against the human phosphodiesterase enzyme family. Eur J Pharmacol 2006;538:39–42.PubMedCrossRef Gibson LC, Hastings SF, McPhee I, et al. The inhibitory profile of Ibudilast against the human phosphodiesterase enzyme family. Eur J Pharmacol 2006;538:39–42.PubMedCrossRef
81.
go back to reference Feng J, Misu T, Fujihara K, et al. Ibudilast, a nonselective phosphodiesterase inhibitor, regulates Th1/Th2 balance and NKT cell subset in multiple sclerosis. Mult Scler 2004;10:494–498.PubMedCrossRef Feng J, Misu T, Fujihara K, et al. Ibudilast, a nonselective phosphodiesterase inhibitor, regulates Th1/Th2 balance and NKT cell subset in multiple sclerosis. Mult Scler 2004;10:494–498.PubMedCrossRef
82.
go back to reference Mizuno T, Kurotani T, Komatsu Y, et al. Neuroprotective role of phosphodiesterase inhibitor ibudilast on neuronal cell death induced by activated microglia. Neuropharmacology 2004;46:404–411.PubMedCrossRef Mizuno T, Kurotani T, Komatsu Y, et al. Neuroprotective role of phosphodiesterase inhibitor ibudilast on neuronal cell death induced by activated microglia. Neuropharmacology 2004;46:404–411.PubMedCrossRef
83.
go back to reference Barkhof F, Hulst HE, Drulovic J, et al. Ibudilast in relapsing-remitting multiple sclerosis: a neuroprotectant? Neurology 2010;74:1033–1040.PubMedCrossRef Barkhof F, Hulst HE, Drulovic J, et al. Ibudilast in relapsing-remitting multiple sclerosis: a neuroprotectant? Neurology 2010;74:1033–1040.PubMedCrossRef
84.
go back to reference Jaber S, Polster BM. Idebenone and neuroprotection: antioxidant, pro-oxidant, or electron carrier? J Bioenerg Biomembr 2015;47:111–118.PubMedCrossRef Jaber S, Polster BM. Idebenone and neuroprotection: antioxidant, pro-oxidant, or electron carrier? J Bioenerg Biomembr 2015;47:111–118.PubMedCrossRef
85.
go back to reference Civenni G, Bezzi P, Trotti D, Volterra A, Racagni G. Inhibitory effect of the neuroprotective agent idebenone on arachidonic acid metabolism in astrocytes. Eur J Pharmacol 1999;370:161–167.PubMedCrossRef Civenni G, Bezzi P, Trotti D, Volterra A, Racagni G. Inhibitory effect of the neuroprotective agent idebenone on arachidonic acid metabolism in astrocytes. Eur J Pharmacol 1999;370:161–167.PubMedCrossRef
86.
go back to reference Fiebiger SM, Bros H, Grobosch T, et al. The antioxidant idebenone fails to prevent or attenuate chronic experimental autoimmune encephalomyelitis in the mouse. J Neuroimmunol 2013;262:66–71.PubMedCrossRef Fiebiger SM, Bros H, Grobosch T, et al. The antioxidant idebenone fails to prevent or attenuate chronic experimental autoimmune encephalomyelitis in the mouse. J Neuroimmunol 2013;262:66–71.PubMedCrossRef
87.
go back to reference Salinthone S, Yadav V, Bourdette DN, Carr DW. Lipoic acid: a novel therapeutic approach for multiple sclerosis and other chronic inflammatory diseases of the CNS. Endocr Metab Immune Disord Drug Targets 2008;8:132–142.PubMedCrossRef Salinthone S, Yadav V, Bourdette DN, Carr DW. Lipoic acid: a novel therapeutic approach for multiple sclerosis and other chronic inflammatory diseases of the CNS. Endocr Metab Immune Disord Drug Targets 2008;8:132–142.PubMedCrossRef
88.
go back to reference Marracci GH, Jones RE, McKeon GP, Bourdette DN. Alpha lipoic acid inhibits T cell migration into the spinal cord and suppresses and treats experimental autoimmune encephalomyelitis. J Neuroimmunol 2002;131:104–114.PubMedCrossRef Marracci GH, Jones RE, McKeon GP, Bourdette DN. Alpha lipoic acid inhibits T cell migration into the spinal cord and suppresses and treats experimental autoimmune encephalomyelitis. J Neuroimmunol 2002;131:104–114.PubMedCrossRef
89.
go back to reference Yadav V, Marracci G, Lovera J, et al. Lipoic acid in multiple sclerosis: a pilot study. Mult Scler 2005;11:159–165.PubMedCrossRef Yadav V, Marracci G, Lovera J, et al. Lipoic acid in multiple sclerosis: a pilot study. Mult Scler 2005;11:159–165.PubMedCrossRef
90.
go back to reference Jope RS, Yuskaitis CJ, Beurel E. Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res 2007;32:577–595.PubMedCrossRef Jope RS, Yuskaitis CJ, Beurel E. Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res 2007;32:577–595.PubMedCrossRef
91.
go back to reference De Sarno P, Axtell RC, Raman C, Roth KA, Alessi DR, Jope RS. Lithium prevents and ameliorates experimental autoimmune encephalomyelitis. J Immunol 2008;181:338–345.PubMedPubMedCentralCrossRef De Sarno P, Axtell RC, Raman C, Roth KA, Alessi DR, Jope RS. Lithium prevents and ameliorates experimental autoimmune encephalomyelitis. J Immunol 2008;181:338–345.PubMedPubMedCentralCrossRef
92.
93.
go back to reference Theoharides TC, Kempuraj D, Kourelis T, Manola A. Human mast cells stimulate activated T cells: implications for multiple sclerosis. Ann N Y Acad Sci 2008;1144:74–82.PubMedCrossRef Theoharides TC, Kempuraj D, Kourelis T, Manola A. Human mast cells stimulate activated T cells: implications for multiple sclerosis. Ann N Y Acad Sci 2008;1144:74–82.PubMedCrossRef
94.
go back to reference Ribatti D. The crucial role of mast cells in blood–brain barrier alterations. Exp Cell Res 2015;338:119–125.PubMedCrossRef Ribatti D. The crucial role of mast cells in blood–brain barrier alterations. Exp Cell Res 2015;338:119–125.PubMedCrossRef
95.
go back to reference Vermersch P, Benrabah R, Schmidt N, et al. Masitinib treatment in patients with progressive multiple sclerosis: a randomized pilot study. BMC Neurol 2012;12:36.PubMedPubMedCentralCrossRef Vermersch P, Benrabah R, Schmidt N, et al. Masitinib treatment in patients with progressive multiple sclerosis: a randomized pilot study. BMC Neurol 2012;12:36.PubMedPubMedCentralCrossRef
96.
go back to reference Girvan RC, Knight DA, O'Loughlin CJ, Hayman CM, Hermans IF, Webster GA. MIS416, a non-toxic microparticle adjuvant derived from Propionibacterium acnes comprising immunostimulatory muramyl dipeptide and bacterial DNA promotes cross-priming and Th1 immunity. Vaccine 2011;29:545–557.PubMedCrossRef Girvan RC, Knight DA, O'Loughlin CJ, Hayman CM, Hermans IF, Webster GA. MIS416, a non-toxic microparticle adjuvant derived from Propionibacterium acnes comprising immunostimulatory muramyl dipeptide and bacterial DNA promotes cross-priming and Th1 immunity. Vaccine 2011;29:545–557.PubMedCrossRef
97.
go back to reference White M, Webster G, O'Sullivan D, Stone S, La Flamme AC. Targeting innate receptors with MIS416 reshapes Th responses and suppresses CNS disease in a mouse model of multiple sclerosis. PLoS One 2014;9:e87712.PubMedPubMedCentralCrossRef White M, Webster G, O'Sullivan D, Stone S, La Flamme AC. Targeting innate receptors with MIS416 reshapes Th responses and suppresses CNS disease in a mouse model of multiple sclerosis. PLoS One 2014;9:e87712.PubMedPubMedCentralCrossRef
99.
go back to reference Lutterotti A, Martin R. Getting specific: monoclonal antibodies in multiple sclerosis. Lancet Neurol 2008;7:538–547.PubMedCrossRef Lutterotti A, Martin R. Getting specific: monoclonal antibodies in multiple sclerosis. Lancet Neurol 2008;7:538–547.PubMedCrossRef
101.
go back to reference Romme Christensen J, Ratzer R, Bornsen L, et al. Natalizumab in progressive MS: results of an open-label, phase 2A, proof-of-concept trial. Neurology 2014;82:1499–1507.PubMedCrossRef Romme Christensen J, Ratzer R, Bornsen L, et al. Natalizumab in progressive MS: results of an open-label, phase 2A, proof-of-concept trial. Neurology 2014;82:1499–1507.PubMedCrossRef
102.
103.
go back to reference Stuve O, Cravens PD, Eagar TN. DNA-based vaccines: the future of multiple sclerosis therapy? Expert Rev Neurother 2008;8:351–360.PubMedCrossRef Stuve O, Cravens PD, Eagar TN. DNA-based vaccines: the future of multiple sclerosis therapy? Expert Rev Neurother 2008;8:351–360.PubMedCrossRef
104.
go back to reference Vandenbark AA. TCR peptide vaccination in multiple sclerosis: boosting a deficient natural regulatory network that may involve TCR-specific CD4 + CD25+ Treg cells. Curr Drug Targets Inflamm Allergy 2005;4:217–229.PubMedCrossRef Vandenbark AA. TCR peptide vaccination in multiple sclerosis: boosting a deficient natural regulatory network that may involve TCR-specific CD4 + CD25+ Treg cells. Curr Drug Targets Inflamm Allergy 2005;4:217–229.PubMedCrossRef
105.
go back to reference Wu Y, Borde M, Heissmeyer V, et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 2006;126:375–387.PubMedCrossRef Wu Y, Borde M, Heissmeyer V, et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 2006;126:375–387.PubMedCrossRef
106.
go back to reference Vandenbark AA, Culbertson NE, Bartholomew RM, et al. Therapeutic vaccination with a trivalent T-cell receptor (TCR) peptide vaccine restores deficient FoxP3 expression and TCR recognition in subjects with multiple sclerosis. Immunology 2008;123:66–78.PubMedPubMedCentralCrossRef Vandenbark AA, Culbertson NE, Bartholomew RM, et al. Therapeutic vaccination with a trivalent T-cell receptor (TCR) peptide vaccine restores deficient FoxP3 expression and TCR recognition in subjects with multiple sclerosis. Immunology 2008;123:66–78.PubMedPubMedCentralCrossRef
107.
go back to reference Raftopoulos RE, Kapoor R. Neuroprotection for acute optic neuritis – can it work? Mult Scler Relat Disord 2013;2:307–311.PubMedCrossRef Raftopoulos RE, Kapoor R. Neuroprotection for acute optic neuritis – can it work? Mult Scler Relat Disord 2013;2:307–311.PubMedCrossRef
108.
go back to reference Black JA, Liu S, Carrithers M, Carrithers LM, Waxman SG. Exacerbation of experimental autoimmune encephalomyelitis after withdrawal of phenytoin and carbamazepine. Ann Neurol 2007;62:21–33.PubMedCrossRef Black JA, Liu S, Carrithers M, Carrithers LM, Waxman SG. Exacerbation of experimental autoimmune encephalomyelitis after withdrawal of phenytoin and carbamazepine. Ann Neurol 2007;62:21–33.PubMedCrossRef
109.
go back to reference Morsali D, Bechtold D, Lee W, et al. Safinamide and flecainide protect axons and reduce microglial activation in models of multiple sclerosis. Brain 2013;136:1067–1082.PubMedCrossRef Morsali D, Bechtold D, Lee W, et al. Safinamide and flecainide protect axons and reduce microglial activation in models of multiple sclerosis. Brain 2013;136:1067–1082.PubMedCrossRef
110.
go back to reference Kapoor R, Furby J, Hayton T, et al. Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Neurol 2010;9:681–688.PubMedCrossRef Kapoor R, Furby J, Hayton T, et al. Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Neurol 2010;9:681–688.PubMedCrossRef
111.
go back to reference Beck RW, Cleary PA, Anderson MM, Jr., et al. A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. The Optic Neuritis Study Group. N Engl J Med 1992;326:581–588.PubMedCrossRef Beck RW, Cleary PA, Anderson MM, Jr., et al. A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. The Optic Neuritis Study Group. N Engl J Med 1992;326:581–588.PubMedCrossRef
112.
go back to reference Kolappan M, Henderson AP, Jenkins TM, et al. Assessing structure and function of the afferent visual pathway in multiple sclerosis and associated optic neuritis. J Neurol 2009;256:305–319.PubMedCrossRef Kolappan M, Henderson AP, Jenkins TM, et al. Assessing structure and function of the afferent visual pathway in multiple sclerosis and associated optic neuritis. J Neurol 2009;256:305–319.PubMedCrossRef
113.
go back to reference Kapoor R, Raftopoulos R, Hickman S, et al. Phenytoin is neuroprotective in acute optic neuritis: results of a phase 2 randomized controlled trial. The 67th Annual Meeting of the American Academy of Neurology, Wasgington, DC, April 18–25, 2015. Kapoor R, Raftopoulos R, Hickman S, et al. Phenytoin is neuroprotective in acute optic neuritis: results of a phase 2 randomized controlled trial. The 67th Annual Meeting of the American Academy of Neurology, Wasgington, DC, April 18–25, 2015.
114.
go back to reference Bonnan M, Ferrari S, Bertandeau E, et al. Intrathecal rituximab therapy in multiple sclerosis: review of evidence supporting the need for future trials. Curr Drug Targets 2014;15:1205–1214.PubMedCrossRef Bonnan M, Ferrari S, Bertandeau E, et al. Intrathecal rituximab therapy in multiple sclerosis: review of evidence supporting the need for future trials. Curr Drug Targets 2014;15:1205–1214.PubMedCrossRef
115.
go back to reference Montalban X, Hemmer B, Rammohan K, et al. Efficacy and safety of ocrelizumab in primary progressive multiple sclerosis - results of the placebo-controlled, double-blind, Phase III ORATORIO study. Mult Scler 2015 Supplement, p780-808. 29p. Montalban X, Hemmer B, Rammohan K, et al. Efficacy and safety of ocrelizumab in primary progressive multiple sclerosis - results of the placebo-controlled, double-blind, Phase III ORATORIO study. Mult Scler 2015 Supplement, p780-808. 29p.
116.
go back to reference van der Most PJ, Dolga AM, Nijholt IM, Luiten PG, Eisel UL. Statins: mechanisms of neuroprotection. Prog Neurobiol 2009;88:64–75.PubMedCrossRef van der Most PJ, Dolga AM, Nijholt IM, Luiten PG, Eisel UL. Statins: mechanisms of neuroprotection. Prog Neurobiol 2009;88:64–75.PubMedCrossRef
117.
go back to reference Weber MS, Youssef S, Dunn SE, et al. Statins in the treatment of central nervous system autoimmune disease. J Neuroimmunol 2006;178:140–148.PubMedCrossRef Weber MS, Youssef S, Dunn SE, et al. Statins in the treatment of central nervous system autoimmune disease. J Neuroimmunol 2006;178:140–148.PubMedCrossRef
118.
go back to reference Neuhaus O, Stuve O, Zamvil SS, Hartung HP. Are statins a treatment option for multiple sclerosis? Lancet Neurol 2004;3:369–371.PubMedCrossRef Neuhaus O, Stuve O, Zamvil SS, Hartung HP. Are statins a treatment option for multiple sclerosis? Lancet Neurol 2004;3:369–371.PubMedCrossRef
119.
go back to reference Pihl-Jensen G, Tsakiri A, Frederiksen JL. Statin treatment in multiple sclerosis: a systematic review and meta-analysis. CNS Drugs 2015;29:277–291.PubMedCrossRef Pihl-Jensen G, Tsakiri A, Frederiksen JL. Statin treatment in multiple sclerosis: a systematic review and meta-analysis. CNS Drugs 2015;29:277–291.PubMedCrossRef
120.
go back to reference Stuve O, Youssef S, Steinman L, Zamvil SS. Statins as potential therapeutic agents in neuroinflammatory disorders. Curr Opin Neurol 2003;16:393–401.PubMedCrossRef Stuve O, Youssef S, Steinman L, Zamvil SS. Statins as potential therapeutic agents in neuroinflammatory disorders. Curr Opin Neurol 2003;16:393–401.PubMedCrossRef
121.
go back to reference Chataway J, Schuerer N, Alsanousi A, et al. Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet 2014;383:2213–2221.PubMedCrossRef Chataway J, Schuerer N, Alsanousi A, et al. Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet 2014;383:2213–2221.PubMedCrossRef
122.
go back to reference Gonzalez-Cabrera PJ, Brown S, Studer SM, Rosen H. S1P signaling: new therapies and opportunities. F1000Prime Rep 2014;6:109. Gonzalez-Cabrera PJ, Brown S, Studer SM, Rosen H. S1P signaling: new therapies and opportunities. F1000Prime Rep 2014;6:109.
123.
go back to reference Novgorodov AS, El-Alwani M, Bielawski J, Obeid LM, Gudz TI. Activation of sphingosine-1-phosphate receptor S1P5 inhibits oligodendrocyte progenitor migration. FASEB J 2007;21:1503–1514.PubMedCrossRef Novgorodov AS, El-Alwani M, Bielawski J, Obeid LM, Gudz TI. Activation of sphingosine-1-phosphate receptor S1P5 inhibits oligodendrocyte progenitor migration. FASEB J 2007;21:1503–1514.PubMedCrossRef
124.
go back to reference Brana C, Frossard MJ, Pescini Gobert R, Martinier N, Boschert U, Seabrook TJ. Immunohistochemical detection of sphingosine-1-phosphate receptor 1 and 5 in human multiple sclerosis lesions. Neuropathol Appl Neurobiol 2014;40:564–578.PubMedCrossRef Brana C, Frossard MJ, Pescini Gobert R, Martinier N, Boschert U, Seabrook TJ. Immunohistochemical detection of sphingosine-1-phosphate receptor 1 and 5 in human multiple sclerosis lesions. Neuropathol Appl Neurobiol 2014;40:564–578.PubMedCrossRef
125.
go back to reference Soliven B, Miron V, Chun J. The neurobiology of sphingosine 1-phosphate signaling and sphingosine 1-phosphate receptor modulators. Neurology 2011;76:S9-S14.PubMedCrossRef Soliven B, Miron V, Chun J. The neurobiology of sphingosine 1-phosphate signaling and sphingosine 1-phosphate receptor modulators. Neurology 2011;76:S9-S14.PubMedCrossRef
126.
go back to reference Selmaj K, Li DK, Hartung HP, et al. Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study. Lancet Neurol 2013;12:756–767.PubMedCrossRef Selmaj K, Li DK, Hartung HP, et al. Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study. Lancet Neurol 2013;12:756–767.PubMedCrossRef
127.
go back to reference Kappos L, Bar-Or A, Cree B, et al. Siponimod (BAF312) for the Treatment of Secondary Progressive Multiple Sclerosis: Design of the Phase 3 EXPAND Trial. The 65th Annual Meeting of the American Academy of Neurology, San Diego, CA, March 16–23, 2013. Kappos L, Bar-Or A, Cree B, et al. Siponimod (BAF312) for the Treatment of Secondary Progressive Multiple Sclerosis: Design of the Phase 3 EXPAND Trial. The 65th Annual Meeting of the American Academy of Neurology, San Diego, CA, March 16–23, 2013.
128.
go back to reference Schmitz K, Barthelmes J, Stolz L, Beyer S, Diehl O, Tegeder I. “Disease modifying nutricals” for multiple sclerosis. Pharmacol Ther 2015;148:85–113.PubMedCrossRef Schmitz K, Barthelmes J, Stolz L, Beyer S, Diehl O, Tegeder I. “Disease modifying nutricals” for multiple sclerosis. Pharmacol Ther 2015;148:85–113.PubMedCrossRef
129.
go back to reference Caruana M, Vassallo N. Tea polyphenols in Parkinson's disease. Adv Exp Med Biol 2015;863:117–137.PubMedCrossRef Caruana M, Vassallo N. Tea polyphenols in Parkinson's disease. Adv Exp Med Biol 2015;863:117–137.PubMedCrossRef
130.
go back to reference Aktas O, Prozorovski T, Smorodchenko A, et al. Green tea epigallocatechin-3-gallate mediates T cellular NF-kappa B inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J Immunol 2004;173:5794–5800.PubMedCrossRef Aktas O, Prozorovski T, Smorodchenko A, et al. Green tea epigallocatechin-3-gallate mediates T cellular NF-kappa B inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J Immunol 2004;173:5794–5800.PubMedCrossRef
131.
go back to reference Sun Q, Zheng Y, Zhang X, et al. Novel immunoregulatory properties of EGCG on reducing inflammation in EAE. Front Biosci 2013;18:332–342.CrossRef Sun Q, Zheng Y, Zhang X, et al. Novel immunoregulatory properties of EGCG on reducing inflammation in EAE. Front Biosci 2013;18:332–342.CrossRef
132.
go back to reference Hellings N, Raus J, Stinissen P. T-cell-based immunotherapy in multiple sclerosis: induction of regulatory immune networks by T-cell vaccination. Expert Rev Clin Immunol 2006;2:705–716.PubMedCrossRef Hellings N, Raus J, Stinissen P. T-cell-based immunotherapy in multiple sclerosis: induction of regulatory immune networks by T-cell vaccination. Expert Rev Clin Immunol 2006;2:705–716.PubMedCrossRef
133.
134.
go back to reference Fox E, Wynn D, Cohan S, Rill D, McGuire D, Markowitz C. A randomized clinical trial of autologous T-cell therapy in multiple sclerosis: subset analysis and implications for trial design. Mult Scler 2012;18:843–852.PubMedCrossRef Fox E, Wynn D, Cohan S, Rill D, McGuire D, Markowitz C. A randomized clinical trial of autologous T-cell therapy in multiple sclerosis: subset analysis and implications for trial design. Mult Scler 2012;18:843–852.PubMedCrossRef
135.
go back to reference Robinson AP, Harp CT, Noronha A, Miller SD. The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Handb Clin Neurol 2014;122:173–189.PubMedPubMedCentralCrossRef Robinson AP, Harp CT, Noronha A, Miller SD. The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Handb Clin Neurol 2014;122:173–189.PubMedPubMedCentralCrossRef
136.
go back to reference Levy H, Assaf Y, Frenkel D. Characterization of brain lesions in a mouse model of progressive multiple sclerosis. Exp Neurol 2010;226:148–158.PubMedCrossRef Levy H, Assaf Y, Frenkel D. Characterization of brain lesions in a mouse model of progressive multiple sclerosis. Exp Neurol 2010;226:148–158.PubMedCrossRef
137.
go back to reference Chataway J, Nicholas R, Todd S, et al. A novel adaptive design strategy increases the efficiency of clinical trials in secondary progressive multiple sclerosis. Mult Scler 2011;17:81–88.PubMedCrossRef Chataway J, Nicholas R, Todd S, et al. A novel adaptive design strategy increases the efficiency of clinical trials in secondary progressive multiple sclerosis. Mult Scler 2011;17:81–88.PubMedCrossRef
139.
go back to reference Freidlin B, Korn EL, Gray R, Martin A. Multi-arm clinical trials of new agents: some design considerations. Clin Cancer Res 2008;14:4368–4371.PubMedCrossRef Freidlin B, Korn EL, Gray R, Martin A. Multi-arm clinical trials of new agents: some design considerations. Clin Cancer Res 2008;14:4368–4371.PubMedCrossRef
140.
go back to reference Vesterinen HM, Connick P, Irvine CM, et al. Drug repurposing: a systematic approach to evaluate candidate oral neuroprotective interventions for secondary progressive multiple sclerosis. PLoS One 2015;10:e0117705.PubMedPubMedCentralCrossRef Vesterinen HM, Connick P, Irvine CM, et al. Drug repurposing: a systematic approach to evaluate candidate oral neuroprotective interventions for secondary progressive multiple sclerosis. PLoS One 2015;10:e0117705.PubMedPubMedCentralCrossRef
142.
go back to reference Malmestrom C, Haghighi S, Rosengren L, Andersen O, Lycke J. Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology 2003;61:1720–1725.PubMedCrossRef Malmestrom C, Haghighi S, Rosengren L, Andersen O, Lycke J. Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology 2003;61:1720–1725.PubMedCrossRef
143.
go back to reference Kuhle J, Plattner K, Bestwick JP, et al. A comparative study of CSF neurofilament light and heavy chain protein in MS. Mult Scler 2013;19:1597–1603.PubMedCrossRef Kuhle J, Plattner K, Bestwick JP, et al. A comparative study of CSF neurofilament light and heavy chain protein in MS. Mult Scler 2013;19:1597–1603.PubMedCrossRef
144.
go back to reference Petzold A, Eikelenboom MJ, Gveric D, et al. Markers for different glial cell responses in multiple sclerosis: clinical and pathological correlations. Brain 2002;125:1462–1473.PubMedCrossRef Petzold A, Eikelenboom MJ, Gveric D, et al. Markers for different glial cell responses in multiple sclerosis: clinical and pathological correlations. Brain 2002;125:1462–1473.PubMedCrossRef
145.
go back to reference Botas A, Campbell HM, Han X, Maletic-Savatic M. Metabolomics of Neurodegenerative Diseases. Int Rev Neurobiol 2015;122:53–80.PubMedCrossRef Botas A, Campbell HM, Han X, Maletic-Savatic M. Metabolomics of Neurodegenerative Diseases. Int Rev Neurobiol 2015;122:53–80.PubMedCrossRef
146.
go back to reference Freidlin B, Korn EL. Biomarker-adaptive clinical trial designs. Pharmacogenomics 2010;11:1679–1682.PubMedCrossRef Freidlin B, Korn EL. Biomarker-adaptive clinical trial designs. Pharmacogenomics 2010;11:1679–1682.PubMedCrossRef
Metadata
Title
Therapeutic Advances and Future Prospects in Progressive Forms of Multiple Sclerosis
Authors
Afsaneh Shirani
Darin T. Okuda
Olaf Stüve
Publication date
01-01-2016
Publisher
Springer US
Published in
Neurotherapeutics / Issue 1/2016
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-015-0409-z

Other articles of this Issue 1/2016

Neurotherapeutics 1/2016 Go to the issue