Skip to main content
Top
Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2013

Open Access 01-12-2013 | Study protocol

The Study Protocol for the LINC (LUCAS in Cardiac Arrest) Study: a study comparing conventional adult out-of-hospital cardiopulmonary resuscitation with a concept with mechanical chest compressions and simultaneous defibrillation

Authors: Sten Rubertsson, Johan Silfverstolpe, Liselott Rehn, Thomas Nyman, Rob Lichtveld, Rene Boomars, Wendy Bruins, Björn Ahlstedt, Helena Puggioli, Erik Lindgren, David Smekal, Gunnar Skoog, Robert Kastberg, Anna Lindblad, David Halliwell, Martyn Box, Fredrik Arnwald, Bjarne Madsen Hardig, Douglas Chamberlain, Johan Herlitz, Rolf Karlsten

Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine | Issue 1/2013

Login to get access

Abstract

Background

The LUCAS™ device delivers mechanical chest compressions that have been shown in experimental studies to improve perfusion pressures to the brain and heart as well as augmenting cerebral blood flow and end tidal CO2, compared with results from standard manual cardiopulmonary resuscitation (CPR). Two randomised pilot studies in out-of-hospital cardiac arrest patients have not shown improved outcome when compared with manual CPR. There remains evidence from small case series that the device can be potentially beneficial compared with manual chest compressions in specific situations. This multicentre study is designed to evaluate the efficacy and safety of mechanical chest compressions with the LUCAS™ device whilst allowing defibrillation during on-going CPR, and comparing the results with those of conventional resuscitation.

Methods/design

This article describes the design and protocol of the LINC-study which is a randomised controlled multicentre study of 2500 out-of-hospital cardiac arrest patients. The study has been registered at ClinicalTrials.gov (http://​clinicaltrials.​gov/​ct2/​show/​NCT00609778?​term=​LINC&​rank=​1).

Results

Primary endpoint is four-hour survival after successful restoration of spontaneous circulation. The safety aspect is being evaluated by post mortem examinations in 300 patients that may reflect injuries from CPR.

Conclusion

This large multicentre study will contribute to the evaluation of mechanical chest compression in CPR and specifically to the efficacy and safety of the LUCAS™ device when used in association with defibrillation during on-going CPR.
Appendix
Available only for authorised users
Literature
1.
go back to reference Steen S, Liao Q, Pierre L, Paskevicius A, Sjoberg T: Evaluation of LUCAS, a new device for automatic mechanical compression and active decompression resuscitation. Resuscitation. 2002, 55: 285-299. 10.1016/S0300-9572(02)00271-X.CrossRefPubMed Steen S, Liao Q, Pierre L, Paskevicius A, Sjoberg T: Evaluation of LUCAS, a new device for automatic mechanical compression and active decompression resuscitation. Resuscitation. 2002, 55: 285-299. 10.1016/S0300-9572(02)00271-X.CrossRefPubMed
2.
go back to reference Rubertsson S, Karlsten R: Increased cortical cerebral blood flow with LUCAS; a new device for mechanical chest compressions compared to standard external compressions during experimental cardiopulmonary resuscitation. Resuscitation. 2005, 65: 357-363. 10.1016/j.resuscitation.2004.12.006.CrossRefPubMed Rubertsson S, Karlsten R: Increased cortical cerebral blood flow with LUCAS; a new device for mechanical chest compressions compared to standard external compressions during experimental cardiopulmonary resuscitation. Resuscitation. 2005, 65: 357-363. 10.1016/j.resuscitation.2004.12.006.CrossRefPubMed
3.
go back to reference Axelsson C, Karlsson T, Axelsson AB, Herlitz J: Mechanical active compression-decompression cardiopulmonary resuscitation (ACD-CPR) versus manual CPR according to pressure of end tidal carbon dioxide (P(ET)CO2) during CPR in out-of-hospital cardiac arrest (OHCA). Resuscitation. 2009, 80: 1099-1103. 10.1016/j.resuscitation.2009.08.006.CrossRefPubMed Axelsson C, Karlsson T, Axelsson AB, Herlitz J: Mechanical active compression-decompression cardiopulmonary resuscitation (ACD-CPR) versus manual CPR according to pressure of end tidal carbon dioxide (P(ET)CO2) during CPR in out-of-hospital cardiac arrest (OHCA). Resuscitation. 2009, 80: 1099-1103. 10.1016/j.resuscitation.2009.08.006.CrossRefPubMed
4.
go back to reference Wyss CA, Fox J, Franzeck F, et al: Mechanical versus manual chest compression during CPR in a cardiac catherisation setting. Cardivascular Med. 2010, 12: 92-96. Wyss CA, Fox J, Franzeck F, et al: Mechanical versus manual chest compression during CPR in a cardiac catherisation setting. Cardivascular Med. 2010, 12: 92-96.
5.
go back to reference Wagner H, Madsen Hardig B, Harnek J, Gotberg M, Olivecrona G: Aspects on resuscitation in the coronary interventional catheter laboratory [abstract]. Circulation. 2010, 23: A91- Wagner H, Madsen Hardig B, Harnek J, Gotberg M, Olivecrona G: Aspects on resuscitation in the coronary interventional catheter laboratory [abstract]. Circulation. 2010, 23: A91-
6.
go back to reference Wagner H, Terkelsen CJ, Friberg H, et al: Cardiac arrest in the catheterisation laboratory: a 5-year experience of using mechanical chest compressions to facilitate PCI during prolonged resuscitation efforts. Resuscitation. 2010, 81: 383-387. 10.1016/j.resuscitation.2009.11.006.CrossRefPubMed Wagner H, Terkelsen CJ, Friberg H, et al: Cardiac arrest in the catheterisation laboratory: a 5-year experience of using mechanical chest compressions to facilitate PCI during prolonged resuscitation efforts. Resuscitation. 2010, 81: 383-387. 10.1016/j.resuscitation.2009.11.006.CrossRefPubMed
7.
go back to reference Bonnemeier H, Simonis G, Olivecrona G, et al: Continuous mechanical chest compression during in-hospital cardiopulmonary resuscitation of patients with pulseless electrical activity. Resuscitation. 2011, 82: 155-159. 10.1016/j.resuscitation.2010.10.019.CrossRefPubMed Bonnemeier H, Simonis G, Olivecrona G, et al: Continuous mechanical chest compression during in-hospital cardiopulmonary resuscitation of patients with pulseless electrical activity. Resuscitation. 2011, 82: 155-159. 10.1016/j.resuscitation.2010.10.019.CrossRefPubMed
8.
go back to reference Friberg H, Rundgren M: Submersion, accidental hypothermia and cardiac arrest, mechanical chest compressions as a bridge to final treatment: a case report. Scand J Trauma Resusc Emerg Med. 2009, 17: 7-10.1186/1757-7241-17-7.PubMedCentralCrossRefPubMed Friberg H, Rundgren M: Submersion, accidental hypothermia and cardiac arrest, mechanical chest compressions as a bridge to final treatment: a case report. Scand J Trauma Resusc Emerg Med. 2009, 17: 7-10.1186/1757-7241-17-7.PubMedCentralCrossRefPubMed
9.
go back to reference Gottignies P, Devriendt J, Tran Ngoc E, et al: Thrombolysis associated with LUCAS (Lund University Cardiopulmonary Assist System) as treatment of valve thrombosis resulting in cardiac arrest. Am J Emerg Med. 2010, 29: 476-e3–476.e5PubMed Gottignies P, Devriendt J, Tran Ngoc E, et al: Thrombolysis associated with LUCAS (Lund University Cardiopulmonary Assist System) as treatment of valve thrombosis resulting in cardiac arrest. Am J Emerg Med. 2010, 29: 476-e3–476.e5PubMed
10.
go back to reference Grogaard HK, Wik L, Eriksen M, Brekke M, Sunde K: Continuous mechanical chest compressions during cardiac arrest to facilitate restoration of coronary circulation with percutaneous coronary intervention. J Am Coll Cardiol. 2007, 50: 1093-1094. 10.1016/j.jacc.2007.05.028.CrossRefPubMed Grogaard HK, Wik L, Eriksen M, Brekke M, Sunde K: Continuous mechanical chest compressions during cardiac arrest to facilitate restoration of coronary circulation with percutaneous coronary intervention. J Am Coll Cardiol. 2007, 50: 1093-1094. 10.1016/j.jacc.2007.05.028.CrossRefPubMed
11.
go back to reference Holmstrom P, Boyd J, Sorsa M, Kuisma M: A case of hypothermic cardiac arrest treated with an external chest compression device (LUCAS) during transport to re-warming. Resuscitation. 2005, 67: 139-141. 10.1016/j.resuscitation.2005.04.013.CrossRefPubMed Holmstrom P, Boyd J, Sorsa M, Kuisma M: A case of hypothermic cardiac arrest treated with an external chest compression device (LUCAS) during transport to re-warming. Resuscitation. 2005, 67: 139-141. 10.1016/j.resuscitation.2005.04.013.CrossRefPubMed
12.
go back to reference Wik L, Kiil S: Use of an automatic mechanical chest compression device (LUCAS) as a bridge to establishing cardiopulmonary bypass for a patient with hypothermic cardiac arrest. Resuscitation. 2005, 66: 391-394. 10.1016/j.resuscitation.2005.03.011.CrossRefPubMed Wik L, Kiil S: Use of an automatic mechanical chest compression device (LUCAS) as a bridge to establishing cardiopulmonary bypass for a patient with hypothermic cardiac arrest. Resuscitation. 2005, 66: 391-394. 10.1016/j.resuscitation.2005.03.011.CrossRefPubMed
13.
go back to reference Nolan JP, Deakin CD, Soar J, Bottiger BW, Smith G: European Resuscitation Council guidelines for resuscitation 2005. Section 4. Adult advanced life support. Resuscitation. 2005, 67: S39-S86.CrossRefPubMed Nolan JP, Deakin CD, Soar J, Bottiger BW, Smith G: European Resuscitation Council guidelines for resuscitation 2005. Section 4. Adult advanced life support. Resuscitation. 2005, 67: S39-S86.CrossRefPubMed
14.
go back to reference Handley AJ, Koster R, Monsieurs K, Perkins GD, Davies S, Bossaert L: European Resuscitation Council guidelines for resuscitation 2005. Section 2. Adult basic life support and use of automated external defibrillators. Resuscitation. 2005, 67: S7-S23.CrossRefPubMed Handley AJ, Koster R, Monsieurs K, Perkins GD, Davies S, Bossaert L: European Resuscitation Council guidelines for resuscitation 2005. Section 2. Adult basic life support and use of automated external defibrillators. Resuscitation. 2005, 67: S7-S23.CrossRefPubMed
15.
go back to reference Axelsson C, Nestin J, Svensson L, Axelsson AB, Herlitz J: Clinical consequences of the introduction of mechanical chest compression in the EMS system for treatment of out-of-hospital cardiac arrest-a pilot study. Resuscitation. 2006, 71: 47-55. 10.1016/j.resuscitation.2006.02.011.CrossRefPubMed Axelsson C, Nestin J, Svensson L, Axelsson AB, Herlitz J: Clinical consequences of the introduction of mechanical chest compression in the EMS system for treatment of out-of-hospital cardiac arrest-a pilot study. Resuscitation. 2006, 71: 47-55. 10.1016/j.resuscitation.2006.02.011.CrossRefPubMed
16.
go back to reference Smekal D, Johansson J, Huzevka T, Rubertsson S: A pilot study of mechanical chest compressions with the LUCAS device in cardiopulmonary resuscitation. Resuscitation. 2011, 82: 702-706. 10.1016/j.resuscitation.2011.01.032.CrossRefPubMed Smekal D, Johansson J, Huzevka T, Rubertsson S: A pilot study of mechanical chest compressions with the LUCAS device in cardiopulmonary resuscitation. Resuscitation. 2011, 82: 702-706. 10.1016/j.resuscitation.2011.01.032.CrossRefPubMed
20.
go back to reference O’Brien PC, Fleming TR, et al: A multiple testing procedure for clinical trials. Biometrics. 1979, 35: 549-556. 10.2307/2530245.CrossRefPubMed O’Brien PC, Fleming TR, et al: A multiple testing procedure for clinical trials. Biometrics. 1979, 35: 549-556. 10.2307/2530245.CrossRefPubMed
21.
go back to reference Cheskes S, Schmicker RH, Christenson J, et al: Perishock pause: an independent predictor of survival from out-of-hospital shockable cardiac arrest. Circulation. 2011, 124: 58-66. 10.1161/CIRCULATIONAHA.110.010736.PubMedCentralCrossRefPubMed Cheskes S, Schmicker RH, Christenson J, et al: Perishock pause: an independent predictor of survival from out-of-hospital shockable cardiac arrest. Circulation. 2011, 124: 58-66. 10.1161/CIRCULATIONAHA.110.010736.PubMedCentralCrossRefPubMed
22.
go back to reference Lerner EB, Persse D, Souders CM, et al: Design of the Circulation Improving Resuscitation Care (CIRC) Trial: a new state of the art design for out-of-hospital cardiac arrest research. Resuscitation. 2011, 82: 294-299. 10.1016/j.resuscitation.2010.11.013.CrossRefPubMed Lerner EB, Persse D, Souders CM, et al: Design of the Circulation Improving Resuscitation Care (CIRC) Trial: a new state of the art design for out-of-hospital cardiac arrest research. Resuscitation. 2011, 82: 294-299. 10.1016/j.resuscitation.2010.11.013.CrossRefPubMed
23.
go back to reference Perkins GD, Woollard M, Cooke MW, et al: Prehospital randomised assessment of a mechanical compression device in cardiac arrest (PaRAMeDIC) trial protocol. Scand J Trauma Resusc Emerg Med. 2010, 18: 58-10.1186/1757-7241-18-58.PubMedCentralCrossRefPubMed Perkins GD, Woollard M, Cooke MW, et al: Prehospital randomised assessment of a mechanical compression device in cardiac arrest (PaRAMeDIC) trial protocol. Scand J Trauma Resusc Emerg Med. 2010, 18: 58-10.1186/1757-7241-18-58.PubMedCentralCrossRefPubMed
24.
go back to reference Hallstrom A, Rea TD, Sayre MR: Manual chest compression vs use of an automated chest compression device during resuscitation following out-of-hospital cardiac arrest: a randomized trial. JAMA. 2006, 295: 2620-2628. 10.1001/jama.295.22.2620.CrossRefPubMed Hallstrom A, Rea TD, Sayre MR: Manual chest compression vs use of an automated chest compression device during resuscitation following out-of-hospital cardiac arrest: a randomized trial. JAMA. 2006, 295: 2620-2628. 10.1001/jama.295.22.2620.CrossRefPubMed
25.
go back to reference Baubin M, Rabl W: How to detect side effects of chest compressions?. Resuscitation. 2011, 82: 1262-10.1016/j.resuscitation.2011.08.001.CrossRefPubMed Baubin M, Rabl W: How to detect side effects of chest compressions?. Resuscitation. 2011, 82: 1262-10.1016/j.resuscitation.2011.08.001.CrossRefPubMed
26.
go back to reference Smekal D, Johansson J, Huzevka T, Rubertsson S: No difference in autopsy detected injuries in cardiac arrest patients treated with manual chest compressions compared with mechanical compressions with the LUCAS device–a pilot study. Resuscitation. 2009, 80: 1104-1107. 10.1016/j.resuscitation.2009.06.010.CrossRefPubMed Smekal D, Johansson J, Huzevka T, Rubertsson S: No difference in autopsy detected injuries in cardiac arrest patients treated with manual chest compressions compared with mechanical compressions with the LUCAS device–a pilot study. Resuscitation. 2009, 80: 1104-1107. 10.1016/j.resuscitation.2009.06.010.CrossRefPubMed
27.
go back to reference Menzies D, Barton D, Nolan N: Does the LUCAS device result in increased injury during CPR? [abstract]. Resuscitation. 2010, 81S: S1-S114. Menzies D, Barton D, Nolan N: Does the LUCAS device result in increased injury during CPR? [abstract]. Resuscitation. 2010, 81S: S1-S114.
Metadata
Title
The Study Protocol for the LINC (LUCAS in Cardiac Arrest) Study: a study comparing conventional adult out-of-hospital cardiopulmonary resuscitation with a concept with mechanical chest compressions and simultaneous defibrillation
Authors
Sten Rubertsson
Johan Silfverstolpe
Liselott Rehn
Thomas Nyman
Rob Lichtveld
Rene Boomars
Wendy Bruins
Björn Ahlstedt
Helena Puggioli
Erik Lindgren
David Smekal
Gunnar Skoog
Robert Kastberg
Anna Lindblad
David Halliwell
Martyn Box
Fredrik Arnwald
Bjarne Madsen Hardig
Douglas Chamberlain
Johan Herlitz
Rolf Karlsten
Publication date
01-12-2013
Publisher
BioMed Central
DOI
https://doi.org/10.1186/1757-7241-21-5

Other articles of this Issue 1/2013

Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2013 Go to the issue