Skip to main content
Top
Published in: Tumor Biology 5/2014

01-05-2014 | Research Article

The study of inducing apoptosis effect of fructose 1,6-bisphosphate on the papillary thyroid carcinoma cell and its related mechanism

Authors: Yan Li, Wei Wei, Hu-Wei Shen, Wen-Qing Hu

Published in: Tumor Biology | Issue 5/2014

Login to get access

Abstract

This study aims to investigate the apoptosis-inducing effect of fructose 1,6-bisphosphate (F1,6BP) on the related mechanism of papillary thyroid carcinoma W3 and T cells. W3 cells were treated with F1,6BP alone or in combination with antioxidant catalase (CAT) or N-acetyl-l-cysteine (NAC). The changes of cell viability and cell nucleus morphology were examined by cell proliferation assay and Hoechst staining, and apoptosis levels of these cells were measured with flow cytometry. The changes of reactive oxygen species (ROS) level and the percentage of oxidized glutathione in total glutathione in W3 cells were detected by 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) staining or colorimetry assay. At the same time, real-time fluorescence quantitative PCR was adopted to evaluate the expression levels of CAT and glutathione peroxidase (GSH-Px) mRNAs in W3 cells. F1,6BP inhibited the growth of W3 cells significantly, coupling with an increase in intracellular ROS level and the percentage of oxidized glutathione in total glutathione. Typical apoptotic morphological changes of the cell nucleus happened. The apoptosis rate and GSH-Px and CAT mRNAs expression levels were upregulated after F1,6BP treatment. The antitumor effect of F1,6BP was significantly decreased after W3 cells were pretreated with NAC and CAT. F1,6BP can induce the apoptosis of W3 cells through upregulating the generation of ROS, especially the production of H2O2.
Literature
1.
go back to reference Aschebrook-Kilfoy B, Ward MH, Sabra MM, Devesa SS. Thyroid cancer incidence patterns in the United States by histologic type, 1992–2006. Thyroid. 2011;21(2):125–34.CrossRefPubMedPubMedCentral Aschebrook-Kilfoy B, Ward MH, Sabra MM, Devesa SS. Thyroid cancer incidence patterns in the United States by histologic type, 1992–2006. Thyroid. 2011;21(2):125–34.CrossRefPubMedPubMedCentral
2.
go back to reference De Raedt T, Walton Z, Yecies JL, Li D, Chen Y, Malone CF, et al. Exploiting cancer cell vulnerabilities to develop a combination therapy for Ras-driven tumors. Cancer Cell. 2011;20(3):400–13.CrossRefPubMedPubMedCentral De Raedt T, Walton Z, Yecies JL, Li D, Chen Y, Malone CF, et al. Exploiting cancer cell vulnerabilities to develop a combination therapy for Ras-driven tumors. Cancer Cell. 2011;20(3):400–13.CrossRefPubMedPubMedCentral
3.
go back to reference Mauro C, Leow SC, Anso E, Rocha S, Thotakura AK, Tornatore L, et al. NF-κB controls energy homeostasis and metabolic adaptation by up-regulating mitochondrial respiration. Nat Cell Biol. 2011;13(10):1272–9.CrossRefPubMedPubMedCentral Mauro C, Leow SC, Anso E, Rocha S, Thotakura AK, Tornatore L, et al. NF-κB controls energy homeostasis and metabolic adaptation by up-regulating mitochondrial respiration. Nat Cell Biol. 2011;13(10):1272–9.CrossRefPubMedPubMedCentral
4.
go back to reference Lian XY, Khan FA, Stringer JL. Fructose-1,6-bisphosphate has anticonvulsant activity in models of acute seizures in adult rats. J Neurosci. 2007;27(44):12007–11.CrossRefPubMed Lian XY, Khan FA, Stringer JL. Fructose-1,6-bisphosphate has anticonvulsant activity in models of acute seizures in adult rats. J Neurosci. 2007;27(44):12007–11.CrossRefPubMed
5.
go back to reference Liu D, Zhang H, Gu W, Liu Y, Zhang M. Neuroprotective effects of ginsenoside Rb1 on high glucose-induced neurotoxicity in primary cultured rat hippocampal neurons. PLoS One. 2013;8(11):e79399.CrossRefPubMedPubMedCentral Liu D, Zhang H, Gu W, Liu Y, Zhang M. Neuroprotective effects of ginsenoside Rb1 on high glucose-induced neurotoxicity in primary cultured rat hippocampal neurons. PLoS One. 2013;8(11):e79399.CrossRefPubMedPubMedCentral
6.
go back to reference Kang C, Lee H, Hah DY, Heo JH, Kim CH, Kim E, et al. Protective effects of Houttuynia cordata Thunb. on gentamicin-induced oxidative stress and nephrotoxicity in rats. Toxicol Res. 2013;29(1):61–7.CrossRefPubMedPubMedCentral Kang C, Lee H, Hah DY, Heo JH, Kim CH, Kim E, et al. Protective effects of Houttuynia cordata Thunb. on gentamicin-induced oxidative stress and nephrotoxicity in rats. Toxicol Res. 2013;29(1):61–7.CrossRefPubMedPubMedCentral
7.
go back to reference Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell. 2006;10(3):241–52.CrossRefPubMed Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell. 2006;10(3):241–52.CrossRefPubMed
8.
go back to reference Chen W, Zhao Z, Li L, Wu B, Chen SF, Zhou H, et al. Hispolon induces apoptosis in human gastric cancer cells through a ROS-mediated mitochondrial pathway. Free Radio Biol Med. 2008;45(1):60–72.CrossRef Chen W, Zhao Z, Li L, Wu B, Chen SF, Zhou H, et al. Hispolon induces apoptosis in human gastric cancer cells through a ROS-mediated mitochondrial pathway. Free Radio Biol Med. 2008;45(1):60–72.CrossRef
9.
go back to reference Schumacker PT. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell. 2006;10(3):175–6.CrossRefPubMed Schumacker PT. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell. 2006;10(3):175–6.CrossRefPubMed
10.
12.
13.
go back to reference Lian XY, Khan FA, Stringer JL. Fructose-1,6-bisphosphate has anticonvulsant activity in models of acute seizures in adult rats. J Neurosci. 2007;27(44):12007–11.CrossRefPubMed Lian XY, Khan FA, Stringer JL. Fructose-1,6-bisphosphate has anticonvulsant activity in models of acute seizures in adult rats. J Neurosci. 2007;27(44):12007–11.CrossRefPubMed
14.
go back to reference Cuesta E, Boada J, Calafell R, Perales JC, Roig T, Bermudez J. Fructose 1,6-bisphosphate prevented endotoxemia, macrophage activation, and liver injury induced by d-galactosamine in rats. Crit Care Med. 2006;34(3):807–14.CrossRefPubMed Cuesta E, Boada J, Calafell R, Perales JC, Roig T, Bermudez J. Fructose 1,6-bisphosphate prevented endotoxemia, macrophage activation, and liver injury induced by d-galactosamine in rats. Crit Care Med. 2006;34(3):807–14.CrossRefPubMed
15.
go back to reference Alva N, Cruz D, Sanchez S, Valentín JM, Bermudez J, Carbonell T. Nitric oxide as a mediator of fructose 1,6-bisphosphate protection in galactosamine-induced hepatotoxicity in rats. Nitric Oxide. 2013;28:17–23.CrossRefPubMed Alva N, Cruz D, Sanchez S, Valentín JM, Bermudez J, Carbonell T. Nitric oxide as a mediator of fructose 1,6-bisphosphate protection in galactosamine-induced hepatotoxicity in rats. Nitric Oxide. 2013;28:17–23.CrossRefPubMed
16.
go back to reference Burlacu A, Jinga V, Gafencu AV, Simionescu M. Severity of oxidative stress generates different mechanisms of endothelial cell death. Cell Tissue Res. 2001;306(3):409–16.CrossRefPubMed Burlacu A, Jinga V, Gafencu AV, Simionescu M. Severity of oxidative stress generates different mechanisms of endothelial cell death. Cell Tissue Res. 2001;306(3):409–16.CrossRefPubMed
17.
go back to reference Yao CW, Piao MJ, Kim KC, Zheng J, Cha JW, Hyun JW. 6′-O-Galloylpaeoniflorin protects human keratinocytes against oxidative stress-induced cell damage. Biomol Ther (Seoul). 2013;21(5):349–57.CrossRef Yao CW, Piao MJ, Kim KC, Zheng J, Cha JW, Hyun JW. 6′-O-Galloylpaeoniflorin protects human keratinocytes against oxidative stress-induced cell damage. Biomol Ther (Seoul). 2013;21(5):349–57.CrossRef
Metadata
Title
The study of inducing apoptosis effect of fructose 1,6-bisphosphate on the papillary thyroid carcinoma cell and its related mechanism
Authors
Yan Li
Wei Wei
Hu-Wei Shen
Wen-Qing Hu
Publication date
01-05-2014
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 5/2014
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-013-1597-y

Other articles of this Issue 5/2014

Tumor Biology 5/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine