Skip to main content
Top
Published in: Cancer Cell International 1/2016

Open Access 01-12-2016 | Review

The zebrafish as a model for studying neuroblastoma

Authors: Diana Corallo, Simona Candiani, Michela Ori, Sanja Aveic, Gian Paolo Tonini

Published in: Cancer Cell International | Issue 1/2016

Login to get access

Abstract

Neuroblastoma is a tumor arising in the peripheral sympathetic nervous system and is the most common cancer in childhood. Since most of the cellular and molecular mechanisms underlying neuroblastoma onset and progression remain unknown, the generation of new in vivo models might be appropriate to better dissect the peripheral sympathetic nervous system development in both physiological and disease states. This review is focused on the use of zebrafish as a suitable and innovative model to study neuroblastoma development. Here, we briefly summarize the current knowledge about zebrafish peripheral sympathetic nervous system formation, focusing on key genes and cellular pathways that play a crucial role in the differentiation of sympathetic neurons during embryonic development. In addition, we include examples of how genetic changes known to be associated with aggressive neuroblastoma can mimic this malignancy in zebrafish. Thus, we note the value of the zebrafish model in the field of neuroblastoma research, showing how it can improve our current knowledge about genes and biological pathways that contribute to malignant transformation and progression during embryonic life.
Literature
1.
go back to reference Brodeur GM. Neuroblastoma: biological insight into a clinical enigma. Nat Rev Cancer. 2003;3(3):203–16.CrossRefPubMed Brodeur GM. Neuroblastoma: biological insight into a clinical enigma. Nat Rev Cancer. 2003;3(3):203–16.CrossRefPubMed
3.
go back to reference Goessling W, North TE, Zon LI. New waves of discovery: modeling cancer in zebrafish. J Clin Oncol. 2007;25(17):2473–9.CrossRefPubMed Goessling W, North TE, Zon LI. New waves of discovery: modeling cancer in zebrafish. J Clin Oncol. 2007;25(17):2473–9.CrossRefPubMed
6.
7.
go back to reference Cotterill SJ, Parker L, More L, et al. Neuroblastoma: changing incidence and survival in young people aged 0–24 years. A report from the North of England Young Persons’ Malignant Disease Registry. Med Pediatr Oncol. 2001;36(1):231–4.CrossRefPubMed Cotterill SJ, Parker L, More L, et al. Neuroblastoma: changing incidence and survival in young people aged 0–24 years. A report from the North of England Young Persons’ Malignant Disease Registry. Med Pediatr Oncol. 2001;36(1):231–4.CrossRefPubMed
8.
go back to reference Spix C, Pastore G, Sankila R, et al. Neuroblastoma incidence and survival in European children (1978–1997): report from the Automated Childhood Cancer Information System project. Eur J Cancer. 2006;42(13):2081–91.CrossRefPubMed Spix C, Pastore G, Sankila R, et al. Neuroblastoma incidence and survival in European children (1978–1997): report from the Automated Childhood Cancer Information System project. Eur J Cancer. 2006;42(13):2081–91.CrossRefPubMed
9.
go back to reference Scaruffi P, Coco S, Cifuentes F, et al. Identification and characterization of DNA imbalances in neuroblastoma by high-resolution oligonucleotide array comparative genomic hybridization. Cancer Genetic Cytogenet. 2007;177(1):20–9.CrossRef Scaruffi P, Coco S, Cifuentes F, et al. Identification and characterization of DNA imbalances in neuroblastoma by high-resolution oligonucleotide array comparative genomic hybridization. Cancer Genetic Cytogenet. 2007;177(1):20–9.CrossRef
13.
go back to reference Maris JM. The biologic basis for neuroblastoma heterogeneity and risk stratification. Curr Opin Pediatr. 2005;17(1):7–13.CrossRefPubMed Maris JM. The biologic basis for neuroblastoma heterogeneity and risk stratification. Curr Opin Pediatr. 2005;17(1):7–13.CrossRefPubMed
17.
go back to reference Wang K, Diskin SJ, Zhang H, et al. Integrative genomics identifies LMO1 as a neuroblastoma oncogene. Nature. 2011;469(7392):216–20.CrossRefPubMed Wang K, Diskin SJ, Zhang H, et al. Integrative genomics identifies LMO1 as a neuroblastoma oncogene. Nature. 2011;469(7392):216–20.CrossRefPubMed
20.
23.
go back to reference Coulon A, Flahaut M, Muhlethaler-Mottet A, et al. Functional sphere profiling reveals the complexity of neuroblastoma tumor-initiating cell model. Neoplasia. 2011;13(10):991–1004.CrossRefPubMedPubMedCentral Coulon A, Flahaut M, Muhlethaler-Mottet A, et al. Functional sphere profiling reveals the complexity of neuroblastoma tumor-initiating cell model. Neoplasia. 2011;13(10):991–1004.CrossRefPubMedPubMedCentral
24.
go back to reference Hansford LM, McKee AE, Zhang L, et al. Neuroblastoma cells isolated from bone marrow metastases contain a naturally enriched tumor-initiating cell. Cancer Res. 2007;67(23):11234–43.CrossRefPubMed Hansford LM, McKee AE, Zhang L, et al. Neuroblastoma cells isolated from bone marrow metastases contain a naturally enriched tumor-initiating cell. Cancer Res. 2007;67(23):11234–43.CrossRefPubMed
25.
go back to reference Khanna C, Jaboin JJ, Drakos E, et al. Biologically relevant orthotopic neuroblastoma xenograft models: primary adrenal tumor growth and spontaneous distant metastasis. In vivo. 2002;16(2):77–85.PubMed Khanna C, Jaboin JJ, Drakos E, et al. Biologically relevant orthotopic neuroblastoma xenograft models: primary adrenal tumor growth and spontaneous distant metastasis. In vivo. 2002;16(2):77–85.PubMed
26.
go back to reference Patterson DM, Shohet JM, Kim ES. Preclinical models of pediatric solid tumors (neuroblastoma) and their use in drug discovery. Curr Protoc Pharmacol. 2011. Chapter 14:Unit 14.17. doi: 10.1002/0471141755.ph1417s52. Patterson DM, Shohet JM, Kim ES. Preclinical models of pediatric solid tumors (neuroblastoma) and their use in drug discovery. Curr Protoc Pharmacol. 2011. Chapter 14:Unit 14.17. doi: 10.​1002/​0471141755.​ph1417s52.
29.
go back to reference Joseph JM, Gross N, Lassau N, et al. In vivo ecographic evidence of tumoral vascularization and microenvironment interactions in metastatic orthotopic human neuroblastoma xenografts. Int J Cancer. 2005;113(6):881–90.CrossRefPubMed Joseph JM, Gross N, Lassau N, et al. In vivo ecographic evidence of tumoral vascularization and microenvironment interactions in metastatic orthotopic human neuroblastoma xenografts. Int J Cancer. 2005;113(6):881–90.CrossRefPubMed
30.
go back to reference Braekeveldt N, Wigerup C, Gisselsson D, et al. Neuroblastoma patient-derived orthotopic xenografts retain metastatic patterns and geno- and phenotypes of patient tumours. Int J Cancer. 2015;136(5):E252–61. doi:10.1002/ijc.29217.CrossRefPubMed Braekeveldt N, Wigerup C, Gisselsson D, et al. Neuroblastoma patient-derived orthotopic xenografts retain metastatic patterns and geno- and phenotypes of patient tumours. Int J Cancer. 2015;136(5):E252–61. doi:10.​1002/​ijc.​29217.CrossRefPubMed
31.
go back to reference Becher OJ, Holland EC. Genetically engineered models have advantages over zenografts for preclinical studies. Cancer Res. 2006;66(7):3355–8.CrossRefPubMed Becher OJ, Holland EC. Genetically engineered models have advantages over zenografts for preclinical studies. Cancer Res. 2006;66(7):3355–8.CrossRefPubMed
32.
33.
go back to reference Moore HC, Wood KM, Jackson MS, et al. Histological profile of tumours from MYCN transgenic mice. J Clin Pathol. 2008;61(10):1098–103.CrossRefPubMed Moore HC, Wood KM, Jackson MS, et al. Histological profile of tumours from MYCN transgenic mice. J Clin Pathol. 2008;61(10):1098–103.CrossRefPubMed
34.
go back to reference Weiss WA, Godfrey T, Francisco C, et al. Genome-wide screen for allelic imbalance on a mouse model for neuroblastoma. Cancer Res. 2000;60(9):2483–7.PubMed Weiss WA, Godfrey T, Francisco C, et al. Genome-wide screen for allelic imbalance on a mouse model for neuroblastoma. Cancer Res. 2000;60(9):2483–7.PubMed
35.
go back to reference Hackett CS, Hodgson JG, Law ME, et al. Genome-wide array CGH analysis of murine neuroblastoma reveals distinct genomic aberrations which parallel those in humans tumors. Cancer Res. 2003;63(17):5266–73.PubMed Hackett CS, Hodgson JG, Law ME, et al. Genome-wide array CGH analysis of murine neuroblastoma reveals distinct genomic aberrations which parallel those in humans tumors. Cancer Res. 2003;63(17):5266–73.PubMed
36.
go back to reference Norris MD, Burkhart CA, Marshall GM, et al. Expression of N-myc and MRP genes and their relationship to N-myc gene disage and tumor formation in a murine neuroblastoma model. Med Pediatr Oncol. 2000;35(6):585–9.CrossRefPubMed Norris MD, Burkhart CA, Marshall GM, et al. Expression of N-myc and MRP genes and their relationship to N-myc gene disage and tumor formation in a murine neuroblastoma model. Med Pediatr Oncol. 2000;35(6):585–9.CrossRefPubMed
38.
41.
go back to reference Le Douarin NM, Kalcheim C. The neural crest. Cambridge: Cambridge University Press; 1999.CrossRef Le Douarin NM, Kalcheim C. The neural crest. Cambridge: Cambridge University Press; 1999.CrossRef
42.
go back to reference Lim J, Thiery JP. Epithelial-mesenchymal transitions: insight from development. Development. 2012;139(19):3471–86.CrossRefPubMed Lim J, Thiery JP. Epithelial-mesenchymal transitions: insight from development. Development. 2012;139(19):3471–86.CrossRefPubMed
46.
go back to reference Nozato M, Kaneko S, Nakagawara A, et al. Epithelial-mesenchymal transition-related gene expression as a new prognostic marker for neuroblastoma. Int J Oncol. 2013;42(1):134–40. doi:10.3892/ijo.2012.1684.PubMed Nozato M, Kaneko S, Nakagawara A, et al. Epithelial-mesenchymal transition-related gene expression as a new prognostic marker for neuroblastoma. Int J Oncol. 2013;42(1):134–40. doi:10.​3892/​ijo.​2012.​1684.PubMed
48.
go back to reference Serbedzija GN, Fraser SE, Bronner-Fraser M. Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labelling. Development. 1990;108(4):605–12.PubMed Serbedzija GN, Fraser SE, Bronner-Fraser M. Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labelling. Development. 1990;108(4):605–12.PubMed
51.
go back to reference Dutt S, Matasci M, Sommer L, et al. Guidance of neural crest cell migration: the inhibitory function of the chondroitin sulfate proteoglycan, versican. ScientificWorldJournal. 2006;6:1114–7.CrossRefPubMed Dutt S, Matasci M, Sommer L, et al. Guidance of neural crest cell migration: the inhibitory function of the chondroitin sulfate proteoglycan, versican. ScientificWorldJournal. 2006;6:1114–7.CrossRefPubMed
52.
go back to reference Perris R, Perissinotto D. Role of the extracellular matrix during neural crest cell migration. Mech Dev. 2000;95(1–2):3–21.CrossRefPubMed Perris R, Perissinotto D. Role of the extracellular matrix during neural crest cell migration. Mech Dev. 2000;95(1–2):3–21.CrossRefPubMed
54.
go back to reference An M, Luo R, Henion PD. Differentiation and maturation of zebrafish dorsal root and sympathetic ganglion neurons. J Comp Neurol. 2002;446(3):267–75.CrossRefPubMed An M, Luo R, Henion PD. Differentiation and maturation of zebrafish dorsal root and sympathetic ganglion neurons. J Comp Neurol. 2002;446(3):267–75.CrossRefPubMed
55.
go back to reference Raible DW, Eisen JS. Restriction of neural crest cell fate in the trunk of the embryonic zebrafish. Development. 1994;120(3):495–503.PubMed Raible DW, Eisen JS. Restriction of neural crest cell fate in the trunk of the embryonic zebrafish. Development. 1994;120(3):495–503.PubMed
56.
go back to reference Dutton KA, Pauliny A, Lopes SS, et al. Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates. Development. 2001;128(21):4113–25.PubMed Dutton KA, Pauliny A, Lopes SS, et al. Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates. Development. 2001;128(21):4113–25.PubMed
58.
go back to reference Rubinstein AL, Lee D, Luo R, et al. Genes dependent on zebrafish cyclops function identified by AFLP differential gene expression screen. Genesis. 2000;26(1):86–97.CrossRefPubMed Rubinstein AL, Lee D, Luo R, et al. Genes dependent on zebrafish cyclops function identified by AFLP differential gene expression screen. Genesis. 2000;26(1):86–97.CrossRefPubMed
59.
go back to reference Britsch S, Li L, Kirchhoff S, Theuring F, et al. The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev. 1998;12(12):1825–36.CrossRefPubMedPubMedCentral Britsch S, Li L, Kirchhoff S, Theuring F, et al. The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev. 1998;12(12):1825–36.CrossRefPubMedPubMedCentral
60.
go back to reference Morris JK, Lin W, Hauser C, et al. Rescue of the cardiac defect in ErbB2 mutant mice reveals essential roles of ErbB2 in peripheral nervous system development. Neuron. 1999;23(2):273–83.CrossRefPubMed Morris JK, Lin W, Hauser C, et al. Rescue of the cardiac defect in ErbB2 mutant mice reveals essential roles of ErbB2 in peripheral nervous system development. Neuron. 1999;23(2):273–83.CrossRefPubMed
62.
go back to reference Britsch S, Goerich DE, Riethmacher D, et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 2001;15(1):66–78.CrossRefPubMedPubMedCentral Britsch S, Goerich DE, Riethmacher D, et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 2001;15(1):66–78.CrossRefPubMedPubMedCentral
63.
go back to reference Paratore C, Goerich DE, Suter U, et al. Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development. 2001;128(20):3949–61.PubMed Paratore C, Goerich DE, Suter U, et al. Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development. 2001;128(20):3949–61.PubMed
65.
go back to reference Charron J, Malynn BA, Fisher P, et al. Embryonic lethality in mice homozygous for a targeted disruption of the N-myc gene. Genes Dev. 1992;6(12A):2248–57.CrossRefPubMed Charron J, Malynn BA, Fisher P, et al. Embryonic lethality in mice homozygous for a targeted disruption of the N-myc gene. Genes Dev. 1992;6(12A):2248–57.CrossRefPubMed
66.
go back to reference Sawai S, Shimono A, Wakamatsu Y, et al. Defects of embryonic organogenesis resulting from targeted disruption of the N-myc gene in the mouse. Development. 1993;117(4):1445–55.PubMed Sawai S, Shimono A, Wakamatsu Y, et al. Defects of embryonic organogenesis resulting from targeted disruption of the N-myc gene in the mouse. Development. 1993;117(4):1445–55.PubMed
67.
go back to reference Stanton BR, Perkins AS, Tessarollo L, et al. Loss of N-myc function results in embryonic lethality and failure of the epithelial component of the embryo to develop. Genes Dev. 1992;6(12A):2235–47.CrossRefPubMed Stanton BR, Perkins AS, Tessarollo L, et al. Loss of N-myc function results in embryonic lethality and failure of the epithelial component of the embryo to develop. Genes Dev. 1992;6(12A):2235–47.CrossRefPubMed
68.
go back to reference Kasemeier-Kulesa JC, Bradley R, Pasquale EB, Lefcort F, et al. Eph/ephrins and N-cadherin coordinate to control the pattern of sympathetic ganglia. Development. 2006;133(24):4839–47.CrossRefPubMed Kasemeier-Kulesa JC, Bradley R, Pasquale EB, Lefcort F, et al. Eph/ephrins and N-cadherin coordinate to control the pattern of sympathetic ganglia. Development. 2006;133(24):4839–47.CrossRefPubMed
69.
go back to reference Saito D, Takase Y, Murai H, et al. The dorsal aorta initiates a molecular cascade that instructs sympatho-adrenal specification. Science. 2012;336(6088):1578–81.CrossRefPubMed Saito D, Takase Y, Murai H, et al. The dorsal aorta initiates a molecular cascade that instructs sympatho-adrenal specification. Science. 2012;336(6088):1578–81.CrossRefPubMed
70.
go back to reference Yao KM, Samson ML, Reeves R, et al. Gene elav of Drosophila melanogaster: a prototype for neuronal-specific RNA binding protein gene family that is conserved in flies and humans. J Neurobiol. 1993;24(6):723–39.CrossRefPubMed Yao KM, Samson ML, Reeves R, et al. Gene elav of Drosophila melanogaster: a prototype for neuronal-specific RNA binding protein gene family that is conserved in flies and humans. J Neurobiol. 1993;24(6):723–39.CrossRefPubMed
71.
72.
go back to reference Guillemot F, Joyner AL. Dynamic expression of the murine achaete-scute homologue mash-1 in the developing nervous system. Mech Dev. 1993;42(3):171–85.CrossRefPubMed Guillemot F, Joyner AL. Dynamic expression of the murine achaete-scute homologue mash-1 in the developing nervous system. Mech Dev. 1993;42(3):171–85.CrossRefPubMed
73.
go back to reference Guo S, Brush J, Teraoka H, et al. Development of noradrenergic neurons in the zebrafish hindbrain requires BMP, FGF8, and the homeodomain protein soulless/Phox2a. Neuron. 1999;24(3):555–66.CrossRefPubMed Guo S, Brush J, Teraoka H, et al. Development of noradrenergic neurons in the zebrafish hindbrain requires BMP, FGF8, and the homeodomain protein soulless/Phox2a. Neuron. 1999;24(3):555–66.CrossRefPubMed
74.
go back to reference Lucas ME, Muller F, Rudiger R, et al. The bHLH transcription factor hand2 is essential for noradrenergic differentiation of sympathetic neurons. Development. 2006;133(20):4015–24.CrossRefPubMed Lucas ME, Muller F, Rudiger R, et al. The bHLH transcription factor hand2 is essential for noradrenergic differentiation of sympathetic neurons. Development. 2006;133(20):4015–24.CrossRefPubMed
75.
go back to reference Pattyn A, Morin X, Cremer H, et al. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature. 1999;399(6734):366–70.CrossRefPubMed Pattyn A, Morin X, Cremer H, et al. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature. 1999;399(6734):366–70.CrossRefPubMed
76.
go back to reference Holzschuh J, Barrallo-Gimeno A, Ettl AK, et al. Noradrenergic neurons in the zebrafish hindbrain are induced by retinoic acid and require tfap2a for expression of the neurotransmitter phenotype. Development. 2003;130(23):5741–54.CrossRefPubMed Holzschuh J, Barrallo-Gimeno A, Ettl AK, et al. Noradrenergic neurons in the zebrafish hindbrain are induced by retinoic acid and require tfap2a for expression of the neurotransmitter phenotype. Development. 2003;130(23):5741–54.CrossRefPubMed
77.
go back to reference Knight RD, Nair S, Nelson SS, et al. Lockjaw encodes a zebrafish tfap2a required for early neural crest development. Development. 2003;130(23):5755–68.CrossRefPubMed Knight RD, Nair S, Nelson SS, et al. Lockjaw encodes a zebrafish tfap2a required for early neural crest development. Development. 2003;130(23):5755–68.CrossRefPubMed
78.
go back to reference Huber K. The sympathoadrenal cell lineage: specification, diversification, and new perspectives. Dev Biol. 2006;298(2):335–43.CrossRefPubMed Huber K. The sympathoadrenal cell lineage: specification, diversification, and new perspectives. Dev Biol. 2006;298(2):335–43.CrossRefPubMed
80.
go back to reference Hansford LM, Thomas WD, Keating JM, et al. Mechanisms of embryonal tumor initiation: distinct roles for MycN expression and MYCN amplification. Prot Natl Acad Sci USA. 2004;101(34):12664–9.CrossRef Hansford LM, Thomas WD, Keating JM, et al. Mechanisms of embryonal tumor initiation: distinct roles for MycN expression and MYCN amplification. Prot Natl Acad Sci USA. 2004;101(34):12664–9.CrossRef
81.
go back to reference Wartiovaara K, Barnabe-Heider F, Miller FD, et al. N-myc promotes survival and induces S-phase entry of postmitotic sympathetic neurons. J Neurosci. 2002;22(3):815–24.PubMed Wartiovaara K, Barnabe-Heider F, Miller FD, et al. N-myc promotes survival and induces S-phase entry of postmitotic sympathetic neurons. J Neurosci. 2002;22(3):815–24.PubMed
86.
go back to reference Pattyn A, Morin X, Cremer H, et al. Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development. 1997;124:4065–75.PubMed Pattyn A, Morin X, Cremer H, et al. Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development. 1997;124:4065–75.PubMed
87.
go back to reference Longo L, Borghini S, Schena F, et al. PHOX2A and PHOX2B genes are highly co-expressed in human neuroblastoma. Int J Oncol. 2008;33(5):985–91.PubMed Longo L, Borghini S, Schena F, et al. PHOX2A and PHOX2B genes are highly co-expressed in human neuroblastoma. Int J Oncol. 2008;33(5):985–91.PubMed
88.
go back to reference Perri P, Bachetti T, Longo L, et al. PHOX2B mutations and genetic predisposition to neuroblastoma. Oncogene. 2005;24(18):3050–3.CrossRefPubMed Perri P, Bachetti T, Longo L, et al. PHOX2B mutations and genetic predisposition to neuroblastoma. Oncogene. 2005;24(18):3050–3.CrossRefPubMed
90.
go back to reference Trochet D, Bourdeaut F, Janoueix-Lerosey I, et al. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Am J Hum Genet. 2004;74(4):761–4.CrossRefPubMedPubMedCentral Trochet D, Bourdeaut F, Janoueix-Lerosey I, et al. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Am J Hum Genet. 2004;74(4):761–4.CrossRefPubMedPubMedCentral
95.
Metadata
Title
The zebrafish as a model for studying neuroblastoma
Authors
Diana Corallo
Simona Candiani
Michela Ori
Sanja Aveic
Gian Paolo Tonini
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2016
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-016-0360-z

Other articles of this Issue 1/2016

Cancer Cell International 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine