Skip to main content
Top
Published in: Immunologic Research 1/2013

01-05-2013

The unique role of dietary l-arginine in the acceleration of peritoneal macrophage sensitivity to bacterial endotoxin

Authors: Michaela Pekarova, Lukas Kubala, Hana Martiskova, Ivana Papezikova, Stanislava Kralova, Stephan Baldus, Anna Klinke, Radoslav Kuchta, Jaroslav Kadlec, Zdenka Kuchtova, Hana Kolarova, Antonin Lojek

Published in: Immunologic Research | Issue 1/2013

Login to get access

Abstract

It is known that cells and organisms can indirectly “sense” changes in l-arginine availability via changes in the activity of various metabolic pathways. However, the mechanism(s) by which genes can be directly regulated by l-arginine in mammalian cells have not yet been elucidated. We investigated the effect of l-arginine in the in vivo model of peritoneal inflammation in mice and in vitro in RAW 264.7 macrophages. A detailed analysis of basic physiological functions and selected intracellular signaling cascades revealed that l-arginine is crucial for the acceleration of macrophage activation by bacterial lipopolysaccharide. l-arginine increased the production of reactive oxygen species, nitric oxide, release of Ca2+, as well as inducible nitric oxide synthase expression. Interestingly, the effect of l-arginine on macrophage activation was dependent on the phosphorylation of mitogen-activated protein kinases and activity of phospholipase C. In RAW 264.7 cells, l-arginine was shown to modulate the response of macrophages toward lipopolysaccharide via the activation of G-protein-coupled receptors. According to our data, we concluded that l-arginine availability plays a key role in the initiation of intracellular signaling pathways that trigger the lipopolysaccharide-induced inflammatory responses in murine macrophages. Although macrophages are partially stimulated in the absence of extracellular l-arginine, the presence of this amino acid significantly accelerates the sensitivity of macrophages to bacterial endotoxin.
Literature
1.
go back to reference Peranzoni E, Marigo I, Dolcetti L, Ugel S, Sonda N, Taschin E, Mantelli B, Bronte V, Zanovello P. Role of arginine metabolism in immunity and immunopathology. Immunobiology. 2008;212:795–812.CrossRef Peranzoni E, Marigo I, Dolcetti L, Ugel S, Sonda N, Taschin E, Mantelli B, Bronte V, Zanovello P. Role of arginine metabolism in immunity and immunopathology. Immunobiology. 2008;212:795–812.CrossRef
2.
go back to reference MacRae FL, Fazio S. Macrophages, inflammation, and atherosclerosis. Int J Obes. 2003;27:S35–40.CrossRef MacRae FL, Fazio S. Macrophages, inflammation, and atherosclerosis. Int J Obes. 2003;27:S35–40.CrossRef
3.
go back to reference Cathcart MK. Regulation of superoxide anion production by NADPH oxidase in monocyte/macrophages: contributions to atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24:23–8.CrossRefPubMed Cathcart MK. Regulation of superoxide anion production by NADPH oxidase in monocyte/macrophages: contributions to atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24:23–8.CrossRefPubMed
4.
go back to reference Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal. 2001;13:85–94.CrossRefPubMed Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal. 2001;13:85–94.CrossRefPubMed
5.
6.
go back to reference El-Gayar S, Thuring-Nahler H, Pfeilschifter J, Rollinghoff M, Bogdan C. Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. J Immunol. 2004;171:4561–8. El-Gayar S, Thuring-Nahler H, Pfeilschifter J, Rollinghoff M, Bogdan C. Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. J Immunol. 2004;171:4561–8.
7.
go back to reference Kleinert H, Pautz A, Punker K, Schwarz PM. Regulation of the expression of inducible nitric oxide synthese. Eur J Pharmacol. 2004;500:255–66.CrossRefPubMed Kleinert H, Pautz A, Punker K, Schwarz PM. Regulation of the expression of inducible nitric oxide synthese. Eur J Pharmacol. 2004;500:255–66.CrossRefPubMed
8.
go back to reference Konig T, Bogdan C, Schleicher U. Translational repression of inducible NO synthase in macrophages by l-arginine depletion is not associated with an increased phosphorylation of eF2α. Immunobiology. 2009;214:822–7.CrossRefPubMed Konig T, Bogdan C, Schleicher U. Translational repression of inducible NO synthase in macrophages by l-arginine depletion is not associated with an increased phosphorylation of eF2α. Immunobiology. 2009;214:822–7.CrossRefPubMed
9.
go back to reference Morris SM. Arginine metabolism. Boundaries of our knowledge. J Nutr. 2007;137:1602S–9S.PubMed Morris SM. Arginine metabolism. Boundaries of our knowledge. J Nutr. 2007;137:1602S–9S.PubMed
10.
go back to reference Mori M, Gotoh T. Regulation of nitric oxide production by arginine metabolic enzymes. Biochem Biophys Res Commun. 2000;275:715–9.CrossRefPubMed Mori M, Gotoh T. Regulation of nitric oxide production by arginine metabolic enzymes. Biochem Biophys Res Commun. 2000;275:715–9.CrossRefPubMed
11.
go back to reference Kirk SJ, Hurson M, Regan MC, Holt DR, Wasserkrug HL, Barbul A. Arginine stimulates wound healing and immune function in elderly human beings. Surgery. 1993;114:155–9.PubMed Kirk SJ, Hurson M, Regan MC, Holt DR, Wasserkrug HL, Barbul A. Arginine stimulates wound healing and immune function in elderly human beings. Surgery. 1993;114:155–9.PubMed
12.
go back to reference Barbul A, Sisto DA, Wasserkrug HL, Yoshimura NN, Efron G. Arginine stimulates lymphocyte immune response in healthy human beings. Surgery. 1981;90:244–51.PubMed Barbul A, Sisto DA, Wasserkrug HL, Yoshimura NN, Efron G. Arginine stimulates lymphocyte immune response in healthy human beings. Surgery. 1981;90:244–51.PubMed
13.
go back to reference Mieulet V, Yan L, Choisy C, Sully K, Procter J, Kouroumalis A, Krywawych S, Pende M, Ley SC, Mainard C, Lamb RF. TPL-2-mediated activation of MAPK downstream of TLR4 signaling is coupled to arginine availability. Sci Signal. 2010;3:ra61.CrossRefPubMed Mieulet V, Yan L, Choisy C, Sully K, Procter J, Kouroumalis A, Krywawych S, Pende M, Ley SC, Mainard C, Lamb RF. TPL-2-mediated activation of MAPK downstream of TLR4 signaling is coupled to arginine availability. Sci Signal. 2010;3:ra61.CrossRefPubMed
14.
go back to reference Viackova D, Pekarova M, Crhak T, Bucsaiova M, Matiasovic J, Lojek A, Kubala L. Redox-sensitive regulation of macrophage-inducible nitric oxide synthase expression in vitro does not correlate with the failure of apocynin to prevent lung inflammation induced by endotoxin. Immunobiology. 2010;216:457–65.CrossRefPubMed Viackova D, Pekarova M, Crhak T, Bucsaiova M, Matiasovic J, Lojek A, Kubala L. Redox-sensitive regulation of macrophage-inducible nitric oxide synthase expression in vitro does not correlate with the failure of apocynin to prevent lung inflammation induced by endotoxin. Immunobiology. 2010;216:457–65.CrossRefPubMed
15.
go back to reference Grasemann H, Schwiertz R, Grasemann C, Vester U, Racke K, Ratjen F. Decreased systemic bioavailability of l-arginine in patients with cystic fibrosis. Respir Res. 2006;9:87.CrossRef Grasemann H, Schwiertz R, Grasemann C, Vester U, Racke K, Ratjen F. Decreased systemic bioavailability of l-arginine in patients with cystic fibrosis. Respir Res. 2006;9:87.CrossRef
16.
go back to reference Schwedhelm E, Xanthakis V, Maas R, Sullivan LM, Schulze F, Riedere U, Benndorf RA, Boger RH, Vasan RS. Asymmetric dimethylarginine reference intervals determined with liquid chromatography-tandem mass spectrometry: results from the Framingham offspring cohort. Clin Chem. 2009;55:1539–45.CrossRefPubMed Schwedhelm E, Xanthakis V, Maas R, Sullivan LM, Schulze F, Riedere U, Benndorf RA, Boger RH, Vasan RS. Asymmetric dimethylarginine reference intervals determined with liquid chromatography-tandem mass spectrometry: results from the Framingham offspring cohort. Clin Chem. 2009;55:1539–45.CrossRefPubMed
17.
go back to reference Pekarova M, Lojek A, Martiskova H, Vasicek O, Bino L, Klinke A, Lau D, Kuchta R, Kadlec J, Vrba R, Kubala L. New role for l-arginine in regulation of inducible nitric-oxide-synthase-derived superoxide anion production in raw 264.7 macrophages. ScientificWorldJournal. 2011;11:2443–57.CrossRefPubMed Pekarova M, Lojek A, Martiskova H, Vasicek O, Bino L, Klinke A, Lau D, Kuchta R, Kadlec J, Vrba R, Kubala L. New role for l-arginine in regulation of inducible nitric-oxide-synthase-derived superoxide anion production in raw 264.7 macrophages. ScientificWorldJournal. 2011;11:2443–57.CrossRefPubMed
18.
go back to reference Macickova T, Pecivova J, Nosal R, Lojek A, Pekarova M, Cupanikova D. Inhibition of superoxide generation and myeloperoxidase release by carvedilol after receptor and nonreceptor stimulation of human neutrophils. Neuro Endocrinol Lett. 2008;29:790–3.PubMed Macickova T, Pecivova J, Nosal R, Lojek A, Pekarova M, Cupanikova D. Inhibition of superoxide generation and myeloperoxidase release by carvedilol after receptor and nonreceptor stimulation of human neutrophils. Neuro Endocrinol Lett. 2008;29:790–3.PubMed
19.
go back to reference Pekarova M, Kralova J, Kubala L, Ciz M, Papezikova I, Macickova T, Pecivova J, Nosal R, Lojek A. Carvedilol and adrenergic agonists suppress the lipopolysaccharide-induced NO production in RAW 264.7 macrophages via the adrenergic receptors. J Physiol Pharmacol. 2009;60:143–50.PubMed Pekarova M, Kralova J, Kubala L, Ciz M, Papezikova I, Macickova T, Pecivova J, Nosal R, Lojek A. Carvedilol and adrenergic agonists suppress the lipopolysaccharide-induced NO production in RAW 264.7 macrophages via the adrenergic receptors. J Physiol Pharmacol. 2009;60:143–50.PubMed
20.
go back to reference Fafournoux P, Bruhat A, Jousse C. Amino acid regulation of gene expression. Biochem J. 2000;351:1–12.CrossRefPubMed Fafournoux P, Bruhat A, Jousse C. Amino acid regulation of gene expression. Biochem J. 2000;351:1–12.CrossRefPubMed
21.
go back to reference Wu G, Morris SM Jr. Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336:1–17.PubMed Wu G, Morris SM Jr. Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336:1–17.PubMed
22.
go back to reference McCall TB, Boughton-Smith NK, Palmer RMJ, Whittle BJR, Moncada S. Synthesis of nitric oxide from l-arginine by neutrophils. Biochem J. 1989;261:293–6.PubMed McCall TB, Boughton-Smith NK, Palmer RMJ, Whittle BJR, Moncada S. Synthesis of nitric oxide from l-arginine by neutrophils. Biochem J. 1989;261:293–6.PubMed
23.
go back to reference Patel JD, Krupka T, Anderson JM. iNOS-mediated generation of reactive oxygen and nitrogen species by biomaterial-adherent neutrophils. J Biomed Mater Res. 2007;80A:381–90.CrossRef Patel JD, Krupka T, Anderson JM. iNOS-mediated generation of reactive oxygen and nitrogen species by biomaterial-adherent neutrophils. J Biomed Mater Res. 2007;80A:381–90.CrossRef
24.
go back to reference Lewis B, Langkamp-Henken B. Arginine enhances in vivo immune responses in young, adult and aged mice. J Nutr. 2000;130:1827–30.PubMed Lewis B, Langkamp-Henken B. Arginine enhances in vivo immune responses in young, adult and aged mice. J Nutr. 2000;130:1827–30.PubMed
25.
go back to reference Yeh CL, Yeh SL, Lin MT, Chen WJ. Effects of arginine-enriched total parenteral nutrition on inflammatory-related mediator and T-cell population in septic rats. Nutrition. 2002;18:631–5.CrossRefPubMed Yeh CL, Yeh SL, Lin MT, Chen WJ. Effects of arginine-enriched total parenteral nutrition on inflammatory-related mediator and T-cell population in septic rats. Nutrition. 2002;18:631–5.CrossRefPubMed
26.
go back to reference Shang HF, Wang YY, Lai YN, Chiu WC, Yeh SL. Effect of arginine supplementation on mucosal immunity in rats with septic peritonitis. Clin Nutr. 2004;23:561–9.CrossRefPubMed Shang HF, Wang YY, Lai YN, Chiu WC, Yeh SL. Effect of arginine supplementation on mucosal immunity in rats with septic peritonitis. Clin Nutr. 2004;23:561–9.CrossRefPubMed
27.
go back to reference Ramana KV, Reddy ABM, Tammali R, Srivastava SK. Aldose reductase mediates endotoxin-induced production of nitric oxide and cytotoxicity in murine macrophages. Free Rad Biol Med. 2007;42:1290–302.CrossRefPubMed Ramana KV, Reddy ABM, Tammali R, Srivastava SK. Aldose reductase mediates endotoxin-induced production of nitric oxide and cytotoxicity in murine macrophages. Free Rad Biol Med. 2007;42:1290–302.CrossRefPubMed
28.
go back to reference Bogle RG, MacAllister RJ, Whitley GS, Vallance P. Induction of NG-monomethyl-l-arginine uptake: a mechanism for differential inhibition of NO synthase? Am J Physiol. 1995;269:C750–6.PubMed Bogle RG, MacAllister RJ, Whitley GS, Vallance P. Induction of NG-monomethyl-l-arginine uptake: a mechanism for differential inhibition of NO synthase? Am J Physiol. 1995;269:C750–6.PubMed
29.
go back to reference Bronte V, Zanovello P. Regulation of immune responses by arginine metabolism. Immunology. 2005;5:641–54.PubMed Bronte V, Zanovello P. Regulation of immune responses by arginine metabolism. Immunology. 2005;5:641–54.PubMed
30.
go back to reference Yeramian A, Martin L, Arpa L, Bertran J, Soler C, McLeod C, Modolell M, Palacin M, Lloberas J, Celada A. Macrophages require distinct arginine catabolism and transport system for proliferation and for activation. Eur J Immunol. 2006;26:1516–26.CrossRef Yeramian A, Martin L, Arpa L, Bertran J, Soler C, McLeod C, Modolell M, Palacin M, Lloberas J, Celada A. Macrophages require distinct arginine catabolism and transport system for proliferation and for activation. Eur J Immunol. 2006;26:1516–26.CrossRef
31.
go back to reference Hyde R, Taylor PM, Hundal HS. Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochem J. 2003;373:1–18.CrossRefPubMed Hyde R, Taylor PM, Hundal HS. Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochem J. 2003;373:1–18.CrossRefPubMed
32.
go back to reference Yang X, Ma JYC, Barger MW, Ma JKH. Transport and utilization of arginine and arginine-containing peptides by rat alveolar macrophages. Pharm Res. 2002;19:825–31.CrossRefPubMed Yang X, Ma JYC, Barger MW, Ma JKH. Transport and utilization of arginine and arginine-containing peptides by rat alveolar macrophages. Pharm Res. 2002;19:825–31.CrossRefPubMed
33.
go back to reference Nicholson B, Manner CK, Kleeman J, MacLeod CL. Sustained nitric oxide production in macrophages requires the arginine transporter CAT2*. J Biol Chem. 2001;276:15881–5.CrossRefPubMed Nicholson B, Manner CK, Kleeman J, MacLeod CL. Sustained nitric oxide production in macrophages requires the arginine transporter CAT2*. J Biol Chem. 2001;276:15881–5.CrossRefPubMed
34.
go back to reference Wu G, Brosnan JT. Macrophages can convert citrulline into arginine. Biochem J. 1992;281:45–8.PubMed Wu G, Brosnan JT. Macrophages can convert citrulline into arginine. Biochem J. 1992;281:45–8.PubMed
35.
go back to reference Boger RH. Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide sythase, explains the “l-arginine paradox” and act as a novel cardiovascular risk factor. J Nutr. 2004;134:2842S–7S.PubMed Boger RH. Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide sythase, explains the “l-arginine paradox” and act as a novel cardiovascular risk factor. J Nutr. 2004;134:2842S–7S.PubMed
36.
go back to reference Lee J, Ryu H, Ferrante RJ, Morris SM, Ratan RR. Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc Natl Acad Sci USA. 2006;100:4843–8.CrossRef Lee J, Ryu H, Ferrante RJ, Morris SM, Ratan RR. Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc Natl Acad Sci USA. 2006;100:4843–8.CrossRef
37.
go back to reference Kagemann G, Sies H, Schnorr O. Limited availability of l-arginine increases DNA-binding activity of NF-kappaB and contributes to regulation of iNOS expression. J Mol Med. 2007;85:723–32.CrossRefPubMed Kagemann G, Sies H, Schnorr O. Limited availability of l-arginine increases DNA-binding activity of NF-kappaB and contributes to regulation of iNOS expression. J Mol Med. 2007;85:723–32.CrossRefPubMed
38.
go back to reference Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D. An integrated stress response regulated amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11:619–33.CrossRefPubMed Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D. An integrated stress response regulated amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11:619–33.CrossRefPubMed
39.
go back to reference Jousse C, Averous J, Bruhat A, Carraro V, Mordier S, Fafournoux P. Amino acids as regulators of gene expression: molecular mechanisms. Biochem Biophys Res Commun. 2004;313:447–52.CrossRefPubMed Jousse C, Averous J, Bruhat A, Carraro V, Mordier S, Fafournoux P. Amino acids as regulators of gene expression: molecular mechanisms. Biochem Biophys Res Commun. 2004;313:447–52.CrossRefPubMed
40.
go back to reference Sattlegger E, Hinnebusch AG. Separate domains in GCN1 for binding protein kinase GCN2 and ribosomes are required for GCN2 activation in amino acid-starvated cells. EMBO J. 2000;19:6622–33.CrossRefPubMed Sattlegger E, Hinnebusch AG. Separate domains in GCN1 for binding protein kinase GCN2 and ribosomes are required for GCN2 activation in amino acid-starvated cells. EMBO J. 2000;19:6622–33.CrossRefPubMed
41.
go back to reference Gloire G, Legrand-Poels S, Piette J. NF-κB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol. 2006;72:1493–505.CrossRefPubMed Gloire G, Legrand-Poels S, Piette J. NF-κB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol. 2006;72:1493–505.CrossRefPubMed
42.
go back to reference Karin M. Mitogen-activated protein kinase cascades as regulators of stress responses. Ann N Y Acad Sci. 1998;851:139–46.CrossRefPubMed Karin M. Mitogen-activated protein kinase cascades as regulators of stress responses. Ann N Y Acad Sci. 1998;851:139–46.CrossRefPubMed
43.
go back to reference Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal. 2000;12:1–13.CrossRefPubMed Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal. 2000;12:1–13.CrossRefPubMed
44.
go back to reference Sanghera JS, Weinstein SL, Aluwalia M, Girn J, Pelech SL. Activation of multiple proline-directed kinases by bacterial lipopolysaccharide in murine macrophages. J Immunol. 1996;156:4457–65.PubMed Sanghera JS, Weinstein SL, Aluwalia M, Girn J, Pelech SL. Activation of multiple proline-directed kinases by bacterial lipopolysaccharide in murine macrophages. J Immunol. 1996;156:4457–65.PubMed
45.
go back to reference Betz H, Kuhse J, Schmieden V, Laube B, Kirsch J, Harvey RJ. Structure and functions of inhibitory and excitatory glycine receptors. Ann N Y Acad Sci. 1999;868:667–76.CrossRefPubMed Betz H, Kuhse J, Schmieden V, Laube B, Kirsch J, Harvey RJ. Structure and functions of inhibitory and excitatory glycine receptors. Ann N Y Acad Sci. 1999;868:667–76.CrossRefPubMed
46.
go back to reference Christiansen B, Hansen KB, Wellendorph P, Brauner-Osborne H. Pharmacological characterization of mouse GPRC6A, an L-α-amino-acid receptor modulated by divalent cations. Br J Pharmacol. 2007;150:798–807.CrossRefPubMed Christiansen B, Hansen KB, Wellendorph P, Brauner-Osborne H. Pharmacological characterization of mouse GPRC6A, an L-α-amino-acid receptor modulated by divalent cations. Br J Pharmacol. 2007;150:798–807.CrossRefPubMed
47.
go back to reference Matthews JC, Anderson KJ. Recent advances in amino acid transporters and excitatory amino acid receptors. Curr Opin Clin Nutr Metab Care. 2002;5:77–84.CrossRefPubMed Matthews JC, Anderson KJ. Recent advances in amino acid transporters and excitatory amino acid receptors. Curr Opin Clin Nutr Metab Care. 2002;5:77–84.CrossRefPubMed
48.
go back to reference Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS. An amino-acid taste receptor. Nature. 2002;416:199–202.CrossRefPubMed Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS. An amino-acid taste receptor. Nature. 2002;416:199–202.CrossRefPubMed
49.
go back to reference Joshi MS, Ferguson B, Johnson FK, Johnson RA, Parthasarathy S, Lancaster JR. Receptor-mediated activation of nitric oxide synthesis by arginine in endothelial cells. Proc Natl Acad Sci USA. 2007;104:9982–7.CrossRefPubMed Joshi MS, Ferguson B, Johnson FK, Johnson RA, Parthasarathy S, Lancaster JR. Receptor-mediated activation of nitric oxide synthesis by arginine in endothelial cells. Proc Natl Acad Sci USA. 2007;104:9982–7.CrossRefPubMed
50.
go back to reference Vergarajauregui S, San Migul A, Puertollano R. Activation of p38 mitogen-activated protein kinase promotes epidermal growth factor receptor internalization. Traffic. 2006;7:686–98.CrossRefPubMed Vergarajauregui S, San Migul A, Puertollano R. Activation of p38 mitogen-activated protein kinase promotes epidermal growth factor receptor internalization. Traffic. 2006;7:686–98.CrossRefPubMed
Metadata
Title
The unique role of dietary l-arginine in the acceleration of peritoneal macrophage sensitivity to bacterial endotoxin
Authors
Michaela Pekarova
Lukas Kubala
Hana Martiskova
Ivana Papezikova
Stanislava Kralova
Stephan Baldus
Anna Klinke
Radoslav Kuchta
Jaroslav Kadlec
Zdenka Kuchtova
Hana Kolarova
Antonin Lojek
Publication date
01-05-2013
Publisher
Springer-Verlag
Published in
Immunologic Research / Issue 1/2013
Print ISSN: 0257-277X
Electronic ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-012-8379-2

Other articles of this Issue 1/2013

Immunologic Research 1/2013 Go to the issue