Skip to main content
Top
Published in: European Journal of Applied Physiology 2/2013

01-02-2013 | Original Article

The sustainability of VO2max: effect of decreasing the workload

Authors: Véronique Billat, Hélène Petot, Jason R. Karp, Guillaume Sarre, R. Hugh Morton, Laurence Mille-Hamard

Published in: European Journal of Applied Physiology | Issue 2/2013

Login to get access

Abstract

The study examined the maintenance of VO2max using VO2max as the controlling variable instead of power. Therefore, ten subjects performed three exhaustive cycling exercise bouts: (1) an incremental test to determine VO2max and the minimal power at VO2max (PVOmax), (2) a constant-power test at PVOmax and (3) a variable-power test (VPT) during which power was varied to control VO2 at VO2max. Stroke volume (SV) was measured by impedance in each test and the stroke volume reserve was calculated as the difference between the maximal and the average 5-s SV. Average power during VPT was significantly lower than PVOmax (238 ± 79 vs. 305 ± 86 W; p < 0.0001). All subjects, regardless of their VO2max values and/or their ability to achieve a VO2max plateau during incremental test, were able to sustain VO2max for a significantly longer time during VPT compared to constant-power test (CPT) (958 ± 368 s vs. 136 ± 81 s; p < 0.0001). Time to exhaustion at VO2max during VPT was correlated with the power drop in the first quarter of the time to exhaustion at VO2max (r = 0.71; p < 0.02) and with the stroke volume reserve (r = 0.70, p = 0.02) but was not correlated with VO2max. This protocol, using VO2max rather than power as the controlling variable, demonstrates that the maintenance of exercise at VO2max can exceed 15 min independent of the VO2max value, suggesting that the ability to sustain exercise at VO2max has different limiting factors than those related to the VO2max value.
Literature
go back to reference Astrand P-O, Saltin B (1961) Oxygen uptake during the first minutes of heavy muscular exercise. J Appl Physiol 16:971–976PubMed Astrand P-O, Saltin B (1961) Oxygen uptake during the first minutes of heavy muscular exercise. J Appl Physiol 16:971–976PubMed
go back to reference Aunola S, Rusko H (1984) Reproducibility of aerobic and anaerobic thresholds in 20–50 year old men. Eur J Appl Physiol Occup Physiol 53:260–266PubMedCrossRef Aunola S, Rusko H (1984) Reproducibility of aerobic and anaerobic thresholds in 20–50 year old men. Eur J Appl Physiol Occup Physiol 53:260–266PubMedCrossRef
go back to reference Bergh U, Ekblom B, Astrand P-O (2000) Maximal oxygen uptake “classical” versus “contemporary” viewpoints. Med Sci Sports Exerc 32:85–88PubMed Bergh U, Ekblom B, Astrand P-O (2000) Maximal oxygen uptake “classical” versus “contemporary” viewpoints. Med Sci Sports Exerc 32:85–88PubMed
go back to reference Bernstein DP (1986) A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale. Crit Care Med 14:904–909PubMedCrossRef Bernstein DP (1986) A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale. Crit Care Med 14:904–909PubMedCrossRef
go back to reference Billat V, Dalmay F, Antonini MT, Chassain AP (1994) A method for determining the maximal steady state of blood lactate concentration from two levels of submaximal exercise. Eur J Appl Physiol Occup Physiol 69:196–202PubMedCrossRef Billat V, Dalmay F, Antonini MT, Chassain AP (1994) A method for determining the maximal steady state of blood lactate concentration from two levels of submaximal exercise. Eur J Appl Physiol Occup Physiol 69:196–202PubMedCrossRef
go back to reference Billat VL, Morton RH, Blondel N, Berthoin S, Bocquet V, Koralsztein JP, Barstow TJ (2000) Oxygen kinetics and modelling of time to exhaustion whilst running at various velocities at maximal oxygen uptake. Eur J Appl Physiol 82:178–187PubMedCrossRef Billat VL, Morton RH, Blondel N, Berthoin S, Bocquet V, Koralsztein JP, Barstow TJ (2000) Oxygen kinetics and modelling of time to exhaustion whilst running at various velocities at maximal oxygen uptake. Eur J Appl Physiol 82:178–187PubMedCrossRef
go back to reference Billat LV (2001a) Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: aerobic interval training. Sports Med 31:13–31 Billat LV (2001a) Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: aerobic interval training. Sports Med 31:13–31
go back to reference Billat LV (2001b) Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part II: anaerobic interval training. Sports Med 31:75–90 Billat LV (2001b) Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part II: anaerobic interval training. Sports Med 31:75–90
go back to reference Billat V, Hamard L, Koralsztein JP, Morton RH (2009) Differential modeling of anaerobic and aerobic metabolism in the 800-m and 1,500-m run. J Appl Physiol 107:478–487PubMedCrossRef Billat V, Hamard L, Koralsztein JP, Morton RH (2009) Differential modeling of anaerobic and aerobic metabolism in the 800-m and 1,500-m run. J Appl Physiol 107:478–487PubMedCrossRef
go back to reference Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381PubMed Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381PubMed
go back to reference Charloux A, Lonsdorfer-Wolf E, Richard R, Lampert E, Oswald-Mammosser M, Mettauer B, Geny B, Lonsdorfer J (2000) A new impedance cardiograph device for the non-invasive evaluation of cardiac output at rest and during exercise: comparison with the “direct” Fick method. Eur J Appl Physiol 82:313–320PubMedCrossRef Charloux A, Lonsdorfer-Wolf E, Richard R, Lampert E, Oswald-Mammosser M, Mettauer B, Geny B, Lonsdorfer J (2000) A new impedance cardiograph device for the non-invasive evaluation of cardiac output at rest and during exercise: comparison with the “direct” Fick method. Eur J Appl Physiol 82:313–320PubMedCrossRef
go back to reference Coats EM, Rossiter HB, Day JR, Miura A, Fukuba Y, Whipp BJ (2003) Intensity-dependent tolerance to exercise after attaining VO2max in humans. J Appl Physiol 95:483–490PubMed Coats EM, Rossiter HB, Day JR, Miura A, Fukuba Y, Whipp BJ (2003) Intensity-dependent tolerance to exercise after attaining VO2max in humans. J Appl Physiol 95:483–490PubMed
go back to reference Day JR, Rossiter HB, Coats EM, Skasick A, Whipp BJ (2003) The maximally attainable VO2 during exercise in humans: the peak vs. maximum issue. J Appl Physiol 95:1901–1907PubMed Day JR, Rossiter HB, Coats EM, Skasick A, Whipp BJ (2003) The maximally attainable VO2 during exercise in humans: the peak vs. maximum issue. J Appl Physiol 95:1901–1907PubMed
go back to reference Denadai BS, Ortiz MJ, Greco CC, de Mello MT (2006) Interval training at 95% and 100% of the velocity at VO2 max: effects on aerobic physiological indexes and running performance. Appl Physiol Nutr Metab 31:737–743 Denadai BS, Ortiz MJ, Greco CC, de Mello MT (2006) Interval training at 95% and 100% of the velocity at VO2 max: effects on aerobic physiological indexes and running performance. Appl Physiol Nutr Metab 31:737–743
go back to reference Dempsey JA, Hanson PG, Henderson KS (1984) Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol 355:161–175PubMed Dempsey JA, Hanson PG, Henderson KS (1984) Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol 355:161–175PubMed
go back to reference di Prampero PE (1985) Metabolic and circulatory limitations to VO2max at the whole animal level. J Exp Biol 115:319–331PubMed di Prampero PE (1985) Metabolic and circulatory limitations to VO2max at the whole animal level. J Exp Biol 115:319–331PubMed
go back to reference di Prampero PE (1999) The concept of critical velocity: a brief analysis. Eur J Appl Physiol Occup Physiol 80:162–164PubMedCrossRef di Prampero PE (1999) The concept of critical velocity: a brief analysis. Eur J Appl Physiol Occup Physiol 80:162–164PubMedCrossRef
go back to reference di Prampero PE, Atchou G, Brückner JC, Moia C (1986) The energetics of endurance running. Eur J Appl Physiol Occup Physiol 55:259–266PubMedCrossRef di Prampero PE, Atchou G, Brückner JC, Moia C (1986) The energetics of endurance running. Eur J Appl Physiol Occup Physiol 55:259–266PubMedCrossRef
go back to reference Doherty M, Nobbs L, Noakes TD (2003) Low frequency of the “plateau phenomenon” during maximal exercise in elite British athletes. Eur J Appl Physiol 89:619–623PubMedCrossRef Doherty M, Nobbs L, Noakes TD (2003) Low frequency of the “plateau phenomenon” during maximal exercise in elite British athletes. Eur J Appl Physiol 89:619–623PubMedCrossRef
go back to reference Ekblom B (2009) Counterpoint: maximal oxygen uptake is not limited by a central nervous system governor. J Appl Physiol 106:339–341PubMedCrossRef Ekblom B (2009) Counterpoint: maximal oxygen uptake is not limited by a central nervous system governor. J Appl Physiol 106:339–341PubMedCrossRef
go back to reference Essén B (1978) Studies on the regulation of metabolism in human skeletal muscle using intermittent exercise as an experimental model. Acta Physiol Scand Suppl 454:1–32PubMed Essén B (1978) Studies on the regulation of metabolism in human skeletal muscle using intermittent exercise as an experimental model. Acta Physiol Scand Suppl 454:1–32PubMed
go back to reference Garcin M, Danel M, Billat V (2007) Perceptual responses in free vs. constant pace exercise. Int J Sports Med 29:453–459PubMedCrossRef Garcin M, Danel M, Billat V (2007) Perceptual responses in free vs. constant pace exercise. Int J Sports Med 29:453–459PubMedCrossRef
go back to reference Hawkins MN, Raven PB, Snell PG, Stray-Gundersen J, Levine BD (2007) Maximal oxygen uptake as a parametric measure of cardiorespiratory capacity. Med Sci Sports Exerc 39:103–107PubMedCrossRef Hawkins MN, Raven PB, Snell PG, Stray-Gundersen J, Levine BD (2007) Maximal oxygen uptake as a parametric measure of cardiorespiratory capacity. Med Sci Sports Exerc 39:103–107PubMedCrossRef
go back to reference Hill AV, Lupton H (1923) Muscular exercise, lactic acid, and the supply and utilization of oxygen. Q J Med 16:135–171CrossRef Hill AV, Lupton H (1923) Muscular exercise, lactic acid, and the supply and utilization of oxygen. Q J Med 16:135–171CrossRef
go back to reference Howley ET, Bassett DR Jr, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 27:1292–1301PubMed Howley ET, Bassett DR Jr, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 27:1292–1301PubMed
go back to reference Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC (2010) Critical power: implications for determination of VO2max and exercise tolerance. Med Sci Sports Exerc 42:1876–1890PubMedCrossRef Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC (2010) Critical power: implications for determination of VO2max and exercise tolerance. Med Sci Sports Exerc 42:1876–1890PubMedCrossRef
go back to reference Katch VL, Sady SS, Freedson P (1982) Biological variability in maximum aerobic power. Med Sci Sports Exerc 14:21–25PubMedCrossRef Katch VL, Sady SS, Freedson P (1982) Biological variability in maximum aerobic power. Med Sci Sports Exerc 14:21–25PubMedCrossRef
go back to reference Lepretre PM, Koralsztein JP, Billat VL (2004) Effect of exercise intensity on relationship between VO2max and cardiac output. Med Sci Sports Exerc 36:1357–1363PubMedCrossRef Lepretre PM, Koralsztein JP, Billat VL (2004) Effect of exercise intensity on relationship between VO2max and cardiac output. Med Sci Sports Exerc 36:1357–1363PubMedCrossRef
go back to reference Lepretre PM, Lopes P, Koralsztein JP, Billat V (2008) Fatigue responses in exercise under control of VO2. Int J Sports Med 29:199–205PubMedCrossRef Lepretre PM, Lopes P, Koralsztein JP, Billat V (2008) Fatigue responses in exercise under control of VO2. Int J Sports Med 29:199–205PubMedCrossRef
go back to reference Mauger AR, Sculthorpe N (2012) A new VO2 max protocol allowing self-pacing in maximal incremental exercise. Br J Sports Med 46:59–63 Mauger AR, Sculthorpe N (2012) A new VO2 max protocol allowing self-pacing in maximal incremental exercise. Br J Sports Med 46:59–63
go back to reference McKenna MJ, Hargreaves M (2008) Resolving fatigue mechanisms determining exercise performance: integrative physiology at its finest! J Appl Physiol 104:286–287 McKenna MJ, Hargreaves M (2008) Resolving fatigue mechanisms determining exercise performance: integrative physiology at its finest! J Appl Physiol 104:286–287
go back to reference Morton RH, Billat VL (2000) Maximal endurance time at VO2max (2000). Med Sci Sports Exerc 32:1496–1504PubMedCrossRef Morton RH, Billat VL (2000) Maximal endurance time at VO2max (2000). Med Sci Sports Exerc 32:1496–1504PubMedCrossRef
go back to reference Niizeki K, Takahashi T, Miyamoto Y (1995) A model analysis of asymmetrical response of pulmonary VO2 during incremental and decremental ramp exercise. J Appl Physiol 79:1816–1827PubMed Niizeki K, Takahashi T, Miyamoto Y (1995) A model analysis of asymmetrical response of pulmonary VO2 during incremental and decremental ramp exercise. J Appl Physiol 79:1816–1827PubMed
go back to reference Noakes TD (2012) The Central Governor Model in 2012: eight new papers deepen our understanding of the regulation of human exercise performance. Br J Sports Med 46:1–3 Noakes TD (2012) The Central Governor Model in 2012: eight new papers deepen our understanding of the regulation of human exercise performance. Br J Sports Med 46:1–3
go back to reference Ozyener F, Rossiter HB, Ward SA, Whipp BJ (2003) Negative accumulated oxygen deficit during heavy and very heavy intensity cycle ergometry in humans. Eur J Appl Physiol 90:185–190PubMedCrossRef Ozyener F, Rossiter HB, Ward SA, Whipp BJ (2003) Negative accumulated oxygen deficit during heavy and very heavy intensity cycle ergometry in humans. Eur J Appl Physiol 90:185–190PubMedCrossRef
go back to reference Peronnet F, Thibault G (1989) Mathematical analysis of running performance and world running records. J Appl Physiol 67:453–465PubMed Peronnet F, Thibault G (1989) Mathematical analysis of running performance and world running records. J Appl Physiol 67:453–465PubMed
go back to reference Place N, Martin A, Ballay Y, Lepers R (2007) Neuromuscular fatigue differs with biofeedback type when performing a submaximal contraction. J Electro Kinesio 17:253–263CrossRef Place N, Martin A, Ballay Y, Lepers R (2007) Neuromuscular fatigue differs with biofeedback type when performing a submaximal contraction. J Electro Kinesio 17:253–263CrossRef
go back to reference Poole DC (2008) Oxygen’s double-edged sword: balancing muscle O2 supply and use during exercise. Med Sci Sports Exerc 40:462–474PubMedCrossRef Poole DC (2008) Oxygen’s double-edged sword: balancing muscle O2 supply and use during exercise. Med Sci Sports Exerc 40:462–474PubMedCrossRef
go back to reference Poole DC, Barstow TJ, McDonough P, Jones AM (2008a) Control of oxygen uptake during exercise. Med Sci Sports Exerc 40:462–474PubMedCrossRef Poole DC, Barstow TJ, McDonough P, Jones AM (2008a) Control of oxygen uptake during exercise. Med Sci Sports Exerc 40:462–474PubMedCrossRef
go back to reference Poole DC, Wilkerson DP, Jones AM (2008b) Validity of criteria for establishing maximal O2 uptake during ramp exercise tests. Eur J Appl Physiol.102:403–410 Poole DC, Wilkerson DP, Jones AM (2008b) Validity of criteria for establishing maximal O2 uptake during ramp exercise tests. Eur J Appl Physiol.102:403–410
go back to reference Richard R, Lonsdorfer-Wolf E, Charloux A, Doutreleau S, Buchheit M, Oswald-Mammosser M, Lampert E, Mettauer B, Geny B, Lonsdorfer J (2001) Non-invasive cardiac output evaluation during a maximal progressive exercise test, using a new impedance cardiograph device. Eur J Appl Physiol 85:202–207PubMedCrossRef Richard R, Lonsdorfer-Wolf E, Charloux A, Doutreleau S, Buchheit M, Oswald-Mammosser M, Lampert E, Mettauer B, Geny B, Lonsdorfer J (2001) Non-invasive cardiac output evaluation during a maximal progressive exercise test, using a new impedance cardiograph device. Eur J Appl Physiol 85:202–207PubMedCrossRef
go back to reference Richard R, Lonsdorfer-Wolf E, Dufour S, Doutreleau S, Oswald-Mammosser M, Billat VL, Lonsdorfer J (2004) Cardiac output and oxygen release during very high-intensity exercise performed until exhaustion. Eur J Appl Physiol 93:9–18PubMedCrossRef Richard R, Lonsdorfer-Wolf E, Dufour S, Doutreleau S, Oswald-Mammosser M, Billat VL, Lonsdorfer J (2004) Cardiac output and oxygen release during very high-intensity exercise performed until exhaustion. Eur J Appl Physiol 93:9–18PubMedCrossRef
go back to reference Rossiter HB, Kowalchuk JM, Whipp BJ (2006) A test to establish maximum O2 uptake despite no plateau in the O2 uptake response to ramp incremental exercise. J Appl Physiol 100:764–770PubMedCrossRef Rossiter HB, Kowalchuk JM, Whipp BJ (2006) A test to establish maximum O2 uptake despite no plateau in the O2 uptake response to ramp incremental exercise. J Appl Physiol 100:764–770PubMedCrossRef
go back to reference Smith TP, Coombes JS, Geraghty DP (2003) Optimising high-intensity treadmill training using the running speed at maximal O(2) uptake and the time for which this can be maintained. Eur J Appl Physiol 89:337–343 Smith TP, Coombes JS, Geraghty DP (2003) Optimising high-intensity treadmill training using the running speed at maximal O(2) uptake and the time for which this can be maintained. Eur J Appl Physiol 89:337–343
go back to reference Stoudemire NM, Wideman L, Pass KA, McGinnes CL, Gaesser GA, Weltman A (1996) The validity of regulating blood lactate concentration during running by ratings of perceived exertion. Med Sci Sports Exerc 28:490–495PubMedCrossRef Stoudemire NM, Wideman L, Pass KA, McGinnes CL, Gaesser GA, Weltman A (1996) The validity of regulating blood lactate concentration during running by ratings of perceived exertion. Med Sci Sports Exerc 28:490–495PubMedCrossRef
go back to reference Taylor HL, Buskirk E, Henschel A (1955) Maximal oxygen intake as an objective measure of cardio-respiratory performance. J Appl Physiol 8:73–80PubMed Taylor HL, Buskirk E, Henschel A (1955) Maximal oxygen intake as an objective measure of cardio-respiratory performance. J Appl Physiol 8:73–80PubMed
go back to reference Teo KK, Hetherington MD, Haennel RG, Greenwood PV, Rossall RE, Kappagoda T (1985) Cardiac output measured by impedance cardiography during maximal exercise tests. Cardiovasc Res 19:737–743PubMedCrossRef Teo KK, Hetherington MD, Haennel RG, Greenwood PV, Rossall RE, Kappagoda T (1985) Cardiac output measured by impedance cardiography during maximal exercise tests. Cardiovasc Res 19:737–743PubMedCrossRef
go back to reference Tordi N, Mourot L, Matusheski B, Hughson RL (2004) Measurements of cardiac output during constant exercises: comparison of two non-invasive techniques. Int J Sports Med 25:145–149PubMedCrossRef Tordi N, Mourot L, Matusheski B, Hughson RL (2004) Measurements of cardiac output during constant exercises: comparison of two non-invasive techniques. Int J Sports Med 25:145–149PubMedCrossRef
go back to reference Tucker R (2009) The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br J Sports Med 43:392–400PubMedCrossRef Tucker R (2009) The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br J Sports Med 43:392–400PubMedCrossRef
go back to reference Wagner PD (2000) New ideas on limitations to VO2max. Exerc Sport Sci Rev 28:10–14PubMed Wagner PD (2000) New ideas on limitations to VO2max. Exerc Sport Sci Rev 28:10–14PubMed
go back to reference Yano T, Yunoki T, Horiuchi M (2000) Kinetics of oxygen uptake during decremental ramp exercise. J Sports Med Phys Fitness 40:11–16PubMed Yano T, Yunoki T, Horiuchi M (2000) Kinetics of oxygen uptake during decremental ramp exercise. J Sports Med Phys Fitness 40:11–16PubMed
Metadata
Title
The sustainability of VO2max: effect of decreasing the workload
Authors
Véronique Billat
Hélène Petot
Jason R. Karp
Guillaume Sarre
R. Hugh Morton
Laurence Mille-Hamard
Publication date
01-02-2013
Publisher
Springer-Verlag
Published in
European Journal of Applied Physiology / Issue 2/2013
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-012-2424-7

Other articles of this Issue 2/2013

European Journal of Applied Physiology 2/2013 Go to the issue