Skip to main content
Top
Published in: Infectious Agents and Cancer 1/2012

Open Access 01-12-2012 | Research article

The viral transactivator HBx protein exhibits a high potential for regulation via phosphorylation through an evolutionarily conserved mechanism

Authors: Sergio Hernández, Mauricio Venegas, Javier Brahm, Rodrigo A Villanueva

Published in: Infectious Agents and Cancer | Issue 1/2012

Login to get access

Abstract

Background

Hepatitis B virus (HBV) encodes an oncogenic factor, HBx, which is a multifunctional protein that can induce dysfunctional regulation of signaling pathways, transcription, and cell cycle progression, among other processes, through interactions with target host factors. The subcellular localization of HBx is both cytoplasmic and nuclear. This dynamic distribution of HBx could be essential to the multiple roles of the protein at different stages during HBV infection. Transactivational functions of HBx may be exerted both in the nucleus, via interaction with host DNA-binding proteins, and in the cytoplasm, via signaling pathways. Although there have been many studies describing different pathways altered by HBx, and its innumerable binding partners, the molecular mechanism that regulates its different roles has been difficult to elucidate.

Methods

In the current study, we took a bioinformatics approach to investigate whether the viral protein HBx might be regulated via phosphorylation by an evolutionarily conserved mechanism.

Results

We found that the phylogenetically conserved residues Ser25 and Ser41 (both within the negative regulatory domain), and Thr81 (in the transactivation domain) are predicted to be phosphorylated. By molecular 3D modeling of HBx, we further show these residues are all predicted to be exposed on the surface of the protein, making them easily accesible to these types of modifications. Furthermore, we have also identified Yin Yang sites that might have the potential to be phosphorylated and O-β-GlcNAc interplay at the same residues.

Conclusions

Thus, we propose that the different roles of HBx displayed in different subcellular locations might be regulated by an evolutionarily conserved mechanism of posttranslational modification, via phosphorylation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Murakami S, Cheong JH, Kaneko S: Human hepatitis B virus X gene encodes a regulatory domain which represses transactivation of X protein. J Biol Chem. 1994, 269: 15118-15123.PubMed Murakami S, Cheong JH, Kaneko S: Human hepatitis B virus X gene encodes a regulatory domain which represses transactivation of X protein. J Biol Chem. 1994, 269: 15118-15123.PubMed
2.
go back to reference Tang H, Oishi N, Kaneko S, Murakami S: Molecular functions and biological roles of hepatitis B virus x protein. Cancer Sci. 2006, 97: 977-83.PubMedCrossRef Tang H, Oishi N, Kaneko S, Murakami S: Molecular functions and biological roles of hepatitis B virus x protein. Cancer Sci. 2006, 97: 977-83.PubMedCrossRef
3.
go back to reference Gottlob K, Pagano S, Levrero M, Graessmann A: Hepatitis B virus X protein transcription activation domains are neither required nor sufficient for cell transformation. Cancer Res. 1998, 58: 3566-70.PubMed Gottlob K, Pagano S, Levrero M, Graessmann A: Hepatitis B virus X protein transcription activation domains are neither required nor sufficient for cell transformation. Cancer Res. 1998, 58: 3566-70.PubMed
4.
go back to reference Kumar V, Jayasuryan N, Kumar R: A truncated mutant (residues 58–140) of the hepatitis B virus X protein retains transactivation function. Proc Natl Acad Sci USA. 1996, 93: 5647-52.PubMedPubMedCentralCrossRef Kumar V, Jayasuryan N, Kumar R: A truncated mutant (residues 58–140) of the hepatitis B virus X protein retains transactivation function. Proc Natl Acad Sci USA. 1996, 93: 5647-52.PubMedPubMedCentralCrossRef
5.
go back to reference Lin Y, Nomura T, Yamashita T, Dorjsuren D, Tang H, Murakami S: The transactivation and p53-interacting functions of hepatitis B virus X protein are mutually interfering but distinct. Cancer Res. 1997, 57: 5137-42.PubMed Lin Y, Nomura T, Yamashita T, Dorjsuren D, Tang H, Murakami S: The transactivation and p53-interacting functions of hepatitis B virus X protein are mutually interfering but distinct. Cancer Res. 1997, 57: 5137-42.PubMed
6.
go back to reference Becker SA, Lee TH, Butel JS, Slagle BL: Hepatitis B virus X protein interferes with cellular DNA repair. J Virol. 1998, 72: 266-72.PubMedPubMedCentral Becker SA, Lee TH, Butel JS, Slagle BL: Hepatitis B virus X protein interferes with cellular DNA repair. J Virol. 1998, 72: 266-72.PubMedPubMedCentral
7.
go back to reference Henkler F, Hoare J, Waseem N, Goldin RD, McGarvey MJ, Koshy R, King IA: Intracellular localization of the hepatitis B virus HBx protein. J Gen Virol. 2001, 82: 871-82.PubMedCrossRef Henkler F, Hoare J, Waseem N, Goldin RD, McGarvey MJ, Koshy R, King IA: Intracellular localization of the hepatitis B virus HBx protein. J Gen Virol. 2001, 82: 871-82.PubMedCrossRef
8.
go back to reference Cha MY, Ryu DK, Jung HS, Chang HE, Ryu WS: Stimulation of hepatitis B virus genome replication by HBx is linked to both nuclear and cytoplasmic HBx expression. J Gen Virol. 2009, 90: 978-86.PubMedCrossRef Cha MY, Ryu DK, Jung HS, Chang HE, Ryu WS: Stimulation of hepatitis B virus genome replication by HBx is linked to both nuclear and cytoplasmic HBx expression. J Gen Virol. 2009, 90: 978-86.PubMedCrossRef
9.
go back to reference Huh KW, Siddiqui A: Characterization of the mitochondrial association of hepatitis B virus X protein, HBx. Mitochondrion. 2002, 1: 349-59.PubMedCrossRef Huh KW, Siddiqui A: Characterization of the mitochondrial association of hepatitis B virus X protein, HBx. Mitochondrion. 2002, 1: 349-59.PubMedCrossRef
11.
go back to reference Seto E, Mitchell PJ, Yen TS: Transactivation by the hepatitis B virus X protein depends on AP-2 and other transcription factors. Nature. 1990, 344: 72-4.PubMedCrossRef Seto E, Mitchell PJ, Yen TS: Transactivation by the hepatitis B virus X protein depends on AP-2 and other transcription factors. Nature. 1990, 344: 72-4.PubMedCrossRef
12.
go back to reference Maguire HF, Hoeffler JP, Siddiqui A: HBV X protein alters the DNA binding specificity of CREB and ATF-2 by protein-protein interactions. Science. 1991, 252: 842-4.PubMedCrossRef Maguire HF, Hoeffler JP, Siddiqui A: HBV X protein alters the DNA binding specificity of CREB and ATF-2 by protein-protein interactions. Science. 1991, 252: 842-4.PubMedCrossRef
13.
go back to reference Cougot D, Wu Y, Cairo S, Caramel J, Renard CA, Lévy L, Buendia MA, Neuveut C: The hepatitis B virus X protein functionally interacts with CREB-binding protein/p300 in the regulation of CREB-mediated transcription. J Biol Chem. 2007, 282: 4277-87.PubMedCrossRef Cougot D, Wu Y, Cairo S, Caramel J, Renard CA, Lévy L, Buendia MA, Neuveut C: The hepatitis B virus X protein functionally interacts with CREB-binding protein/p300 in the regulation of CREB-mediated transcription. J Biol Chem. 2007, 282: 4277-87.PubMedCrossRef
15.
go back to reference Suzuki T, Yano H, Nakashima Y, Nakashima O, Kojiro M: Beta-catenin expression in hepatocellular carcinoma: a possible participation of beta-catenin in the dedifferentiation process. J Gastroenterol Hepatol. 2002, 17: 994-1000.PubMedCrossRef Suzuki T, Yano H, Nakashima Y, Nakashima O, Kojiro M: Beta-catenin expression in hepatocellular carcinoma: a possible participation of beta-catenin in the dedifferentiation process. J Gastroenterol Hepatol. 2002, 17: 994-1000.PubMedCrossRef
16.
go back to reference Cha MY, Kim CM, Park YM, Ryu WS: Hepatitis B virus X protein is essential for the activation of Wnt/beta-catenin signaling in hepatoma cells. Hepatology. 2004, 39: 1683-93.PubMedCrossRef Cha MY, Kim CM, Park YM, Ryu WS: Hepatitis B virus X protein is essential for the activation of Wnt/beta-catenin signaling in hepatoma cells. Hepatology. 2004, 39: 1683-93.PubMedCrossRef
17.
go back to reference Jung JK, Kwun HJ, Lee JO, Arora P, Jang KL: Hepatitis B virus X protein differentially affects the ubiquitin-mediated proteasomal degradation of beta-catenin depending on the status of cellular p53. J Gen Virol. 2007, 88: 2144-54.PubMedCrossRef Jung JK, Kwun HJ, Lee JO, Arora P, Jang KL: Hepatitis B virus X protein differentially affects the ubiquitin-mediated proteasomal degradation of beta-catenin depending on the status of cellular p53. J Gen Virol. 2007, 88: 2144-54.PubMedCrossRef
18.
go back to reference Hsieh A, Kim HS, Lim SO, Yu DY, Jung G: Hepatitis B viral X protein interacts with tumor suppressor adenomatous polyposis coli to activate Wnt/β-catenin signaling. Cancer Lett. 2011, 300: 162-72. Epub 2010 Oct 23PubMedCrossRef Hsieh A, Kim HS, Lim SO, Yu DY, Jung G: Hepatitis B viral X protein interacts with tumor suppressor adenomatous polyposis coli to activate Wnt/β-catenin signaling. Cancer Lett. 2011, 300: 162-72. Epub 2010 Oct 23PubMedCrossRef
19.
go back to reference Kim CM, Koike K, Saito I, Miyamura T, Jay G: HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature. 1991, 351: 317-20.PubMedCrossRef Kim CM, Koike K, Saito I, Miyamura T, Jay G: HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature. 1991, 351: 317-20.PubMedCrossRef
20.
go back to reference Yu DY, Moon HB, Son JK, Jeong S, Yu SL, Yoon H, Han YM, Lee CS, Park JS, Lee CH, Hyun BH, Murakami S, Lee KK: Incidence of hepatocellular carcinoma in transgenic mice expressing the hepatitis B virus X-protein. J Hepatol. 1999, 31: 123-32.PubMedCrossRef Yu DY, Moon HB, Son JK, Jeong S, Yu SL, Yoon H, Han YM, Lee CS, Park JS, Lee CH, Hyun BH, Murakami S, Lee KK: Incidence of hepatocellular carcinoma in transgenic mice expressing the hepatitis B virus X-protein. J Hepatol. 1999, 31: 123-32.PubMedCrossRef
21.
go back to reference Tarn C, Lee S, Hu Y, Ashendel C, Andrisani OM: Hepatitis B virus X protein differentially activates RAS-RAF-MAPK and JNK pathways in X-transforming versus non-transforming AML12 hepatocytes. J Biol Chem. 2001, 276: 34671-80.PubMedCrossRef Tarn C, Lee S, Hu Y, Ashendel C, Andrisani OM: Hepatitis B virus X protein differentially activates RAS-RAF-MAPK and JNK pathways in X-transforming versus non-transforming AML12 hepatocytes. J Biol Chem. 2001, 276: 34671-80.PubMedCrossRef
22.
go back to reference Sitterlin D, Bergametti F, Transy C: UVDDB p127-binding modulates activities and intracellular distribution of hepatitis B virus X protein. Oncogene. 2000, 19: 4417-26.PubMedCrossRef Sitterlin D, Bergametti F, Transy C: UVDDB p127-binding modulates activities and intracellular distribution of hepatitis B virus X protein. Oncogene. 2000, 19: 4417-26.PubMedCrossRef
23.
go back to reference Leupin O, Bontron S, Schaeffer C, Strubin M: Hepatitis B virus X protein stimulates viral genome replication via a DDB1-dependent pathway distinct from that leading to cell death. J Virol. 2005, 79: 4238-45.PubMedPubMedCentralCrossRef Leupin O, Bontron S, Schaeffer C, Strubin M: Hepatitis B virus X protein stimulates viral genome replication via a DDB1-dependent pathway distinct from that leading to cell death. J Virol. 2005, 79: 4238-45.PubMedPubMedCentralCrossRef
24.
go back to reference Zhang X, Dong N, Zhang H, You J, Wang H, Ye L: Effects of hepatitis B virus X protein on human telomerase reverse transcriptase expression and activity in hepatoma cells. J Lab Clin Med. 2005, 145: 98-104.PubMedCrossRef Zhang X, Dong N, Zhang H, You J, Wang H, Ye L: Effects of hepatitis B virus X protein on human telomerase reverse transcriptase expression and activity in hepatoma cells. J Lab Clin Med. 2005, 145: 98-104.PubMedCrossRef
25.
go back to reference Eichwald C, Jacob G, Muszynski B, Allende JE, Burrone OR: Uncoupling substrate and activation functions of rotavirus NSP5: phosphorylation of Ser-67 by casein kinase 1 is essential for hyperphosphorylation. Proc Natl Acad Sci USA. 2004, 101: 16304-09.PubMedPubMedCentralCrossRef Eichwald C, Jacob G, Muszynski B, Allende JE, Burrone OR: Uncoupling substrate and activation functions of rotavirus NSP5: phosphorylation of Ser-67 by casein kinase 1 is essential for hyperphosphorylation. Proc Natl Acad Sci USA. 2004, 101: 16304-09.PubMedPubMedCentralCrossRef
26.
go back to reference Kim SJ, Kim JH, Kim YG, Lim HS, Oh JW: Protein kinase C-related kinase 2 regulates hepatitis C virus RNA polymerase function by phosphorylation. J Biol Chem. 2004, 279: 50031-41.PubMedCrossRef Kim SJ, Kim JH, Kim YG, Lim HS, Oh JW: Protein kinase C-related kinase 2 regulates hepatitis C virus RNA polymerase function by phosphorylation. J Biol Chem. 2004, 279: 50031-41.PubMedCrossRef
27.
go back to reference Gupta AK, Blondel D, Choudhary S, Banerjee AK: The phosphoprotein of rabies virus is phosphorylated by a unique cellular protein kinase and specific isomers of protein kinase C. J Virol. 2000, 74: 91-98.PubMedPubMedCentralCrossRef Gupta AK, Blondel D, Choudhary S, Banerjee AK: The phosphoprotein of rabies virus is phosphorylated by a unique cellular protein kinase and specific isomers of protein kinase C. J Virol. 2000, 74: 91-98.PubMedPubMedCentralCrossRef
28.
go back to reference Bell I, Martin A, Roberts S: The E1^E4 protein of human papillomavirus interacts with the serine-arginine-specific protein kinase SRPK1. J Virol. 2007, 81: 5437-5448.PubMedPubMedCentralCrossRef Bell I, Martin A, Roberts S: The E1^E4 protein of human papillomavirus interacts with the serine-arginine-specific protein kinase SRPK1. J Virol. 2007, 81: 5437-5448.PubMedPubMedCentralCrossRef
29.
go back to reference Habran L, Bontems S, Di Valentin E, Sadzot-Delvaux C, Piette J: Varicella-zoster virus IE63 protein phosphorylation by roscovitine sensitive cyclin-dependent kinases modulates its cellular localization and activity. J Biol Chem. 2005, 280: 29135-143.PubMedCrossRef Habran L, Bontems S, Di Valentin E, Sadzot-Delvaux C, Piette J: Varicella-zoster virus IE63 protein phosphorylation by roscovitine sensitive cyclin-dependent kinases modulates its cellular localization and activity. J Biol Chem. 2005, 280: 29135-143.PubMedCrossRef
30.
go back to reference Pugh J, Zweidler A, Summers J: Characterization of the major duck hepatitis B virus core particle protein. J Virol. 1989, 63: 1371-6.PubMedPubMedCentral Pugh J, Zweidler A, Summers J: Characterization of the major duck hepatitis B virus core particle protein. J Virol. 1989, 63: 1371-6.PubMedPubMedCentral
31.
go back to reference Perlman DH, Berg EA, O'connor PB, Costello CE, Hu J: Reverse transcription-associated dephosphorylation of hepadnavirus nucleocapsids. Proc Natl Acad Sci USA. 2005, 102: 9020-5.PubMedPubMedCentralCrossRef Perlman DH, Berg EA, O'connor PB, Costello CE, Hu J: Reverse transcription-associated dephosphorylation of hepadnavirus nucleocapsids. Proc Natl Acad Sci USA. 2005, 102: 9020-5.PubMedPubMedCentralCrossRef
32.
go back to reference Klein R, Schröder CH, Zentgraf H: Expression of the X protein of hepatitis B virus in insect cells using recombinant baculoviruses. Virus Genes. 1991, 5: 157-74.PubMedCrossRef Klein R, Schröder CH, Zentgraf H: Expression of the X protein of hepatitis B virus in insect cells using recombinant baculoviruses. Virus Genes. 1991, 5: 157-74.PubMedCrossRef
33.
go back to reference Schek N, Bartenschlager R, Kuhn C, Schaller H: Phosphorylation and rapid turnover of hepatitis B virus X-protein expressed in HepG2 cells from a recombinant vaccinia virus. Oncogene. 1991, 6: 1735-44.PubMed Schek N, Bartenschlager R, Kuhn C, Schaller H: Phosphorylation and rapid turnover of hepatitis B virus X-protein expressed in HepG2 cells from a recombinant vaccinia virus. Oncogene. 1991, 6: 1735-44.PubMed
34.
go back to reference Urban S, Hildt E, Eckerskorn C, Sirma H, Kekulé A, Hofschneider PH: Isolation and molecular characterization of hepatitis B virus X-protein from a baculovirus expression system. Hepatology. 1997, 26: 1045-53.PubMedCrossRef Urban S, Hildt E, Eckerskorn C, Sirma H, Kekulé A, Hofschneider PH: Isolation and molecular characterization of hepatitis B virus X-protein from a baculovirus expression system. Hepatology. 1997, 26: 1045-53.PubMedCrossRef
35.
go back to reference Lee YI, Kim SO, Kwon HJ, Park JG, Sohn MJ, Jeong SS: Phosphorylation of purified recombinant hepatitis B virus-X protein by mitogen-activated protein kinase and protein kinase C in vitro. J Virol Methods. 2001, 95: 1-10.PubMedCrossRef Lee YI, Kim SO, Kwon HJ, Park JG, Sohn MJ, Jeong SS: Phosphorylation of purified recombinant hepatitis B virus-X protein by mitogen-activated protein kinase and protein kinase C in vitro. J Virol Methods. 2001, 95: 1-10.PubMedCrossRef
36.
go back to reference Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O: Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem. 2011, 80: 825-858.PubMedPubMedCentralCrossRef Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O: Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem. 2011, 80: 825-858.PubMedPubMedCentralCrossRef
37.
go back to reference Hu P, Shimoji S, Hart GW: Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation. FEBS Lett. 2010, 584: 2526-2538.PubMedCrossRef Hu P, Shimoji S, Hart GW: Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation. FEBS Lett. 2010, 584: 2526-2538.PubMedCrossRef
39.
go back to reference Yang WH, Kim JE, Nam HW, Ju JW, Kim HS, Kim YS, Cho JW: Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat Cell Biol. 2006, 8: 1074-1083.PubMedCrossRef Yang WH, Kim JE, Nam HW, Ju JW, Kim HS, Kim YS, Cho JW: Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat Cell Biol. 2006, 8: 1074-1083.PubMedCrossRef
40.
go back to reference Greis KD, Gibson W, Hart GW: Site-specific glycosylation of the human cytomegalovirus tegument basic phosphoprotein (UL32) at serine 921 and serine 952. J Virol. 1994, 68: 8339-8849.PubMedPubMedCentral Greis KD, Gibson W, Hart GW: Site-specific glycosylation of the human cytomegalovirus tegument basic phosphoprotein (UL32) at serine 921 and serine 952. J Virol. 1994, 68: 8339-8849.PubMedPubMedCentral
41.
go back to reference Mullis KG, Haltiwanger RS, Hart GW, Marchase RB, Engler JA: Relative accessibility of N-acetylglucosamine in trimers of the adenovirus types 2 and 5 fiber proteins. J Virol. 1990, 64: 5317-5323.PubMedPubMedCentral Mullis KG, Haltiwanger RS, Hart GW, Marchase RB, Engler JA: Relative accessibility of N-acetylglucosamine in trimers of the adenovirus types 2 and 5 fiber proteins. J Virol. 1990, 64: 5317-5323.PubMedPubMedCentral
42.
go back to reference Whitford M, Faulkner P: A structural polypeptide of the baculovirus Autographa californica nuclear polyhedrosis virus contains O-linked N-acetylglucosamine. J Virol. 1992, 66: 3324-3329.PubMedPubMedCentral Whitford M, Faulkner P: A structural polypeptide of the baculovirus Autographa californica nuclear polyhedrosis virus contains O-linked N-acetylglucosamine. J Virol. 1992, 66: 3324-3329.PubMedPubMedCentral
43.
go back to reference Gonzalez SA, Burrone OR: Rotavirus NS26 is modified by addition of single O-linked residues of N- acetylglucosamine. Virology. 1991, 182: 8-16.PubMedCrossRef Gonzalez SA, Burrone OR: Rotavirus NS26 is modified by addition of single O-linked residues of N- acetylglucosamine. Virology. 1991, 182: 8-16.PubMedCrossRef
44.
go back to reference Fernández-Fernández MR, Camafeita E, Bonay P, Méndez E, Albar JP, García JA: The capsid protein of a plant single-stranded RNA virus is modified by O-linked N-acetylglucosamine. J Biol Chem. 2002, 277: 135-40.PubMedCrossRef Fernández-Fernández MR, Camafeita E, Bonay P, Méndez E, Albar JP, García JA: The capsid protein of a plant single-stranded RNA virus is modified by O-linked N-acetylglucosamine. J Biol Chem. 2002, 277: 135-40.PubMedCrossRef
45.
go back to reference Butt AM, Feng D, Idrees M, Tong Y, Lu J: Computational Identification and Modeling of Crosstalk between Phosphorylation, O-β-glycosylation and Methylation of FoxO3 and Implications for Cancer Therapeutics. Int J Mol Sci. 2012, 13: 2918-38.PubMedPubMedCentralCrossRef Butt AM, Feng D, Idrees M, Tong Y, Lu J: Computational Identification and Modeling of Crosstalk between Phosphorylation, O-β-glycosylation and Methylation of FoxO3 and Implications for Cancer Therapeutics. Int J Mol Sci. 2012, 13: 2918-38.PubMedPubMedCentralCrossRef
46.
go back to reference Butt AM, Khan IB, Hussain M, Idress M, Lu J, Tong Y: Role of post translational modifications and novel crosstalk between phosphorylation and O-beta-GlcNAc modifications in human claudin-1, -3 and −4. Mol Biol Rep. 2012, 39: 1359-69.PubMedCrossRef Butt AM, Khan IB, Hussain M, Idress M, Lu J, Tong Y: Role of post translational modifications and novel crosstalk between phosphorylation and O-beta-GlcNAc modifications in human claudin-1, -3 and −4. Mol Biol Rep. 2012, 39: 1359-69.PubMedCrossRef
47.
go back to reference Din N, Ahmad I, Ul Haq I, Elahi S, Hoessli DC, Shakoori AR: The function of GluR1 and GluR2 in cerebellar and hippocampal LTP and LTD is regulated by interplay of phosphorylation and O-GlcNAc modification. J Cell Biochem. 2010, 109: 585-97.PubMed Din N, Ahmad I, Ul Haq I, Elahi S, Hoessli DC, Shakoori AR: The function of GluR1 and GluR2 in cerebellar and hippocampal LTP and LTD is regulated by interplay of phosphorylation and O-GlcNAc modification. J Cell Biochem. 2010, 109: 585-97.PubMed
48.
go back to reference Hart GW, Greis KD, Dong LY, Blomberg MA, Chou TY, Jiang MS, Roquemore EP, Snow DM, Kreppel LK, Cole RN, et al: O-linked N-acetylglucosamine: the “yin-yang” of Ser/Thr phosphorylation? Nuclear and cytoplasmic glycosylation. Adv Exp Med Biol. 1995, 376: 115-123.PubMedCrossRef Hart GW, Greis KD, Dong LY, Blomberg MA, Chou TY, Jiang MS, Roquemore EP, Snow DM, Kreppel LK, Cole RN, et al: O-linked N-acetylglucosamine: the “yin-yang” of Ser/Thr phosphorylation? Nuclear and cytoplasmic glycosylation. Adv Exp Med Biol. 1995, 376: 115-123.PubMedCrossRef
49.
go back to reference Venegas M, Alvarado-Mora MV, Villanueva RA, Rebello Pinho JR, Carrilho FJ, Locarnini S, Yuen L, Brahm J: Phylogenetic analysis of hepatitis B virus genotype F complete genome sequences from Chilean patients with chronic infection. J Med Virol. 2011, 83: 1530-6.PubMedCrossRef Venegas M, Alvarado-Mora MV, Villanueva RA, Rebello Pinho JR, Carrilho FJ, Locarnini S, Yuen L, Brahm J: Phylogenetic analysis of hepatitis B virus genotype F complete genome sequences from Chilean patients with chronic infection. J Med Virol. 2011, 83: 1530-6.PubMedCrossRef
50.
go back to reference Blom N, Gammeltoft S, Brunak S: Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol. 1999, 294: 1351-1362.PubMedCrossRef Blom N, Gammeltoft S, Brunak S: Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol. 1999, 294: 1351-1362.PubMedCrossRef
51.
go back to reference Iakoucheva LM, Radivojac P, Brown CJ, O'Connor TR, Sikes JG, Obradovic Z, Dunker AK: The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res. 2004, 32: 1037-49.PubMedPubMedCentralCrossRef Iakoucheva LM, Radivojac P, Brown CJ, O'Connor TR, Sikes JG, Obradovic Z, Dunker AK: The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res. 2004, 32: 1037-49.PubMedPubMedCentralCrossRef
52.
go back to reference Durek P, Schudoma C, Weckwerth W, Selbig J, Walther D: Detection and characterization of 3D-signature phosphorylation site motifs and their contribution towards improved phosphorylation site prediction in proteins. BMC Bioinforma. 2009, 10: 117-CrossRef Durek P, Schudoma C, Weckwerth W, Selbig J, Walther D: Detection and characterization of 3D-signature phosphorylation site motifs and their contribution towards improved phosphorylation site prediction in proteins. BMC Bioinforma. 2009, 10: 117-CrossRef
53.
go back to reference Biswas AK, Noman N, Sikder AR: Machine learning approach to predict protein phosphorylation sites by incorporating evolutionary information. BMC Bioinforma. 2010, 11: 273-CrossRef Biswas AK, Noman N, Sikder AR: Machine learning approach to predict protein phosphorylation sites by incorporating evolutionary information. BMC Bioinforma. 2010, 11: 273-CrossRef
54.
go back to reference Hjerrild M, Stensballe A, Rasmussen TE, Kofoed CB, Blom N, Sicheritz-Ponten T, Larsen MR, Brunak S, Jensen ON, Gammeltoft S: Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry. J Proteome Res. 2004, 3: 426-33.PubMedCrossRef Hjerrild M, Stensballe A, Rasmussen TE, Kofoed CB, Blom N, Sicheritz-Ponten T, Larsen MR, Brunak S, Jensen ON, Gammeltoft S: Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry. J Proteome Res. 2004, 3: 426-33.PubMedCrossRef
55.
go back to reference Huang HD, Lee TY, Tzeng SW, Horng JT: KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites. Nucleic Acids Res. 2005, 33: W226-9.PubMedPubMedCentralCrossRef Huang HD, Lee TY, Tzeng SW, Horng JT: KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites. Nucleic Acids Res. 2005, 33: W226-9.PubMedPubMedCentralCrossRef
56.
go back to reference Xue Y, Li A, Wang L, Feng H, Yao X: PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory. BMC Bioinforma. 2006, 7: 163-CrossRef Xue Y, Li A, Wang L, Feng H, Yao X: PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory. BMC Bioinforma. 2006, 7: 163-CrossRef
57.
go back to reference Xue Y, Liu Z, Cao J, Ma Q, Gao X, Wang Q, Jin C, Zhou Y, Wen L, Ren J: GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection. Protein Eng Des Sel. 2011, 24: 255-60.PubMedCrossRef Xue Y, Liu Z, Cao J, Ma Q, Gao X, Wang Q, Jin C, Zhou Y, Wen L, Ren J: GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection. Protein Eng Des Sel. 2011, 24: 255-60.PubMedCrossRef
58.
go back to reference Gupta R, Brunak S: Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput. 2002, 7: 310-22. Gupta R, Brunak S: Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput. 2002, 7: 310-22.
59.
go back to reference Zhang Y: I-TASSER server for protein 3D structure prediction. BMC Bioinforma. 2008, 9: 40-CrossRef Zhang Y: I-TASSER server for protein 3D structure prediction. BMC Bioinforma. 2008, 9: 40-CrossRef
60.
go back to reference Petersen B, Petersen TN, Andersen P, Nielsen M, Lundegaard C: A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Struct Biol. 2009, 9: 51-57.PubMedPubMedCentralCrossRef Petersen B, Petersen TN, Andersen P, Nielsen M, Lundegaard C: A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Struct Biol. 2009, 9: 51-57.PubMedPubMedCentralCrossRef
61.
go back to reference Ahmad I, Khan TS, Hoessli DC, Walker-Nasir E, Kaleem A, Shakoori AR, Nasir-ud-Din : In silico modulation of HMGN-1 binding to histones and gene expression by interplay of phosphorylation and O-GlcNAc modification. Protein Pept Lett. 2008, 15: 193-9.PubMedCrossRef Ahmad I, Khan TS, Hoessli DC, Walker-Nasir E, Kaleem A, Shakoori AR, Nasir-ud-Din : In silico modulation of HMGN-1 binding to histones and gene expression by interplay of phosphorylation and O-GlcNAc modification. Protein Pept Lett. 2008, 15: 193-9.PubMedCrossRef
62.
go back to reference Muller B, Patschinsky T, Krausslich HG: The late-domain-containing protein p6 is the predominant phosphoprotein of human immunodeficiency virus type 1 particles. J Vir. 2002, 76: 1015-1024.CrossRef Muller B, Patschinsky T, Krausslich HG: The late-domain-containing protein p6 is the predominant phosphoprotein of human immunodeficiency virus type 1 particles. J Vir. 2002, 76: 1015-1024.CrossRef
63.
go back to reference Hemonnot B, Cartier C, Gay B, Rebuffat S, Bardy M, Devaux C, Boyer V, Briant L: The host cell MAP kinase ERK-2 regulates viral assembly and release by phosphorylating the p6gag protein of HIV-1. J Biol Chem. 2004, 279: 32426-32434.PubMedCrossRef Hemonnot B, Cartier C, Gay B, Rebuffat S, Bardy M, Devaux C, Boyer V, Briant L: The host cell MAP kinase ERK-2 regulates viral assembly and release by phosphorylating the p6gag protein of HIV-1. J Biol Chem. 2004, 279: 32426-32434.PubMedCrossRef
64.
go back to reference Law LM, Everitt JC, Beatch MD, Holmes CF, Hobman TC: Phosphorylation of rubella virus capsid regulates its RNA binding activity and virus replication. J Virol. 2003, 77: 1764-1771.PubMedPubMedCentralCrossRef Law LM, Everitt JC, Beatch MD, Holmes CF, Hobman TC: Phosphorylation of rubella virus capsid regulates its RNA binding activity and virus replication. J Virol. 2003, 77: 1764-1771.PubMedPubMedCentralCrossRef
65.
go back to reference Law LJ, Ilkow CS, Tzeng WP, Rawluk M, Stuart DT, Frey TK, Hobman TC: Analyses of phosphorylation events in the rubella virus capsid protein: role in early replication events. J Virol. 2006, 80: 6917-6925.PubMedPubMedCentralCrossRef Law LJ, Ilkow CS, Tzeng WP, Rawluk M, Stuart DT, Frey TK, Hobman TC: Analyses of phosphorylation events in the rubella virus capsid protein: role in early replication events. J Virol. 2006, 80: 6917-6925.PubMedPubMedCentralCrossRef
66.
go back to reference Fath S, Milkereit P, Peyroche G, Riva M, Carles C, Tschochner H: Differential roles of phosphorylation in the formation of transcriptional active RNA polymerase I. Proc Natl Acad Sci USA. 2001, 98: 14334-9.PubMedPubMedCentralCrossRef Fath S, Milkereit P, Peyroche G, Riva M, Carles C, Tschochner H: Differential roles of phosphorylation in the formation of transcriptional active RNA polymerase I. Proc Natl Acad Sci USA. 2001, 98: 14334-9.PubMedPubMedCentralCrossRef
67.
go back to reference Payne JM, Laybourn PJ, Dahmus ME: The transition of RNA polymerase II from initiation to elongation is associated with phosphorylation of the carboxyl-terminal domain of subunit IIa. J Biol Chem. 1989, 264: 19621-9.PubMed Payne JM, Laybourn PJ, Dahmus ME: The transition of RNA polymerase II from initiation to elongation is associated with phosphorylation of the carboxyl-terminal domain of subunit IIa. J Biol Chem. 1989, 264: 19621-9.PubMed
68.
go back to reference Schub O, Rohaly G, Smith RW, Schneider A, Dehde S, Dornreiter I, Nasheuer HP: Multiple phosphorylation sites of DNA polymerase alpha-primase cooperate to regulate the initiation of DNA replication in vitro. J Biol Chem. 2001, 276: 38076-83.PubMed Schub O, Rohaly G, Smith RW, Schneider A, Dehde S, Dornreiter I, Nasheuer HP: Multiple phosphorylation sites of DNA polymerase alpha-primase cooperate to regulate the initiation of DNA replication in vitro. J Biol Chem. 2001, 276: 38076-83.PubMed
69.
go back to reference Chikamori K, Grabowski DR, Kinter M, Willard BB, Yadav S, Aebersold RH, Bukowski RM, Hickson ID, Andersen AH, Ganapathi R, Ganapathi MK: Phosphorylation of serine 1106 in the catalytic domain of topoisomerase II alpha regulates enzymatic activity and drug sensitivity. J Biol Chem. 2003, 278: 12696-702.PubMedCrossRef Chikamori K, Grabowski DR, Kinter M, Willard BB, Yadav S, Aebersold RH, Bukowski RM, Hickson ID, Andersen AH, Ganapathi R, Ganapathi MK: Phosphorylation of serine 1106 in the catalytic domain of topoisomerase II alpha regulates enzymatic activity and drug sensitivity. J Biol Chem. 2003, 278: 12696-702.PubMedCrossRef
70.
go back to reference Forwood JK, Brooks A, Briggs LJ, Xiao CY, Jans DA, Vasudevan SG: The 37-amino-acid interdomain of dengue virus NS5 protein contains a functional NLS and inhibitory CK2 site. Biochem Biophys Res Commun. 1999, 257: 731-7.PubMedCrossRef Forwood JK, Brooks A, Briggs LJ, Xiao CY, Jans DA, Vasudevan SG: The 37-amino-acid interdomain of dengue virus NS5 protein contains a functional NLS and inhibitory CK2 site. Biochem Biophys Res Commun. 1999, 257: 731-7.PubMedCrossRef
71.
go back to reference Kim SH, Palukaitis P, Park YI: Phosphorylation of cucumber mosaic virus RNA polymerase 2a protein inhibits formation of replicase complex. EMBO J. 2002, 21: 2292-300.PubMedPubMedCentralCrossRef Kim SH, Palukaitis P, Park YI: Phosphorylation of cucumber mosaic virus RNA polymerase 2a protein inhibits formation of replicase complex. EMBO J. 2002, 21: 2292-300.PubMedPubMedCentralCrossRef
72.
go back to reference Khattar E, Mukherji A, Kumar V: Akt augments the oncogenic potential of the HBx protein of hepatitis B virus by phosphorylation. FEBS J. 2012, 279: 1220-30.PubMedCrossRef Khattar E, Mukherji A, Kumar V: Akt augments the oncogenic potential of the HBx protein of hepatitis B virus by phosphorylation. FEBS J. 2012, 279: 1220-30.PubMedCrossRef
Metadata
Title
The viral transactivator HBx protein exhibits a high potential for regulation via phosphorylation through an evolutionarily conserved mechanism
Authors
Sergio Hernández
Mauricio Venegas
Javier Brahm
Rodrigo A Villanueva
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Infectious Agents and Cancer / Issue 1/2012
Electronic ISSN: 1750-9378
DOI
https://doi.org/10.1186/1750-9378-7-27

Other articles of this Issue 1/2012

Infectious Agents and Cancer 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine