Skip to main content
Top
Published in: Brain Structure and Function 1-2/2008

01-09-2008 | Review

The substantia innominata remains incognita: pressing research themes on basal forebrain neuroanatomy

Author: Martin Sarter

Published in: Brain Structure and Function | Issue 1-2/2008

Login to get access

Abstract

The neuroanatomical research by Heimer and colleagues has focused on the structure of, and connectivity between, basal forebrain regions as well as on the translational significance of this research. By outlining several pressing research themes and questions concerning the neuroanatomy of the basal forebrain, as seen from a biopsychologist’s perspective, the importance of continuing and expanding neuroanatomical research on the basal forebrain is illustrated.
Literature
go back to reference Alheid GF, Beltramino CA, De Olmos JS, Forbes MS, Swanson DJ, Heimer L (1998) The neuronal organization of the supracapsular part of the stria terminalis in the rat: the dorsal component of the extended amygdala. Neuroscience 84:967–996PubMedCrossRef Alheid GF, Beltramino CA, De Olmos JS, Forbes MS, Swanson DJ, Heimer L (1998) The neuronal organization of the supracapsular part of the stria terminalis in the rat: the dorsal component of the extended amygdala. Neuroscience 84:967–996PubMedCrossRef
go back to reference Broussard J, Sarter M, Givens B (2006) Neuronal correlates of signal detection in the posterior parietal cortex of rats performing a sustained attention task. Neuroscience 143:407–417PubMedCrossRef Broussard J, Sarter M, Givens B (2006) Neuronal correlates of signal detection in the posterior parietal cortex of rats performing a sustained attention task. Neuroscience 143:407–417PubMedCrossRef
go back to reference Descarries L, Gisiger V, Steriade M (1997) Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol 53:603–625PubMedCrossRef Descarries L, Gisiger V, Steriade M (1997) Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol 53:603–625PubMedCrossRef
go back to reference Gastard M, Jensen SL, Martin JR 3rd, Williams EA, Zahm DS (2002) The caudal sublenticular region/anterior amygdaloid area is the only part of the rat forebrain and mesopontine tegmentum occupied by magnocellular cholinergic neurons that receives outputs from the central division of extended amygdala. Brain Res 957:207–222PubMedCrossRef Gastard M, Jensen SL, Martin JR 3rd, Williams EA, Zahm DS (2002) The caudal sublenticular region/anterior amygdaloid area is the only part of the rat forebrain and mesopontine tegmentum occupied by magnocellular cholinergic neurons that receives outputs from the central division of extended amygdala. Brain Res 957:207–222PubMedCrossRef
go back to reference Gill TM, Sarter M, Givens B (2000) Sustained visual attention performance-associated prefrontal neuronal activity: evidence for cholinergic modulation. J Neurosci 20:4745–4757PubMed Gill TM, Sarter M, Givens B (2000) Sustained visual attention performance-associated prefrontal neuronal activity: evidence for cholinergic modulation. J Neurosci 20:4745–4757PubMed
go back to reference Golmayo L, Nunez A, Zaborszky L (2003) Electrophysiological evidence for the existence of a posterior cortical-prefrontal-basal forebrain circuitry in modulating sensory responses in visual and somatosensory rat cortical areas. Neuroscience 119:597–609PubMedCrossRef Golmayo L, Nunez A, Zaborszky L (2003) Electrophysiological evidence for the existence of a posterior cortical-prefrontal-basal forebrain circuitry in modulating sensory responses in visual and somatosensory rat cortical areas. Neuroscience 119:597–609PubMedCrossRef
go back to reference Hartmann J, Kiewert C, Duysen EG, Lockridge O, Greig NH, Klein J (2007) Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. J Neurochem 100:1421–1429PubMedCrossRef Hartmann J, Kiewert C, Duysen EG, Lockridge O, Greig NH, Klein J (2007) Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. J Neurochem 100:1421–1429PubMedCrossRef
go back to reference Heimer L (2003) A new anatomical framework for neuropsychiatric disorders and drug abuse. Am J Psychiatry 160:1726–1739PubMedCrossRef Heimer L (2003) A new anatomical framework for neuropsychiatric disorders and drug abuse. Am J Psychiatry 160:1726–1739PubMedCrossRef
go back to reference Heimer L, Alheid GF (1991) Piecing together the puzzle of basal forebrain anatomy. Adv Exp Med Biol 295:1–42PubMed Heimer L, Alheid GF (1991) Piecing together the puzzle of basal forebrain anatomy. Adv Exp Med Biol 295:1–42PubMed
go back to reference Heimer L, Van Hoesen GW (2006) The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neurosci Biobehav Rev 30:126–147PubMedCrossRef Heimer L, Van Hoesen GW (2006) The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neurosci Biobehav Rev 30:126–147PubMedCrossRef
go back to reference Heimer L, de Olmos J, Alheid GF, Zaborszky L (1991) “Perestroika” in the basal forebrain: opening the border between neurology and psychiatry. Prog Brain Res 87:109–165PubMedCrossRef Heimer L, de Olmos J, Alheid GF, Zaborszky L (1991) “Perestroika” in the basal forebrain: opening the border between neurology and psychiatry. Prog Brain Res 87:109–165PubMedCrossRef
go back to reference Heimer L, Alheid GF, de Olmos JS, Groenewegen HJ, Haber SN, Harlan RE, Zahm DS (1997) The accumbens: beyond the core-shell dichotomy. J Neuropsychiatry Clin Neurosci 9:354–381PubMed Heimer L, Alheid GF, de Olmos JS, Groenewegen HJ, Haber SN, Harlan RE, Zahm DS (1997) The accumbens: beyond the core-shell dichotomy. J Neuropsychiatry Clin Neurosci 9:354–381PubMed
go back to reference Himmelheber AM, Sarter M, Bruno JP (2001) The effects of manipulations of attentional demand on cortical acetylcholine release. Brain Res Cogn Brain Res 12:353–370PubMedCrossRef Himmelheber AM, Sarter M, Bruno JP (2001) The effects of manipulations of attentional demand on cortical acetylcholine release. Brain Res Cogn Brain Res 12:353–370PubMedCrossRef
go back to reference Ingham CA, Bolam JP, Smith AD (1988) GABA-immunoreactive synaptic boutons in the rat basal forebrain: comparison of neurons that project to the neocortex with pallidosubthalamic neurons. J Comp Neurol 273:263–282PubMedCrossRef Ingham CA, Bolam JP, Smith AD (1988) GABA-immunoreactive synaptic boutons in the rat basal forebrain: comparison of neurons that project to the neocortex with pallidosubthalamic neurons. J Comp Neurol 273:263–282PubMedCrossRef
go back to reference Kozak R, Bruno JP, Sarter M (2006) Augmented prefrontal acetylcholine release during challenged attentional performance. Cereb Cortex 16:9–17PubMedCrossRef Kozak R, Bruno JP, Sarter M (2006) Augmented prefrontal acetylcholine release during challenged attentional performance. Cereb Cortex 16:9–17PubMedCrossRef
go back to reference Loopuijt LD, Zahm DS (2006) Synaptologic and fine structural features distinguishing a subset of basal forebrain cholinergic neurons embedded in the dense intrinsic fiber network of the caudal extended amygdala. J Comp Neurol 498:93–111PubMedCrossRef Loopuijt LD, Zahm DS (2006) Synaptologic and fine structural features distinguishing a subset of basal forebrain cholinergic neurons embedded in the dense intrinsic fiber network of the caudal extended amygdala. J Comp Neurol 498:93–111PubMedCrossRef
go back to reference Lysakowski A, Wainer BH, Bruce G, Hersh LB (1989) An atlas of the regional and laminar distribution of choline acetyltransferase immunoreactivity in rat cerebral cortex. Neuroscience 28:291–336PubMedCrossRef Lysakowski A, Wainer BH, Bruce G, Hersh LB (1989) An atlas of the regional and laminar distribution of choline acetyltransferase immunoreactivity in rat cerebral cortex. Neuroscience 28:291–336PubMedCrossRef
go back to reference Moore H, Fadel J, Sarter M, Bruno JP (1999) Role of accumbens and cortical dopamine receptors in the regulation of cortical acetylcholine release. Neuroscience 88:811–822PubMedCrossRef Moore H, Fadel J, Sarter M, Bruno JP (1999) Role of accumbens and cortical dopamine receptors in the regulation of cortical acetylcholine release. Neuroscience 88:811–822PubMedCrossRef
go back to reference Neigh-McCandless G, Kravitz BA, Sarter M, Bruno JP (2002) Stimulation of cortical acetylcholine release following blockade of ionotropic glutamate receptors in nucleus accumbens. Eur J Neurosci 16:1259–1266PubMedCrossRef Neigh-McCandless G, Kravitz BA, Sarter M, Bruno JP (2002) Stimulation of cortical acetylcholine release following blockade of ionotropic glutamate receptors in nucleus accumbens. Eur J Neurosci 16:1259–1266PubMedCrossRef
go back to reference Neigh GN, Arnold HM, Rabenstein RL, Sarter M, Bruno JP (2004) Neuronal activity in the nucleus accumbens is necessary for performance-related increases in cortical acetylcholine release. Neuroscience 123:635–645PubMedCrossRef Neigh GN, Arnold HM, Rabenstein RL, Sarter M, Bruno JP (2004) Neuronal activity in the nucleus accumbens is necessary for performance-related increases in cortical acetylcholine release. Neuroscience 123:635–645PubMedCrossRef
go back to reference Nelson CL, Sarter M, Bruno JP (2005) Prefrontal cortical modulation of acetylcholine release in the posterior parietal cortex. Neuroscience 132:347–359PubMedCrossRef Nelson CL, Sarter M, Bruno JP (2005) Prefrontal cortical modulation of acetylcholine release in the posterior parietal cortex. Neuroscience 132:347–359PubMedCrossRef
go back to reference Parikh V, Kozak R, Martinez V, Sarter M (2007) Prefrontal acetylcholine controls cue detection on multiple time scales. Neuron 56:141–154PubMedCrossRef Parikh V, Kozak R, Martinez V, Sarter M (2007) Prefrontal acetylcholine controls cue detection on multiple time scales. Neuron 56:141–154PubMedCrossRef
go back to reference Sarter M, Bruno JP (1997) Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. Brain Res Rev 23:28–46PubMedCrossRef Sarter M, Bruno JP (1997) Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. Brain Res Rev 23:28–46PubMedCrossRef
go back to reference Sarter M, Bruno JP (2002) The neglected constituent of the basal forebrain corticopetal projection system: GABAergic projections. Eur J Neurosci 15:1867–1873PubMedCrossRef Sarter M, Bruno JP (2002) The neglected constituent of the basal forebrain corticopetal projection system: GABAergic projections. Eur J Neurosci 15:1867–1873PubMedCrossRef
go back to reference Sarter M, Hasselmo ME, Bruno JP, Givens B (2005) Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and top–down cholinergic modulation of signal detection. Brain Res Rev 48:98–111PubMedCrossRef Sarter M, Hasselmo ME, Bruno JP, Givens B (2005) Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and top–down cholinergic modulation of signal detection. Brain Res Rev 48:98–111PubMedCrossRef
go back to reference Sarter M, Bruno JP, Parikh V, Kozak R, Martinez V, Richards JB (2006a) Forebrain dopaminergic-cholinergic interactions, attentional effort, psychostimulant addiction and schizophrenia. In: Levin ED (ed) Neurotransmitter interactions and cognitive function. Birkhauser, Boston, pp 65–86CrossRef Sarter M, Bruno JP, Parikh V, Kozak R, Martinez V, Richards JB (2006a) Forebrain dopaminergic-cholinergic interactions, attentional effort, psychostimulant addiction and schizophrenia. In: Levin ED (ed) Neurotransmitter interactions and cognitive function. Birkhauser, Boston, pp 65–86CrossRef
go back to reference Sarter M, Gehring WJ, Kozak R (2006b) More attention must be paid: the neurobiology of attentional effort. Brain Res Rev 51:145–160PubMedCrossRef Sarter M, Gehring WJ, Kozak R (2006b) More attention must be paid: the neurobiology of attentional effort. Brain Res Rev 51:145–160PubMedCrossRef
go back to reference Spiga S, Zaborszky L (2006) Connections between the medial prefrontal cortex and the basal forebrain: a combined anterograde-retrograde tracer study in the rat. Society for Neuroscience Annual Meeting. Society for Neuroscience, Atlanta Spiga S, Zaborszky L (2006) Connections between the medial prefrontal cortex and the basal forebrain: a combined anterograde-retrograde tracer study in the rat. Society for Neuroscience Annual Meeting. Society for Neuroscience, Atlanta
go back to reference Turrini P, Casu MA, Wong TP, De Koninck Y, Ribeiro-da-Silva A, Cuello AC (2001) Cholinergic nerve terminals establish classical synapses in the rat cerebral cortex: synaptic pattern and age-related atrophy. Neuroscience 105:277–285PubMedCrossRef Turrini P, Casu MA, Wong TP, De Koninck Y, Ribeiro-da-Silva A, Cuello AC (2001) Cholinergic nerve terminals establish classical synapses in the rat cerebral cortex: synaptic pattern and age-related atrophy. Neuroscience 105:277–285PubMedCrossRef
go back to reference Wickersham IR, Lyon DC, Barnard RJ, Mori T, Finke S, Conzelmann KK, Young JA, Callaway EM (2007) Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53:639–647PubMedCrossRef Wickersham IR, Lyon DC, Barnard RJ, Mori T, Finke S, Conzelmann KK, Young JA, Callaway EM (2007) Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53:639–647PubMedCrossRef
go back to reference Zaborszky L (2002) The modular organization of brain systems. Basal forebrain: the last frontier. Prog Brain Res 136:359–372PubMedCrossRef Zaborszky L (2002) The modular organization of brain systems. Basal forebrain: the last frontier. Prog Brain Res 136:359–372PubMedCrossRef
go back to reference Zaborszky L, Cullinan WE (1992) Projections from the nucleus accumbens to cholinergic neurons of the ventral pallidum: a correlated light and electron microscopic double-immunolabeling study in rat. Brain Res 570:92–101PubMedCrossRef Zaborszky L, Cullinan WE (1992) Projections from the nucleus accumbens to cholinergic neurons of the ventral pallidum: a correlated light and electron microscopic double-immunolabeling study in rat. Brain Res 570:92–101PubMedCrossRef
go back to reference Zaborszky L, Duque A (2000) Local synaptic connections of basal forebrain neurons. Behav Brain Res 115:143–158PubMedCrossRef Zaborszky L, Duque A (2000) Local synaptic connections of basal forebrain neurons. Behav Brain Res 115:143–158PubMedCrossRef
go back to reference Zaborszky L, Gaykema RP, Swanson DJ, Cullinan WE (1997) Cortical input to the basal forebrain. Neuroscience 79:1051–1078PubMedCrossRef Zaborszky L, Gaykema RP, Swanson DJ, Cullinan WE (1997) Cortical input to the basal forebrain. Neuroscience 79:1051–1078PubMedCrossRef
go back to reference Zaborszky L, Pang K, Somogyi J, Nadasdy Z, Kallo I (1999) The basal forebrain corticopetal system revisited. Ann N Y Acad Sci 877:339–367PubMedCrossRef Zaborszky L, Pang K, Somogyi J, Nadasdy Z, Kallo I (1999) The basal forebrain corticopetal system revisited. Ann N Y Acad Sci 877:339–367PubMedCrossRef
go back to reference Zaborszky L, Rosin DL, Kiss J (2004) Alpha-adrenergic receptor (alpha(2A)) is colocalized in basal forebrain cholinergic neurons: a light and electron microscopic double immunolabeling study. J Neurocytol 33:265–276PubMedCrossRef Zaborszky L, Rosin DL, Kiss J (2004) Alpha-adrenergic receptor (alpha(2A)) is colocalized in basal forebrain cholinergic neurons: a light and electron microscopic double immunolabeling study. J Neurocytol 33:265–276PubMedCrossRef
go back to reference Zaborszky L, Buhl DL, Pobalashingham S, Bjaalie JG, Nadasdy Z (2005) Three-dimensional chemoarchitecture of the basal forebrain: spatially specific association of cholinergic and calcium binding protein-containing neurons. Neuroscience 136:697–713PubMedCrossRef Zaborszky L, Buhl DL, Pobalashingham S, Bjaalie JG, Nadasdy Z (2005) Three-dimensional chemoarchitecture of the basal forebrain: spatially specific association of cholinergic and calcium binding protein-containing neurons. Neuroscience 136:697–713PubMedCrossRef
go back to reference Zahm DS (2000) An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev 24:85–105PubMedCrossRef Zahm DS (2000) An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev 24:85–105PubMedCrossRef
go back to reference Zahm DS (2006) The evolving theory of basal forebrain functional-anatomical ‘macrosystems’. Neurosci Biobehav Rev 30:148–172PubMedCrossRef Zahm DS (2006) The evolving theory of basal forebrain functional-anatomical ‘macrosystems’. Neurosci Biobehav Rev 30:148–172PubMedCrossRef
go back to reference Zahm DS, Heimer L (1993) Specificity in the efferent projections of the nucleus accumbens in the rat: comparison of the rostral pole projection patterns with those of the core and shell. J Comp Neurol 327:220–232PubMedCrossRef Zahm DS, Heimer L (1993) Specificity in the efferent projections of the nucleus accumbens in the rat: comparison of the rostral pole projection patterns with those of the core and shell. J Comp Neurol 327:220–232PubMedCrossRef
go back to reference Zmarowski A, Sarter M, Bruno JP (2005) NMDA and dopamine interactions in the nucleus accumbens modulate cortical acetylcholine release. Eur J Neurosci 22:1731–1740PubMedCrossRef Zmarowski A, Sarter M, Bruno JP (2005) NMDA and dopamine interactions in the nucleus accumbens modulate cortical acetylcholine release. Eur J Neurosci 22:1731–1740PubMedCrossRef
go back to reference Zmarowski A, Sarter M, Bruno JP (2007) Glutamate receptors in nucleus accumbens mediate regionally selective increases in cortical acetylcholine release. Synapse 61:115–123PubMedCrossRef Zmarowski A, Sarter M, Bruno JP (2007) Glutamate receptors in nucleus accumbens mediate regionally selective increases in cortical acetylcholine release. Synapse 61:115–123PubMedCrossRef
Metadata
Title
The substantia innominata remains incognita: pressing research themes on basal forebrain neuroanatomy
Author
Martin Sarter
Publication date
01-09-2008
Publisher
Springer-Verlag
Published in
Brain Structure and Function / Issue 1-2/2008
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-007-0165-x

Other articles of this Issue 1-2/2008

Brain Structure and Function 1-2/2008 Go to the issue