Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Research article

The tumor suppressor RhoBTB1 controls Golgi integrity and breast cancer cell invasion through METTL7B

Authors: Caroline M. McKinnon, Harry Mellor

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

RhoBTB1 and 2 are atypical members of the Rho GTPase family of signaling proteins. Unlike other Rho GTPases, RhoBTB1 and 2 undergo silencing or mutation in a wide range of epithelial cancers; however, little is known about the consequences of this loss of function.

Methods

We analyzed transcriptome data to identify transcriptional targets of RhoBTB2. We verified these using Q-PCR and then used gene silencing and cell imaging to determine the cellular function of these targets downstream of RhoBTB signaling.

Results

RhoBTB1 and 2 regulate the expression of the methyltransferases METTL7B and METTL7A, respectively. RhoBTB1 regulates the integrity of the Golgi complex through METTL7B. RhoBTB1 is required for expression of METTL7B and silencing of either protein leads to fragmentation of the Golgi. Loss of RhoBTB1 expression is linked to Golgi fragmentation in breast cancer cells. Restoration of normal RhoBTB1 expression rescues Golgi morphology and dramatically inhibits breast cancer cell invasion.

Conclusion

Loss of RhoBTB1 expression in breast cancer cells leads to Golgi fragmentation and hence loss of normal polarity.
Appendix
Available only for authorised users
Literature
1.
3.
4.
go back to reference Wherlock M, Mellor H. The Rho GTPase family: a racs to wrchs story. J Cell Sci. 2002;115(Pt 2):239–40.PubMed Wherlock M, Mellor H. The Rho GTPase family: a racs to wrchs story. J Cell Sci. 2002;115(Pt 2):239–40.PubMed
5.
go back to reference Ramos S, Khademi F, Somesh BP, Rivero F. Genomic organization and expression profile of the small GTPases of the RhoBTB family in human and mouse. Gene. 2002;298(2):147–57.CrossRefPubMed Ramos S, Khademi F, Somesh BP, Rivero F. Genomic organization and expression profile of the small GTPases of the RhoBTB family in human and mouse. Gene. 2002;298(2):147–57.CrossRefPubMed
6.
go back to reference Ji W, Rivero F. Atypical Rho GTPases of the RhoBTB Subfamily: Roles in Vesicle Trafficking and Tumorigenesis. Cells. 2016;5(2). Ji W, Rivero F. Atypical Rho GTPases of the RhoBTB Subfamily: Roles in Vesicle Trafficking and Tumorigenesis. Cells. 2016;5(2).
7.
go back to reference Hamaguchi M, Meth JL, von Klitzing C, Wei W, Esposito D, Rodgers L, et al. DBC2, a candidate for a tumor suppressor gene involved in breast cancer. Proc Natl Acad Sci U S A. 2002;99(21):13647–52.CrossRefPubMedPubMedCentral Hamaguchi M, Meth JL, von Klitzing C, Wei W, Esposito D, Rodgers L, et al. DBC2, a candidate for a tumor suppressor gene involved in breast cancer. Proc Natl Acad Sci U S A. 2002;99(21):13647–52.CrossRefPubMedPubMedCentral
8.
go back to reference Freeman SN, Cress WD. RhoBTB2 (DBC2) comes of age as a multifunctional tumor suppressor. Cancer Biol Ther. 2010;10(11):1123–5.CrossRefPubMed Freeman SN, Cress WD. RhoBTB2 (DBC2) comes of age as a multifunctional tumor suppressor. Cancer Biol Ther. 2010;10(11):1123–5.CrossRefPubMed
9.
go back to reference Knowles MA, Aveyard JS, Taylor CF, Harnden P, Bass S. Mutation analysis of the 8p candidate tumour suppressor genes DBC2 (RHOBTB2) and LZTS1 in bladder cancer. Cancer Lett. 2005;225(1):121–30.CrossRefPubMed Knowles MA, Aveyard JS, Taylor CF, Harnden P, Bass S. Mutation analysis of the 8p candidate tumour suppressor genes DBC2 (RHOBTB2) and LZTS1 in bladder cancer. Cancer Lett. 2005;225(1):121–30.CrossRefPubMed
10.
go back to reference Mao H, Qu X, Yang Y, Zuo W, Bi Y, Zhou C, et al. A novel tumor suppressor gene RhoBTB2 (DBC2): frequent loss of expression in sporadic breast cancer. Mol Carcinog. 2010;49(3):283–9.PubMed Mao H, Qu X, Yang Y, Zuo W, Bi Y, Zhou C, et al. A novel tumor suppressor gene RhoBTB2 (DBC2): frequent loss of expression in sporadic breast cancer. Mol Carcinog. 2010;49(3):283–9.PubMed
11.
go back to reference Tang W, Wang C, Fu F, Chen Q. RhoBTB2 gene in breast cancer is silenced by promoter methylation. Int J Mol Med. 2014;33(3):722–8.PubMed Tang W, Wang C, Fu F, Chen Q. RhoBTB2 gene in breast cancer is silenced by promoter methylation. Int J Mol Med. 2014;33(3):722–8.PubMed
12.
go back to reference Beder LB, Gunduz M, Ouchida M, Gunduz E, Sakai A, Fukushima K, et al. Identification of a candidate tumor suppressor gene RHOBTB1 located at a novel allelic loss region 10q21 in head and neck cancer. J Cancer Res Clin Oncol. 2006;132(1):19–27.CrossRefPubMed Beder LB, Gunduz M, Ouchida M, Gunduz E, Sakai A, Fukushima K, et al. Identification of a candidate tumor suppressor gene RHOBTB1 located at a novel allelic loss region 10q21 in head and neck cancer. J Cancer Res Clin Oncol. 2006;132(1):19–27.CrossRefPubMed
13.
go back to reference Xu RS, Wu XD, Zhang SQ, Li CF, Yang L, Li DD, et al. The tumor suppressor gene RhoBTB1 is a novel target of miR-31 in human colon cancer. Int J Oncol. 2013;42(2):676–82.PubMed Xu RS, Wu XD, Zhang SQ, Li CF, Yang L, Li DD, et al. The tumor suppressor gene RhoBTB1 is a novel target of miR-31 in human colon cancer. Int J Oncol. 2013;42(2):676–82.PubMed
14.
go back to reference Aspenstrom P, Fransson A, Saras J. Rho GTPases have diverse effects on the organization of the actin filament system. Biochem J. 2004;377(Pt 2):327–37.CrossRefPubMedPubMedCentral Aspenstrom P, Fransson A, Saras J. Rho GTPases have diverse effects on the organization of the actin filament system. Biochem J. 2004;377(Pt 2):327–37.CrossRefPubMedPubMedCentral
15.
go back to reference Perez-Torrado R, Yamada D, Defossez PA. Born to bind: the BTB protein-protein interaction domain. Bioessays. 2006;28(12):1194–202.CrossRefPubMed Perez-Torrado R, Yamada D, Defossez PA. Born to bind: the BTB protein-protein interaction domain. Bioessays. 2006;28(12):1194–202.CrossRefPubMed
16.
go back to reference McKinnon CM, Lygoe KA, Skelton L, Mitter R, Mellor H. The atypical Rho GTPase RhoBTB2 is required for expression of the chemokine CXCL14 in normal and cancerous epithelial cells. Oncogene. 2008;27(54):6856–65.CrossRefPubMed McKinnon CM, Lygoe KA, Skelton L, Mitter R, Mellor H. The atypical Rho GTPase RhoBTB2 is required for expression of the chemokine CXCL14 in normal and cancerous epithelial cells. Oncogene. 2008;27(54):6856–65.CrossRefPubMed
17.
go back to reference Blaschke RJ, Howlett AR, Desprez PY, Petersen OW, Bissell MJ. Cell differentiation by extracellular matrix components. Methods Enzymol. 1994;245:535–56.CrossRefPubMed Blaschke RJ, Howlett AR, Desprez PY, Petersen OW, Bissell MJ. Cell differentiation by extracellular matrix components. Methods Enzymol. 1994;245:535–56.CrossRefPubMed
18.
go back to reference Debnath J, Muthuswamy SK, Brugge JS. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003;30(3):256–68.CrossRefPubMed Debnath J, Muthuswamy SK, Brugge JS. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003;30(3):256–68.CrossRefPubMed
19.
go back to reference Demaison C, Parsley K, Brouns G, Scherr M, Battmer K, Kinnon C, et al. High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther. 2002;13(7):803–13.CrossRefPubMed Demaison C, Parsley K, Brouns G, Scherr M, Battmer K, Kinnon C, et al. High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther. 2002;13(7):803–13.CrossRefPubMed
20.
go back to reference Wu CC, MacCoss MJ, Mardones G, Finnigan C, Mogelsvang S, Yates 3rd JR, et al. Organellar proteomics reveals Golgi arginine dimethylation. Mol Biol Cell. 2004;15(6):2907–19.CrossRefPubMedPubMedCentral Wu CC, MacCoss MJ, Mardones G, Finnigan C, Mogelsvang S, Yates 3rd JR, et al. Organellar proteomics reveals Golgi arginine dimethylation. Mol Biol Cell. 2004;15(6):2907–19.CrossRefPubMedPubMedCentral
21.
go back to reference Radeke HS, Digits CA, Casaubon RL, Snapper ML. Interactions of (−)-ilimaquinone with methylation enzymes: implications for vesicular-mediated secretion. Chem Biol. 1999;6(9):639–47.CrossRefPubMed Radeke HS, Digits CA, Casaubon RL, Snapper ML. Interactions of (−)-ilimaquinone with methylation enzymes: implications for vesicular-mediated secretion. Chem Biol. 1999;6(9):639–47.CrossRefPubMed
22.
go back to reference Zehmer JK, Bartz R, Liu P, Anderson RG. Identification of a novel N-terminal hydrophobic sequence that targets proteins to lipid droplets. J Cell Sci. 2008;121(Pt 11):1852–60.CrossRefPubMedPubMedCentral Zehmer JK, Bartz R, Liu P, Anderson RG. Identification of a novel N-terminal hydrophobic sequence that targets proteins to lipid droplets. J Cell Sci. 2008;121(Pt 11):1852–60.CrossRefPubMedPubMedCentral
23.
go back to reference Han L, Hou L, Song J, Lin D, Wu L, Ge Y, et al. Decreased expression of the DBC2 gene and its clinicopathological significance in breast cancer: correlation with aberrant DNA methylation. Biotechnol Lett. 2013;35(8):1175–81.CrossRefPubMed Han L, Hou L, Song J, Lin D, Wu L, Ge Y, et al. Decreased expression of the DBC2 gene and its clinicopathological significance in breast cancer: correlation with aberrant DNA methylation. Biotechnol Lett. 2013;35(8):1175–81.CrossRefPubMed
24.
go back to reference Ohadi M, Totonchi M, Maguire P, Lindblom A, Habibi R, Alavi BA, et al. Mutation analysis of the DBC2 gene in sporadic and familial breast cancer. Acta Oncol. 2007;46(6):770–2.CrossRefPubMed Ohadi M, Totonchi M, Maguire P, Lindblom A, Habibi R, Alavi BA, et al. Mutation analysis of the DBC2 gene in sporadic and familial breast cancer. Acta Oncol. 2007;46(6):770–2.CrossRefPubMed
25.
go back to reference Soule HD, Maloney TM, Wolman SR, Peterson Jr WD, Brenz R, McGrath CM, et al. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 1990;50(18):6075–86.PubMed Soule HD, Maloney TM, Wolman SR, Peterson Jr WD, Brenz R, McGrath CM, et al. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 1990;50(18):6075–86.PubMed
26.
go back to reference Briand P, Petersen OW, Van Deurs B. A new diploid nontumorigenic human breast epithelial cell line isolated and propagated in chemically defined medium. In Vitro Cell Dev Biol. 1987;23(3):181–8.CrossRefPubMed Briand P, Petersen OW, Van Deurs B. A new diploid nontumorigenic human breast epithelial cell line isolated and propagated in chemically defined medium. In Vitro Cell Dev Biol. 1987;23(3):181–8.CrossRefPubMed
27.
go back to reference Yadav S, Puri S, Linstedt AD. A primary role for Golgi positioning in directed secretion, cell polarity, and wound healing. Mol Biol Cell. 2009;20(6):1728–36.CrossRefPubMedPubMedCentral Yadav S, Puri S, Linstedt AD. A primary role for Golgi positioning in directed secretion, cell polarity, and wound healing. Mol Biol Cell. 2009;20(6):1728–36.CrossRefPubMedPubMedCentral
29.
go back to reference Yadav S, Linstedt AD. Golgi positioning. Cold Spring Harb Perspect Biol. 2011;3(5). Yadav S, Linstedt AD. Golgi positioning. Cold Spring Harb Perspect Biol. 2011;3(5).
30.
go back to reference Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol. 2005;15(5):378–86.CrossRefPubMed Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol. 2005;15(5):378–86.CrossRefPubMed
31.
32.
go back to reference Genschik P, Sumara I, Lechner E. The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications. EMBO J. 2013;32(17):2307–20.CrossRefPubMedPubMedCentral Genschik P, Sumara I, Lechner E. The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications. EMBO J. 2013;32(17):2307–20.CrossRefPubMedPubMedCentral
33.
go back to reference Berthold J, Schenkova K, Ramos S, Miura Y, Furukawa M, Aspenstrom P, et al. Characterization of RhoBTB-dependent Cul3 ubiquitin ligase complexes--evidence for an autoregulatory mechanism. Exp Cell Res. 2008;314(19):3453–65.CrossRefPubMedPubMedCentral Berthold J, Schenkova K, Ramos S, Miura Y, Furukawa M, Aspenstrom P, et al. Characterization of RhoBTB-dependent Cul3 ubiquitin ligase complexes--evidence for an autoregulatory mechanism. Exp Cell Res. 2008;314(19):3453–65.CrossRefPubMedPubMedCentral
35.
go back to reference Kelly KF, Daniel JM. POZ for effect--POZ-ZF transcription factors in cancer and development. Trends Cell Biol. 2006;16(11):578–87.CrossRefPubMed Kelly KF, Daniel JM. POZ for effect--POZ-ZF transcription factors in cancer and development. Trends Cell Biol. 2006;16(11):578–87.CrossRefPubMed
36.
go back to reference Espinosa EJ, Calero M, Sridevi K, Pfeffer SR. RhoBTB3: a Rho GTPase-family ATPase required for endosome to Golgi transport. Cell. 2009;137(5):938–48.CrossRefPubMedPubMedCentral Espinosa EJ, Calero M, Sridevi K, Pfeffer SR. RhoBTB3: a Rho GTPase-family ATPase required for endosome to Golgi transport. Cell. 2009;137(5):938–48.CrossRefPubMedPubMedCentral
37.
39.
40.
go back to reference Puthenveedu MA, Bachert C, Puri S, Lanni F, Linstedt AD. GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi-enzyme distribution. Nat Cell Biol. 2006;8(3):238–48.CrossRefPubMed Puthenveedu MA, Bachert C, Puri S, Lanni F, Linstedt AD. GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi-enzyme distribution. Nat Cell Biol. 2006;8(3):238–48.CrossRefPubMed
41.
go back to reference Diao A, Rahman D, Pappin DJ, Lucocq J, Lowe M. The coiled-coil membrane protein golgin-84 is a novel rab effector required for Golgi ribbon formation. J Cell Biol. 2003;160(2):201–12.CrossRefPubMedPubMedCentral Diao A, Rahman D, Pappin DJ, Lucocq J, Lowe M. The coiled-coil membrane protein golgin-84 is a novel rab effector required for Golgi ribbon formation. J Cell Biol. 2003;160(2):201–12.CrossRefPubMedPubMedCentral
42.
go back to reference Kupfer A, Louvard D, Singer SJ. Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound. Proc Natl Acad Sci U S A. 1982;79:2603–07. Kupfer A, Louvard D, Singer SJ. Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound. Proc Natl Acad Sci U S A. 1982;79:2603–07.
43.
go back to reference Baschieri F, Confalonieri S, Bertalot G, Di Fiore PP, Dietmaier W, Leist M, et al. Spatial control of Cdc42 signalling by a GM130-RasGRF complex regulates polarity and tumorigenesis. Nat Commun. 2014;5:4839.CrossRefPubMedPubMedCentral Baschieri F, Confalonieri S, Bertalot G, Di Fiore PP, Dietmaier W, Leist M, et al. Spatial control of Cdc42 signalling by a GM130-RasGRF complex regulates polarity and tumorigenesis. Nat Commun. 2014;5:4839.CrossRefPubMedPubMedCentral
Metadata
Title
The tumor suppressor RhoBTB1 controls Golgi integrity and breast cancer cell invasion through METTL7B
Authors
Caroline M. McKinnon
Harry Mellor
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-017-3138-3

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine