Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

The truncated splice variant of peroxisome proliferator-activated receptor alpha, PPARα-tr, autonomously regulates proliferative and pro-inflammatory genes

Authors: Maria Thomas, Christine Bayha, Kathrin Klein, Simon Müller, Thomas S. Weiss, Matthias Schwab, Ulrich M. Zanger

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

The peroxisome proliferator-activated receptor alpha (PPARα) controls lipid/energy homeostasis and inflammatory responses. The truncated splice variant PPARα-tr was suggested to exert a dominant negative function despite being unable to bind consensus PPARα DNA response elements.

Methods

The distribution and variability factor of each PPARα variant were assessed in the well-characterized cohort of human liver samples (N = 150) on the mRNA and protein levels. Specific siRNA-mediated downregulation of each transcript as well as specific overexpression with subsequent qRT-PCR analysis of downstream genes was used for investigation of specific functional roles of PPARα-wt and PPARα-tr forms in primary human hepatocytes.

Results

Bioinformatic analyses of genome-wide liver expression profiling data suggested a possible role of PPARα-tr in downregulating proliferative and pro-inflammatory genes. Specific gene silencing of both forms in primary human hepatocytes showed that induction of metabolic PPARα-target genes by agonist WY14,643 was prevented by PPARα-wt knock-down but neither prevented nor augmented by PPARα-tr knock-down. WY14,643 treatment did not induce proliferative genes including MYC, CDK1, and PCNA, and knock-down of PPARα-wt had no effect, while PPARα-tr knock-down caused up to 3-fold induction of these genes. Similarly, induction of pro-inflammatory genes IL1B, PTGS2, and CCL2 by IL-6 was augmented by knock-down of PPARα-tr but not of PPARα-wt. In contrast to human proliferative genes, orthologous mouse genes were readily inducible by WY14,643 in PPARα-tr non-expressing AML12 mouse hepatocytes. Induction was augmented by overexpression of PPARα-wt and attenuated by overexpression of PPARα-tr. Pro-inflammatory genes including IL-1β, CCL2 and TNFα were induced by WY14,643 in mouse and human cells and both PPARα forms attenuated induction. As potential mechanism of PPARα-tr inhibitory action we suggest crosstalk with WNT/β-catenin pathway. Finally, treatment with WY14,643 in the presence of PPARα-tr resulted in the significant reduction of cell viability of AML12 and human ovarian cancer cell line, SKOV3.

Conclusions

Our data suggest that the truncated PPARα splice variant functions as an endogenous inhibitor of proliferative and pro-inflammatory genes in human cells and that its absence in mouse may explain species-specific differences in fibrate-induced hepatocarcinogenesis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ashby J, Brady A, Elcombe CR, Elliott BM, Ishmael J, Odum J, et al. Mechanistically-based human hazard assessment of peroxisome proliferator-induced hepatocarcinogenesis. Hum Exp Toxicol. 1994;13 Suppl 2:S1–117.CrossRefPubMed Ashby J, Brady A, Elcombe CR, Elliott BM, Ishmael J, Odum J, et al. Mechanistically-based human hazard assessment of peroxisome proliferator-induced hepatocarcinogenesis. Hum Exp Toxicol. 1994;13 Suppl 2:S1–117.CrossRefPubMed
2.
go back to reference Beaumont J, Arias T, Ravassa S, Diez J. Overexpression of human truncated peroxisome proliferator-activated receptor induces apoptosis in HL-1 cardiomyocytes. Cardiovasc Res. 2008;79:458–63.CrossRefPubMed Beaumont J, Arias T, Ravassa S, Diez J. Overexpression of human truncated peroxisome proliferator-activated receptor induces apoptosis in HL-1 cardiomyocytes. Cardiovasc Res. 2008;79:458–63.CrossRefPubMed
3.
go back to reference Bramow S, Ott P, Thomsen Nielsen F, Bangert K, Tygstrup N, Dalhoff K. Cholestasis and regulation of genes related to drug metabolism and biliary transport in rat liver following treatment with cyclosporine A and sirolimus (Rapamycin). Pharmacol Toxicol. 2001;89:133–9.CrossRefPubMed Bramow S, Ott P, Thomsen Nielsen F, Bangert K, Tygstrup N, Dalhoff K. Cholestasis and regulation of genes related to drug metabolism and biliary transport in rat liver following treatment with cyclosporine A and sirolimus (Rapamycin). Pharmacol Toxicol. 2001;89:133–9.CrossRefPubMed
4.
go back to reference Contreras AV, Torres N, Tovar AR. PPAR- as a Key Nutritional and Environmental Sensor for Metabolic Adaptation. Adv Nutr Int Rev J. 2013;4:439–52.CrossRef Contreras AV, Torres N, Tovar AR. PPAR- as a Key Nutritional and Environmental Sensor for Metabolic Adaptation. Adv Nutr Int Rev J. 2013;4:439–52.CrossRef
5.
go back to reference Damm G, Pfeiffer E, Burkhardt B, Vermehren J, Nüssler AK, Weiss TS. Human parenchymal and non-parenchymal liver cell isolation, culture and characterization. Hepatol Int. 2013;7:951–8.CrossRefPubMed Damm G, Pfeiffer E, Burkhardt B, Vermehren J, Nüssler AK, Weiss TS. Human parenchymal and non-parenchymal liver cell isolation, culture and characterization. Hepatol Int. 2013;7:951–8.CrossRefPubMed
6.
go back to reference Diradourian C, Girard J, Pégorier J-P. Phosphorylation of PPARs: from molecular characterization to physiological relevance. Biochimie. 2005;87:33–8 [New Developments in Metabolic Syndrome].CrossRefPubMed Diradourian C, Girard J, Pégorier J-P. Phosphorylation of PPARs: from molecular characterization to physiological relevance. Biochimie. 2005;87:33–8 [New Developments in Metabolic Syndrome].CrossRefPubMed
7.
go back to reference El Kebbaj Z, Andreoletti P, Mountassif D, Kabine M, Schohn H, Dauça M, et al. Differential Regulation of Peroxisome Proliferator-Activated Receptor (PPAR)-α1 and Truncated PPARα2 as an Adaptive Response to Fasting in the Control of Hepatic Peroxisomal Fatty Acid β-Oxidation in the Hibernating Mammal. Endocrinology. 2009;150:1192–201.CrossRefPubMed El Kebbaj Z, Andreoletti P, Mountassif D, Kabine M, Schohn H, Dauça M, et al. Differential Regulation of Peroxisome Proliferator-Activated Receptor (PPAR)-α1 and Truncated PPARα2 as an Adaptive Response to Fasting in the Control of Hepatic Peroxisomal Fatty Acid β-Oxidation in the Hibernating Mammal. Endocrinology. 2009;150:1192–201.CrossRefPubMed
8.
go back to reference Feldman PL, Lambert MH, Henke BR. PPAR modulators and PPAR pan agonists for metabolic diseases: the next generation of drugs targeting peroxisome proliferator-activated receptors? Curr Top Med Chem. 2008;8:728–49.CrossRefPubMed Feldman PL, Lambert MH, Henke BR. PPAR modulators and PPAR pan agonists for metabolic diseases: the next generation of drugs targeting peroxisome proliferator-activated receptors? Curr Top Med Chem. 2008;8:728–49.CrossRefPubMed
9.
go back to reference Gervois P, Torra IP, Chinetti G, Grötzinger T, Dubois G, Fruchart JC, et al. A truncated human peroxisome proliferator-activated receptor alpha splice variant with dominant negative activity. Mol Endocrinol. 1999;13:1535–49.PubMed Gervois P, Torra IP, Chinetti G, Grötzinger T, Dubois G, Fruchart JC, et al. A truncated human peroxisome proliferator-activated receptor alpha splice variant with dominant negative activity. Mol Endocrinol. 1999;13:1535–49.PubMed
10.
go back to reference Gervois P, Vu-Dac N, Kleemann R, Kockx M, Dubois G, Laine B, et al. Negative Regulation of Human Fibrinogen Gene Expression by Peroxisome Proliferator-activated Receptor α Agonists via Inhibition of CCAAT Box/Enhancer-binding Protein β. J Biol Chem. 2001;276:33471–7.CrossRefPubMed Gervois P, Vu-Dac N, Kleemann R, Kockx M, Dubois G, Laine B, et al. Negative Regulation of Human Fibrinogen Gene Expression by Peroxisome Proliferator-activated Receptor α Agonists via Inhibition of CCAAT Box/Enhancer-binding Protein β. J Biol Chem. 2001;276:33471–7.CrossRefPubMed
11.
go back to reference Goikoetxea MJ, Beaumont J, González A, López B, Querejeta R, Larman M, et al. Altered cardiac expression of peroxisome proliferator-activated receptor-isoforms in patients with hypertensive heart disease. Cardiovasc Res. 2006;69:899–907.CrossRefPubMed Goikoetxea MJ, Beaumont J, González A, López B, Querejeta R, Larman M, et al. Altered cardiac expression of peroxisome proliferator-activated receptor-isoforms in patients with hypertensive heart disease. Cardiovasc Res. 2006;69:899–907.CrossRefPubMed
12.
go back to reference Gonzalez FJ, Shah YM. PPARalpha: mechanism of species differences and hepatocarcinogenesis of peroxisome proliferators. Toxicology. 2008;246:2–8.CrossRefPubMed Gonzalez FJ, Shah YM. PPARalpha: mechanism of species differences and hepatocarcinogenesis of peroxisome proliferators. Toxicology. 2008;246:2–8.CrossRefPubMed
13.
go back to reference Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications--a review. Nutr J. 2014;13:17.CrossRefPubMedPubMedCentral Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications--a review. Nutr J. 2014;13:17.CrossRefPubMedPubMedCentral
14.
go back to reference Hanselman JC, Vartanian MA, Koester BP, Gray SA, Essenburg AD, Rea TJ, et al. Expression of the mRNA encoding truncated PPAR alpha does not correlate with hepatic insensitivity to peroxisome proliferators. Mol Cell Biochem. 2001;217:91–7.CrossRefPubMed Hanselman JC, Vartanian MA, Koester BP, Gray SA, Essenburg AD, Rea TJ, et al. Expression of the mRNA encoding truncated PPAR alpha does not correlate with hepatic insensitivity to peroxisome proliferators. Mol Cell Biochem. 2001;217:91–7.CrossRefPubMed
15.
go back to reference Kino T, Su YA, Chrousos GP. Human glucocorticoid receptor isoform β: recent understanding of its potential implications in physiology and pathophysiology. Cell Mol Life Sci. 2009;66:3435–48.CrossRefPubMedPubMedCentral Kino T, Su YA, Chrousos GP. Human glucocorticoid receptor isoform β: recent understanding of its potential implications in physiology and pathophysiology. Cell Mol Life Sci. 2009;66:3435–48.CrossRefPubMedPubMedCentral
16.
go back to reference Klein K, Thomas M, Winter S, Nussler AK, Niemi M, Schwab M, et al. PPARA: a novel genetic determinant of CYP3A4 in vitro and in vivo. Clin Pharmacol Ther. 2012;91:1044–52.CrossRefPubMed Klein K, Thomas M, Winter S, Nussler AK, Niemi M, Schwab M, et al. PPARA: a novel genetic determinant of CYP3A4 in vitro and in vivo. Clin Pharmacol Ther. 2012;91:1044–52.CrossRefPubMed
17.
18.
go back to reference Koslowski MJ, Kübler I, Chamaillard M, Schaeffeler E, Reinisch W, Wang G, et al. Genetic variants of Wnt transcription factor TCF-4 (TCF7L2) putative promoter region are associated with small intestinal Crohn’s disease. PloS One. 2009;4, e4496.CrossRefPubMedPubMedCentral Koslowski MJ, Kübler I, Chamaillard M, Schaeffeler E, Reinisch W, Wang G, et al. Genetic variants of Wnt transcription factor TCF-4 (TCF7L2) putative promoter region are associated with small intestinal Crohn’s disease. PloS One. 2009;4, e4496.CrossRefPubMedPubMedCentral
19.
go back to reference Maggiora M, Bologna M, Cerù MP, Possati L, Angelucci A, Cimini A, et al. An overview of the effect of linoleic and conjugated-linoleic acids on the growth of several human tumor cell lines. Int J Cancer. 2004;112:909–19.CrossRefPubMed Maggiora M, Bologna M, Cerù MP, Possati L, Angelucci A, Cimini A, et al. An overview of the effect of linoleic and conjugated-linoleic acids on the growth of several human tumor cell lines. Int J Cancer. 2004;112:909–19.CrossRefPubMed
20.
go back to reference Mandard S, Patsouris D. Nuclear Control of the Inflammatory Response in Mammals by Peroxisome Proliferator-Activated Receptors. PPAR Res. 2013;2013, e613864.CrossRef Mandard S, Patsouris D. Nuclear Control of the Inflammatory Response in Mammals by Peroxisome Proliferator-Activated Receptors. PPAR Res. 2013;2013, e613864.CrossRef
21.
go back to reference Misra P, Reddy JK. Peroxisome proliferator-activated receptor-α activation and excess energy burning in hepatocarcinogenesis. Biochimie. 2014;98:63–74.CrossRefPubMed Misra P, Reddy JK. Peroxisome proliferator-activated receptor-α activation and excess energy burning in hepatocarcinogenesis. Biochimie. 2014;98:63–74.CrossRefPubMed
22.
go back to reference Morimura K, Cheung C, Ward JM, Reddy JK, Gonzalez FJ. Differential susceptibility of mice humanized for peroxisome proliferator-activated receptor to Wy-14,643-induced liver tumorigenesis. Carcinogenesis. 2006;27:1074–80.CrossRefPubMed Morimura K, Cheung C, Ward JM, Reddy JK, Gonzalez FJ. Differential susceptibility of mice humanized for peroxisome proliferator-activated receptor to Wy-14,643-induced liver tumorigenesis. Carcinogenesis. 2006;27:1074–80.CrossRefPubMed
23.
go back to reference Mukherjee R, Jow L, Noonan D, McDonnell DP. Human and rat peroxisome proliferator activated receptors (PPARs) demonstrate similar tissue distribution but different responsiveness to PPAR activators. J Steroid Biochem Mol Biol. 1994;51:157–66.CrossRefPubMed Mukherjee R, Jow L, Noonan D, McDonnell DP. Human and rat peroxisome proliferator activated receptors (PPARs) demonstrate similar tissue distribution but different responsiveness to PPAR activators. J Steroid Biochem Mol Biol. 1994;51:157–66.CrossRefPubMed
24.
go back to reference Palmer CNA, Hsu M-H, Griffin KJ, Raucy JL, Johnson EF. Peroxisome Proliferator Activated Receptor-α Expression in Human Liver. Mol Pharmacol. 1998;53:14–22.PubMed Palmer CNA, Hsu M-H, Griffin KJ, Raucy JL, Johnson EF. Peroxisome Proliferator Activated Receptor-α Expression in Human Liver. Mol Pharmacol. 1998;53:14–22.PubMed
25.
go back to reference Peters JM, Cheung C, Gonzalez FJ. Peroxisome proliferator-activated receptor-α and liver cancer: where do we stand? J Mol Med. 2005;83:774–85.CrossRefPubMed Peters JM, Cheung C, Gonzalez FJ. Peroxisome proliferator-activated receptor-α and liver cancer: where do we stand? J Mol Med. 2005;83:774–85.CrossRefPubMed
26.
go back to reference Peters JM, Shah YM, Gonzalez FJ. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat Rev Cancer. 2012;12:181–95.PubMedPubMedCentral Peters JM, Shah YM, Gonzalez FJ. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat Rev Cancer. 2012;12:181–95.PubMedPubMedCentral
27.
go back to reference Pineda Torra I, Jamshidi Y, Flavell DM, Fruchart J-C, Staels B. Characterization of the Human PPARα Promoter: Identification of a Functional Nuclear Receptor Response Element. Mol Endocrinol. 2002;16:1013–28.PubMed Pineda Torra I, Jamshidi Y, Flavell DM, Fruchart J-C, Staels B. Characterization of the Human PPARα Promoter: Identification of a Functional Nuclear Receptor Response Element. Mol Endocrinol. 2002;16:1013–28.PubMed
28.
go back to reference Pozzi A, Ibanez MR, Gatica AE, Yang S, Wei S, Mei S, et al. Peroxisomal Proliferator-activated Receptor-α-dependent Inhibition of Endothelial Cell Proliferation and Tumorigenesis. J Biol Chem. 2007;282:17685–95.CrossRefPubMed Pozzi A, Ibanez MR, Gatica AE, Yang S, Wei S, Mei S, et al. Peroxisomal Proliferator-activated Receptor-α-dependent Inhibition of Endothelial Cell Proliferation and Tumorigenesis. J Biol Chem. 2007;282:17685–95.CrossRefPubMed
29.
30.
go back to reference Qu A, Jiang C, Cai Y, Kim J-H, Tanaka N, Ward JM, et al. Role of Myc in hepatocellular proliferation and hepatocarcinogenesis. J Hepatol. 2014;60:331–8.CrossRefPubMed Qu A, Jiang C, Cai Y, Kim J-H, Tanaka N, Ward JM, et al. Role of Myc in hepatocellular proliferation and hepatocarcinogenesis. J Hepatol. 2014;60:331–8.CrossRefPubMed
31.
go back to reference Saidi SA, Holland CM, Charnock-Jones DS, Smith SK. In vitro and in vivo effects of the PPAR-alpha agonists fenofibrate and retinoic acid in endometrial cancer. Mol Cancer. 2006;5:13.CrossRefPubMedPubMedCentral Saidi SA, Holland CM, Charnock-Jones DS, Smith SK. In vitro and in vivo effects of the PPAR-alpha agonists fenofibrate and retinoic acid in endometrial cancer. Mol Cancer. 2006;5:13.CrossRefPubMedPubMedCentral
32.
go back to reference Schroder A, Klein K, Winter S, Schwab M, Bonin M, Zell A, et al. Genomics of ADME gene expression: mapping expression quantitative trait loci relevant for absorption, distribution, metabolism and excretion of drugs in human liver. Pharmacogenomics J. 2013;13:12–20.CrossRefPubMed Schroder A, Klein K, Winter S, Schwab M, Bonin M, Zell A, et al. Genomics of ADME gene expression: mapping expression quantitative trait loci relevant for absorption, distribution, metabolism and excretion of drugs in human liver. Pharmacogenomics J. 2013;13:12–20.CrossRefPubMed
33.
go back to reference Skrypnyk N, Chen X, Hu W, Su Y, Mont S, Yang S, et al. PPARα Activation Can Help Prevent and Treat Non–Small Cell Lung Cancer. Cancer Res. 2014;74:621–31.CrossRefPubMed Skrypnyk N, Chen X, Hu W, Su Y, Mont S, Yang S, et al. PPARα Activation Can Help Prevent and Treat Non–Small Cell Lung Cancer. Cancer Res. 2014;74:621–31.CrossRefPubMed
34.
go back to reference Spurgeon SL, Jones RC, Ramakrishnan R. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PloS One. 2008;3, e1662.CrossRefPubMedPubMedCentral Spurgeon SL, Jones RC, Ramakrishnan R. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PloS One. 2008;3, e1662.CrossRefPubMedPubMedCentral
35.
go back to reference Tanaka T, Takeno T, Watanabe Y, Uchiyama Y, Murakami T, Yamashita H, et al. The generation of monoclonal antibodies against human peroxisome proliferator-activated receptors (PPARs). J Atheroscler Thromb. 2002;9:233–42.CrossRefPubMed Tanaka T, Takeno T, Watanabe Y, Uchiyama Y, Murakami T, Yamashita H, et al. The generation of monoclonal antibodies against human peroxisome proliferator-activated receptors (PPARs). J Atheroscler Thromb. 2002;9:233–42.CrossRefPubMed
36.
go back to reference Tateno C, Yamamoto T, Utoh R, Yamasaki C, Ishida Y, Myoken Y, et al. Chimeric Mice with Hepatocyte-humanized Liver as an Appropriate Model to Study Human Peroxisome Proliferator-activated Receptor-α. Toxicol Pathol. 2015;43(2):233–48.CrossRefPubMed Tateno C, Yamamoto T, Utoh R, Yamasaki C, Ishida Y, Myoken Y, et al. Chimeric Mice with Hepatocyte-humanized Liver as an Appropriate Model to Study Human Peroxisome Proliferator-activated Receptor-α. Toxicol Pathol. 2015;43(2):233–48.CrossRefPubMed
37.
go back to reference Thomas M, Bayha C, Vetter S, Hofmann U, Schwarz M, Zanger UM, et al. Activating and Inhibitory Functions of WNT/β-catenin in the Induction of Cytochromes P450 by Nuclear Receptors in HepaRG Cells. Mol Pharmacol. 2015;87:1013–20.CrossRefPubMed Thomas M, Bayha C, Vetter S, Hofmann U, Schwarz M, Zanger UM, et al. Activating and Inhibitory Functions of WNT/β-catenin in the Induction of Cytochromes P450 by Nuclear Receptors in HepaRG Cells. Mol Pharmacol. 2015;87:1013–20.CrossRefPubMed
38.
go back to reference Thomas M, Burk O, Klumpp B, Kandel BA, Damm G, Weiss TS, et al. Direct transcriptional regulation of human hepatic cytochrome P450 3A4 (CYP3A4) by peroxisome proliferator-activated receptor alpha (PPARα). Mol Pharmacol. 2013;83:709–18.CrossRefPubMed Thomas M, Burk O, Klumpp B, Kandel BA, Damm G, Weiss TS, et al. Direct transcriptional regulation of human hepatic cytochrome P450 3A4 (CYP3A4) by peroxisome proliferator-activated receptor alpha (PPARα). Mol Pharmacol. 2013;83:709–18.CrossRefPubMed
39.
go back to reference Thomas M, Rieger JK, Kandel BA, Klein K, Zanger UM. Targeting Nuclear Receptors with Lentivirus-Delivered Small RNAs in Primary Human Hepatocytes. Cell Physiol Biochem. 2014;33:2003–13.CrossRefPubMed Thomas M, Rieger JK, Kandel BA, Klein K, Zanger UM. Targeting Nuclear Receptors with Lentivirus-Delivered Small RNAs in Primary Human Hepatocytes. Cell Physiol Biochem. 2014;33:2003–13.CrossRefPubMed
40.
go back to reference Van Bilsen M, van Nieuwenhoven FA. PPARs as therapeutic targets in cardiovascular disease. Expert Opin Ther Targets. 2010;14:1029–45.CrossRefPubMed Van Bilsen M, van Nieuwenhoven FA. PPARs as therapeutic targets in cardiovascular disease. Expert Opin Ther Targets. 2010;14:1029–45.CrossRefPubMed
41.
go back to reference Wadosky KM, Willis MS. The story so far: post-translational regulation of peroxisome proliferator-activated receptors by ubiquitination and SUMOylation. Am J Physiol. 2012;302:H515–26. Wadosky KM, Willis MS. The story so far: post-translational regulation of peroxisome proliferator-activated receptors by ubiquitination and SUMOylation. Am J Physiol. 2012;302:H515–26.
42.
go back to reference Wahli W, Michalik L. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol Metab. 2012;23:351–63.CrossRefPubMed Wahli W, Michalik L. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol Metab. 2012;23:351–63.CrossRefPubMed
43.
go back to reference Wright MB, Bortolini M, Tadayyon M, Bopst M. Minireview: Challenges and opportunities in development of PPAR agonists. Mol Endocrinol. 2014;28(11):1756–68.CrossRefPubMed Wright MB, Bortolini M, Tadayyon M, Bopst M. Minireview: Challenges and opportunities in development of PPAR agonists. Mol Endocrinol. 2014;28(11):1756–68.CrossRefPubMed
44.
go back to reference Yang Q, Nagano T, Shah Y, Cheung C, Ito S, Gonzalez FJ. The PPAR?-Humanized Mouse: A Model to Investigate Species Differences in Liver Toxicity Mediated by PPAR? Toxicol Sci. 2008;101:132–9.CrossRefPubMed Yang Q, Nagano T, Shah Y, Cheung C, Ito S, Gonzalez FJ. The PPAR?-Humanized Mouse: A Model to Investigate Species Differences in Liver Toxicity Mediated by PPAR? Toxicol Sci. 2008;101:132–9.CrossRefPubMed
45.
go back to reference Yokoyama Y, Xin B, Shigeto T, Umemoto M, Kasai-Sakamoto A, Futagami M, et al. Clofibric acid, a peroxisome proliferator-activated receptor alpha ligand, inhibits growth of human ovarian cancer. Mol Cancer Ther. 2007;6:1379–86.CrossRefPubMed Yokoyama Y, Xin B, Shigeto T, Umemoto M, Kasai-Sakamoto A, Futagami M, et al. Clofibric acid, a peroxisome proliferator-activated receptor alpha ligand, inhibits growth of human ovarian cancer. Mol Cancer Ther. 2007;6:1379–86.CrossRefPubMed
Metadata
Title
The truncated splice variant of peroxisome proliferator-activated receptor alpha, PPARα-tr, autonomously regulates proliferative and pro-inflammatory genes
Authors
Maria Thomas
Christine Bayha
Kathrin Klein
Simon Müller
Thomas S. Weiss
Matthias Schwab
Ulrich M. Zanger
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1500-x

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine