Skip to main content
Top
Published in: European Journal of Orthopaedic Surgery & Traumatology 4/2011

01-05-2011 | Original Article

The use of interconnected β-tricalcium phosphate as bone substitute after curettage of benign bone tumours

Authors: Pavel Šponer, Karel Urban, Tomáš Kučera, Aleš Kohout, Jindra Brtková, Jiří Knížek

Published in: European Journal of Orthopaedic Surgery & Traumatology | Issue 4/2011

Login to get access

Abstract

Objective

The purpose of this study was to analyse the clinical and radiological outcome in patients after implantation of β-tricalcium phosphate as a bone graft substitute to fill the defects after curettage of benign bone tumours and tumour-like lesions.

Method

A total of 21 male and 26 female patients underwent the process of curettage of the tumour and filling of the bone defect with interconnected β-tricalcium phosphate in granule form. In 39 patients, β-tricalcium phosphate was exclusively used; in contrast, in 8 patients, it was combined with a cancellous autografts. The mass of implanted β-tricalcium phosphate ranged from 1.5 to 66 g (mean = 12.5 g). The clinical examination and radiographs were performed 24–96 months (50 months on average) after curettage of the tumour and implantation of the bioactive ceramics.

Results

No patient complained of local pain, and all patients were satisfied with their limb function. Periodic radiographic assessments revealed that the material was incorporated in the surrounding bone without significant difference between implantation of β-tricalcium phosphate only and implantation of β-tricalcium phosphate mixed with autografts. Gradual resorption has started on the periphery and progressed centrally in both groups. Signs of the implanted β-tricalcium phosphate still remained radiographically in all 8 cases after implantation of synthetic material mixed with bone grafts and 27 of 39 cases after implantation of synthetic material only. The resorption was dependent on the mass of implanted β-tricalcium phosphate. In small defects with the mass of implanted material ≤3.5 g, we observed complete resorption of the material. The larger lesions with the mass of implanted material ≥5.5 g have healed more slowly, and β-tricalcium phosphate granules have been gradually resorbed but still remained radiographically distinct.

Conclusion

According to our study, interconnected β-tricalcium phosphate is a safe and successful bone graft substitute for the treatment of benign bone tumours and tumour-like lesions because of its biocompatibility and bioresorbability.
Literature
1.
go back to reference Uchida A, Araki N, Shinto Y, Yoshikawa H, Kurisaki E, Ono K (1990) The use of calcium hydroxyapatite ceramic in bone tumour surgery. J Bone Joint Surg 72-B:298–302 Uchida A, Araki N, Shinto Y, Yoshikawa H, Kurisaki E, Ono K (1990) The use of calcium hydroxyapatite ceramic in bone tumour surgery. J Bone Joint Surg 72-B:298–302
2.
go back to reference Hibi A, Ishikawa T, Asano M, Ohsawa S, Tsuge K, Iyoda K (1994) A study of failed implantation of hydroxyapatite for benign bone tumor. Orthoped Surg (Sekiekgeka) 45:1423–1428 Hibi A, Ishikawa T, Asano M, Ohsawa S, Tsuge K, Iyoda K (1994) A study of failed implantation of hydroxyapatite for benign bone tumor. Orthoped Surg (Sekiekgeka) 45:1423–1428
3.
go back to reference Itokazu M, Matsunaga T, Ishii M, Kusakabe H, Wyni Y (1996) Use of arthroscopy and interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Arch Orthop Trauma Surg 115:45–48PubMedCrossRef Itokazu M, Matsunaga T, Ishii M, Kusakabe H, Wyni Y (1996) Use of arthroscopy and interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Arch Orthop Trauma Surg 115:45–48PubMedCrossRef
4.
go back to reference Matsumine A, Myoui A, Kusazaki K, Araki N, Seto M, Yoshikawa H, Uchida A (2004) Calcium hydroxyapatite ceramic implants in bone tumour surgery: a long-term follow-up study. J Bone Joint Surg 86-B:719–725CrossRef Matsumine A, Myoui A, Kusazaki K, Araki N, Seto M, Yoshikawa H, Uchida A (2004) Calcium hydroxyapatite ceramic implants in bone tumour surgery: a long-term follow-up study. J Bone Joint Surg 86-B:719–725CrossRef
5.
go back to reference Ito M, Abumi K, Moridaira H, Shono Y, Kotani Y, Minami A, Kaneda K (2005) Iliac crest reconstruction with a bioactive ceramic spacer. Eur Spine J 14:99–102PubMedCrossRef Ito M, Abumi K, Moridaira H, Shono Y, Kotani Y, Minami A, Kaneda K (2005) Iliac crest reconstruction with a bioactive ceramic spacer. Eur Spine J 14:99–102PubMedCrossRef
6.
go back to reference Sponer P, Urban K, Urbanova E, Karpas K, Mathew PG (2010) Behavior of bioactive glass-ceramic implanted into long bone defects: a scintigraphic study. J Pediatr Orthop B 19:102–107PubMedCrossRef Sponer P, Urban K, Urbanova E, Karpas K, Mathew PG (2010) Behavior of bioactive glass-ceramic implanted into long bone defects: a scintigraphic study. J Pediatr Orthop B 19:102–107PubMedCrossRef
7.
go back to reference Merten HA, Wiltfang J, Grohmann U, Hoenig JF (2001) Intraindividual comparative animal study of α-and β-tricalcium phosphate degradation in conjunction with simultaneous insertion of dental implants. J Craniofacial Surg 12:59–67CrossRef Merten HA, Wiltfang J, Grohmann U, Hoenig JF (2001) Intraindividual comparative animal study of α-and β-tricalcium phosphate degradation in conjunction with simultaneous insertion of dental implants. J Craniofacial Surg 12:59–67CrossRef
8.
go back to reference Wiltfang J, Merten HA, Schlegel KA, Schultze-Mosgau S, Kloss FR, Rupprecht S, Kessler P (2002) Degradation characteristics of α and β tri-calcium-phosphate (TCP) in minipigs. J Biomed Mater Res (Appl Biomater) 63:115–121CrossRef Wiltfang J, Merten HA, Schlegel KA, Schultze-Mosgau S, Kloss FR, Rupprecht S, Kessler P (2002) Degradation characteristics of α and β tri-calcium-phosphate (TCP) in minipigs. J Biomed Mater Res (Appl Biomater) 63:115–121CrossRef
9.
go back to reference Galois L, Mainard D, Delagoutte JP (2002) Beta-tricalcium phosphate ceramic as a bone substitute in orthopaedic surgery. Inter Orthop 26:109–115CrossRef Galois L, Mainard D, Delagoutte JP (2002) Beta-tricalcium phosphate ceramic as a bone substitute in orthopaedic surgery. Inter Orthop 26:109–115CrossRef
10.
go back to reference Ogose A, Hotta T, Kawashima H, Kondo N, Gu W, Kamura T, Endo N (2005) Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J Biomed Mater Res Part B: Appl Biomater 72B:94–101CrossRef Ogose A, Hotta T, Kawashima H, Kondo N, Gu W, Kamura T, Endo N (2005) Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J Biomed Mater Res Part B: Appl Biomater 72B:94–101CrossRef
11.
go back to reference Hirata M, Murata H, Takeshita H, Sakabe T, Tsuji Y, Kubo T (2006) Use of purified beta-tricalcium phosphate for filling defects after curettage of benign bone tumours. Inter Orthop 30:510–513CrossRef Hirata M, Murata H, Takeshita H, Sakabe T, Tsuji Y, Kubo T (2006) Use of purified beta-tricalcium phosphate for filling defects after curettage of benign bone tumours. Inter Orthop 30:510–513CrossRef
12.
go back to reference Brunner TJ, Grass RN, Bohner M, Stark WJ (2007) Effect of particle size, crystal phase and crystallinity on the reactivity of tricalcium phosphate cements for bone reconstruction. J Mater Chem 17:4072–4078CrossRef Brunner TJ, Grass RN, Bohner M, Stark WJ (2007) Effect of particle size, crystal phase and crystallinity on the reactivity of tricalcium phosphate cements for bone reconstruction. J Mater Chem 17:4072–4078CrossRef
13.
go back to reference Walsh WR, Vizesi F, Michael D, Auld J, Langdown A, Oliver R, Yu Y, Irie H, Bruce W (2008) β-TCP bone graft substitutes in a bilateral rabbit tibial defect model. Biomaterials 29:266–271PubMedCrossRef Walsh WR, Vizesi F, Michael D, Auld J, Langdown A, Oliver R, Yu Y, Irie H, Bruce W (2008) β-TCP bone graft substitutes in a bilateral rabbit tibial defect model. Biomaterials 29:266–271PubMedCrossRef
14.
go back to reference Gál P, Ondruš Š, Škvařil J, Straka M, Jochymek J, Plánka L (2009) Synthetic biocompatible degradable material for juvenilie bone cyst treatment. Acta Chir Orthop Traumatol Cech 76:495–500PubMed Gál P, Ondruš Š, Škvařil J, Straka M, Jochymek J, Plánka L (2009) Synthetic biocompatible degradable material for juvenilie bone cyst treatment. Acta Chir Orthop Traumatol Cech 76:495–500PubMed
15.
go back to reference Stubbs D, Deakin M, Chapman-Sheath P, Bruce W, Debes J, Gillies RM et al (2004) In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model. Biomaterials 25:5037–5044PubMedCrossRef Stubbs D, Deakin M, Chapman-Sheath P, Bruce W, Debes J, Gillies RM et al (2004) In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model. Biomaterials 25:5037–5044PubMedCrossRef
16.
go back to reference von Doernberg MC, von Rechenberg B, Bohner M, Grunenfelder S, van Lenthe GH, Muller R et al (2006) In vivo behavior of calcium phosphate scaffolds with four different pore sizes. Biomaterials 27:5186–5198CrossRef von Doernberg MC, von Rechenberg B, Bohner M, Grunenfelder S, van Lenthe GH, Muller R et al (2006) In vivo behavior of calcium phosphate scaffolds with four different pore sizes. Biomaterials 27:5186–5198CrossRef
17.
go back to reference Urban K, Strnad Z, Povysil C, Sponer P (1996) Tricalcium phosphate as a bone tissue substitute (testing of biological properties in animal experiments). Acta Chir Orthop Traumatol Cech. 63:16–20PubMed Urban K, Strnad Z, Povysil C, Sponer P (1996) Tricalcium phosphate as a bone tissue substitute (testing of biological properties in animal experiments). Acta Chir Orthop Traumatol Cech. 63:16–20PubMed
18.
go back to reference Enneking WF, Dunham W, Gebhardt MC, Malawar M, Pritchard DJ (1993) A system for the functional evaluation of reconstructive procedures after surgical treatment of tumors of the musculoskeletal system. Clin Orthop Rel Res 286:241–246 Enneking WF, Dunham W, Gebhardt MC, Malawar M, Pritchard DJ (1993) A system for the functional evaluation of reconstructive procedures after surgical treatment of tumors of the musculoskeletal system. Clin Orthop Rel Res 286:241–246
19.
go back to reference Botez P, Sirbu P, Simion L, Munteanu F, Antonia I (2009) Application of a biphasic macroporous synthetic bone substitutes CERAFORM®: clinical and histological results. Eur J Orthop Surg Traumatol 19:387–395CrossRef Botez P, Sirbu P, Simion L, Munteanu F, Antonia I (2009) Application of a biphasic macroporous synthetic bone substitutes CERAFORM®: clinical and histological results. Eur J Orthop Surg Traumatol 19:387–395CrossRef
20.
go back to reference Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL (2004) Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos Sci Technol 64:789–817CrossRef Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL (2004) Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos Sci Technol 64:789–817CrossRef
21.
go back to reference Naito K, Obayashi O, Mogami A, Itoi A, Kaneko K (2008) Fracture of the calcium phosphate bone cement which used to enchondroma of the hand: a case report. Eur J Orthop Surg Traumatol 18:405–408CrossRef Naito K, Obayashi O, Mogami A, Itoi A, Kaneko K (2008) Fracture of the calcium phosphate bone cement which used to enchondroma of the hand: a case report. Eur J Orthop Surg Traumatol 18:405–408CrossRef
22.
go back to reference Dorozhkin SV (2009) Calcium orthophosphate-based biocomposites and hybrid biomaterials. J Mater Sci 44:2343–2387CrossRef Dorozhkin SV (2009) Calcium orthophosphate-based biocomposites and hybrid biomaterials. J Mater Sci 44:2343–2387CrossRef
23.
go back to reference Lu JX, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M et al (1999) Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med 10:111–120PubMedCrossRef Lu JX, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M et al (1999) Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med 10:111–120PubMedCrossRef
24.
go back to reference Bohner M, Baumgart F (2004) Effects of geometrical factors on the resorption of calcium phosphate bone substitutes. Biomaterials 25:3569–3582PubMedCrossRef Bohner M, Baumgart F (2004) Effects of geometrical factors on the resorption of calcium phosphate bone substitutes. Biomaterials 25:3569–3582PubMedCrossRef
25.
go back to reference Daculsi G, Passuti N (1990) Effect of macroporosity for osseous substitution of calcium phosphate ceramics. Biomaterials 11:86–87PubMed Daculsi G, Passuti N (1990) Effect of macroporosity for osseous substitution of calcium phosphate ceramics. Biomaterials 11:86–87PubMed
26.
go back to reference Eggli PS, Muller W, Schenk RK (1988) Porous hydroxyapatite and tricalcium phosphate cylinders with two different macropore size ranges implanted in the cancellous bone of rabbits. Clin Orthop 232:127–138PubMed Eggli PS, Muller W, Schenk RK (1988) Porous hydroxyapatite and tricalcium phosphate cylinders with two different macropore size ranges implanted in the cancellous bone of rabbits. Clin Orthop 232:127–138PubMed
27.
go back to reference Galois L, Mainard D (2004) Bone ingrowth into two porous ceramics with different pore sizes: an experimental study. Acta Orthop Belg 70:598–603PubMed Galois L, Mainard D (2004) Bone ingrowth into two porous ceramics with different pore sizes: an experimental study. Acta Orthop Belg 70:598–603PubMed
28.
go back to reference Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491PubMedCrossRef Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491PubMedCrossRef
29.
go back to reference Yuan H, Kurashina K, de Bruijn JD, Li Y, de Groot K, Zhang X (1999) A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 20:1799–1806PubMedCrossRef Yuan H, Kurashina K, de Bruijn JD, Li Y, de Groot K, Zhang X (1999) A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 20:1799–1806PubMedCrossRef
30.
go back to reference Oonishi H, Hench LL, Wilson J, Sugihara F, Tsuji E, Kushitani S, Iwaki H (1999) Comparative bone growth behavior in granules of bioceramic materials of various sizes. J Biomed Mater Res 44:31–43PubMedCrossRef Oonishi H, Hench LL, Wilson J, Sugihara F, Tsuji E, Kushitani S, Iwaki H (1999) Comparative bone growth behavior in granules of bioceramic materials of various sizes. J Biomed Mater Res 44:31–43PubMedCrossRef
31.
go back to reference Nicholas RW, Lange TA (1994) Granular tricalcium phosphate grafting of cavitary lesions in human bone. Clin Orthop Rel Res 306:197–203 Nicholas RW, Lange TA (1994) Granular tricalcium phosphate grafting of cavitary lesions in human bone. Clin Orthop Rel Res 306:197–203
Metadata
Title
The use of interconnected β-tricalcium phosphate as bone substitute after curettage of benign bone tumours
Authors
Pavel Šponer
Karel Urban
Tomáš Kučera
Aleš Kohout
Jindra Brtková
Jiří Knížek
Publication date
01-05-2011
Publisher
Springer-Verlag
Published in
European Journal of Orthopaedic Surgery & Traumatology / Issue 4/2011
Print ISSN: 1633-8065
Electronic ISSN: 1432-1068
DOI
https://doi.org/10.1007/s00590-010-0701-x

Other articles of this Issue 4/2011

European Journal of Orthopaedic Surgery & Traumatology 4/2011 Go to the issue