Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 4/2015

01-08-2015 | Research Article

The separation of Gln and Glu in STEAM: a comparison study using short and long TEs/TMs at 3 and 7 T

Authors: Weiqiang Dou, Jörn Kaufmann, Meng Li, Kai Zhong, Martin Walter, Oliver Speck

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 4/2015

Login to get access

Abstract

Objectives

This study aimed to determine the optimal echo time (TE) and mixing time (TM) for in vivo glutamine (Gln) and glutamate (Glu) separation in stimulated-echo acquisition mode at 3 and 7 T. We applied a short TE/TM (20/10 ms) for a high signal-to-noise-ratio and a field-specific long TE/TM (3 T: 72/6 ms; 7 T: 74/68 ms) for optimal Gln and Glu separation of the Carbon-4 proton resonances.

Materials and methods

Corresponding Gln and Glu spectra were simulated using VeSPA software, and measured in a phantom and human brains at 3 and 7 T.

Results

Higher spectral separation for Gln and Glu was achieved at 7 than 3 T. At 7 T, short TE/TM provided comparable spectral separation and in vitro Gln and Glu quantification compared to long TE/TM. Moreover, it showed greater reliability in in vivo Gln and Glu detection and separation than long TE/TM, with significantly lower Cramer–Rao lower bounds (Gln: 14.9 vs. 75.8; Glu: 3.8 vs. 6.5) and correlation between Gln and Glu (p = 0.004).

Conclusion

Based on the optimal separation for Gln and Glu, a short TE/TM at 7 T is proposed for future in vivo Gln and Glu acquisition.
Literature
1.
go back to reference Albrecht J, Sidoryk-Węgrzynowicz M, Zielińska M, Aschner M (2010) Roles of glutamine in neurotransmission. Neuron Glia Biol 6:263–276PubMedCrossRef Albrecht J, Sidoryk-Węgrzynowicz M, Zielińska M, Aschner M (2010) Roles of glutamine in neurotransmission. Neuron Glia Biol 6:263–276PubMedCrossRef
2.
go back to reference Daikhin Y, Yudkoff M (2000) Compartmentation of brain glutamate metabolism in neurons and glia. J Nutr 130:1026S–1031SPubMed Daikhin Y, Yudkoff M (2000) Compartmentation of brain glutamate metabolism in neurons and glia. J Nutr 130:1026S–1031SPubMed
3.
go back to reference Taylor-Robinson SD, Weeks RA, Bryant DJ, Sargentoni J, Marcus CD, Harding AE, Brooks DJ (1996) Proton magnetic resonance spectroscopy in Huntington’s disease: evidence in favour of the glutamate excitotoxic theory. Mov Disord 11:167–173PubMedCrossRef Taylor-Robinson SD, Weeks RA, Bryant DJ, Sargentoni J, Marcus CD, Harding AE, Brooks DJ (1996) Proton magnetic resonance spectroscopy in Huntington’s disease: evidence in favour of the glutamate excitotoxic theory. Mov Disord 11:167–173PubMedCrossRef
4.
go back to reference Horn DI, Yu C, Steiner J, Buchmann J, Kaufmann J, Osoba A, Eckert U, Zierhut KC, Schiltz K, He H, Biswal B, Bogerts B, Walter M (2010) Glutamatergic and resting-state functional connectivity correlates of severity in major depression—the role of pregenual anterior cingulate cortex and anterior insula. Front Syst Neurosci 4:33PubMedCentralPubMed Horn DI, Yu C, Steiner J, Buchmann J, Kaufmann J, Osoba A, Eckert U, Zierhut KC, Schiltz K, He H, Biswal B, Bogerts B, Walter M (2010) Glutamatergic and resting-state functional connectivity correlates of severity in major depression—the role of pregenual anterior cingulate cortex and anterior insula. Front Syst Neurosci 4:33PubMedCentralPubMed
5.
go back to reference Brennan BP, Hudson JI, Jensen JE, McCarthy J, Roberts JL, Prescot AP, Cohen BM, Pope HG, Renshaw PF, Ongür D (2010) Rapid enhancement of glutamatergic neurotransmission in bipolar depression following treatment with riluzole. Neuropsychopharmacology 35:834–846PubMedCentralPubMedCrossRef Brennan BP, Hudson JI, Jensen JE, McCarthy J, Roberts JL, Prescot AP, Cohen BM, Pope HG, Renshaw PF, Ongür D (2010) Rapid enhancement of glutamatergic neurotransmission in bipolar depression following treatment with riluzole. Neuropsychopharmacology 35:834–846PubMedCentralPubMedCrossRef
6.
go back to reference Moats RA, Ernst T, Shonk TK, Ross BD (1994) Abnormal cerebral metabolite concentrations in patients with probable Alzheimer disease. Magn Reson Med 32:110–115PubMedCrossRef Moats RA, Ernst T, Shonk TK, Ross BD (1994) Abnormal cerebral metabolite concentrations in patients with probable Alzheimer disease. Magn Reson Med 32:110–115PubMedCrossRef
7.
go back to reference Yang S, Hu J, Kou Z, Yang Y (2008) Spectral simplification for resolved glutamate and glutamine measurement using a standard STEAM sequence with optimized timing parameters at 3, 4, 4.7, 7, and 9.4 T. Magn Reson Med 59:236–244PubMedCrossRef Yang S, Hu J, Kou Z, Yang Y (2008) Spectral simplification for resolved glutamate and glutamine measurement using a standard STEAM sequence with optimized timing parameters at 3, 4, 4.7, 7, and 9.4 T. Magn Reson Med 59:236–244PubMedCrossRef
8.
go back to reference Kaiser LG, Schuff N, Cashdollar N, Weiner MW (2005) Age-related glutamate and glutamine concentration changes in normal human brain: 1H MR spectroscopy study at 4 T. Neurobiol Aging 26:665–672PubMedCentralPubMedCrossRef Kaiser LG, Schuff N, Cashdollar N, Weiner MW (2005) Age-related glutamate and glutamine concentration changes in normal human brain: 1H MR spectroscopy study at 4 T. Neurobiol Aging 26:665–672PubMedCentralPubMedCrossRef
9.
go back to reference Lee HK, Yaman A, Nalcioglu O (1995) Homonuclear J-refocused spectral editing technique for quantification of glutamine and glutamate by 1H NMR spectroscopy. Magn Reson Med 34:253–259PubMedCrossRef Lee HK, Yaman A, Nalcioglu O (1995) Homonuclear J-refocused spectral editing technique for quantification of glutamine and glutamate by 1H NMR spectroscopy. Magn Reson Med 34:253–259PubMedCrossRef
10.
go back to reference Thompson RB, Allen PS (1998) A new multiple quantum filter design procedure for use on strongly coupled spin systems found in vivo: its application to glutamate. Magn Reson Med 39:762–771PubMedCrossRef Thompson RB, Allen PS (1998) A new multiple quantum filter design procedure for use on strongly coupled spin systems found in vivo: its application to glutamate. Magn Reson Med 39:762–771PubMedCrossRef
11.
go back to reference Choi C, Coupland NJ, Bhardwaj PP, Malykhin N, Gheorghiu D, Allen PS (2006) Measurement of brain glutamate and glutamine by spectrally-selective refocusing at 3 tesla. Magn Reson Med 55:997–1005PubMedCrossRef Choi C, Coupland NJ, Bhardwaj PP, Malykhin N, Gheorghiu D, Allen PS (2006) Measurement of brain glutamate and glutamine by spectrally-selective refocusing at 3 tesla. Magn Reson Med 55:997–1005PubMedCrossRef
12.
go back to reference Schulte RF, Trabesinger AH, Boesiger P (2005) Chemical-shift-selective filter for the in vivo detection of J-coupled metabolites at 3 T. Magn Reson Med 53:275–281PubMedCrossRef Schulte RF, Trabesinger AH, Boesiger P (2005) Chemical-shift-selective filter for the in vivo detection of J-coupled metabolites at 3 T. Magn Reson Med 53:275–281PubMedCrossRef
13.
go back to reference Ryner LN, Sorenson JA, Thomas MA (1995) Localized 2D J-resolved 1H MR spectroscopy: strong coupling effects in vitro and in vivo. Magn Reson Imaging 13:853–869PubMedCrossRef Ryner LN, Sorenson JA, Thomas MA (1995) Localized 2D J-resolved 1H MR spectroscopy: strong coupling effects in vitro and in vivo. Magn Reson Imaging 13:853–869PubMedCrossRef
14.
go back to reference Thomas MA, Ryner LN, Mehta MP, Turski PA, Sorenson JA (1996) Localized 2D J-resolved 1H MR spectroscopy of human brain tumors in vivo. J Magn Reson Imaging 6:453–459PubMedCrossRef Thomas MA, Ryner LN, Mehta MP, Turski PA, Sorenson JA (1996) Localized 2D J-resolved 1H MR spectroscopy of human brain tumors in vivo. J Magn Reson Imaging 6:453–459PubMedCrossRef
15.
go back to reference Mayer D, Spielman DM (2005) Detection of glutamate in the human brain at 3 T using optimized constant time point resolved spectroscopy. Magn Reson Med 54:439–442PubMedCrossRef Mayer D, Spielman DM (2005) Detection of glutamate in the human brain at 3 T using optimized constant time point resolved spectroscopy. Magn Reson Med 54:439–442PubMedCrossRef
16.
go back to reference Bartha R, Drost D, Menon R, Williamson P (2000) Comparison of the quantification precision of human short echo time 1H spectroscopy at 1.5 and 4.0 tesla. Magn Reson Med 44:185–192PubMedCrossRef Bartha R, Drost D, Menon R, Williamson P (2000) Comparison of the quantification precision of human short echo time 1H spectroscopy at 1.5 and 4.0 tesla. Magn Reson Med 44:185–192PubMedCrossRef
17.
go back to reference Tkác I, Andersen P, Adriany G, Merkle H, Ugurbil K, Gruetter R (2001) In vivo 1H NMR spectroscopy of the human brain at 7 T. Magn Reson Med 46:451–456PubMedCrossRef Tkác I, Andersen P, Adriany G, Merkle H, Ugurbil K, Gruetter R (2001) In vivo 1H NMR spectroscopy of the human brain at 7 T. Magn Reson Med 46:451–456PubMedCrossRef
18.
go back to reference Stephenson MC, Gunner F, Napolitano A, Greenhaff PL, Macdonald IA, Saeed N, Vennart W, Francis ST, Morris PG (2011) Applications of multi-nuclear magnetic resonance spectroscopy at 7 T. World J Radiol 3:105–113PubMedCentralPubMedCrossRef Stephenson MC, Gunner F, Napolitano A, Greenhaff PL, Macdonald IA, Saeed N, Vennart W, Francis ST, Morris PG (2011) Applications of multi-nuclear magnetic resonance spectroscopy at 7 T. World J Radiol 3:105–113PubMedCentralPubMedCrossRef
19.
go back to reference Smith SA, Levante TO, Meier BH, Ernst RR (1994) Computer simulations in magnetic resonance. An object-oriented programming approach. J Magn Reson A 106:75–105CrossRef Smith SA, Levante TO, Meier BH, Ernst RR (1994) Computer simulations in magnetic resonance. An object-oriented programming approach. J Magn Reson A 106:75–105CrossRef
21.
go back to reference Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13:129–153PubMedCrossRef Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13:129–153PubMedCrossRef
22.
go back to reference Thompson RB, Allen PS (2001) Response of metabolites with coupled spins to the STEAM sequence. Magn Reson Med 45:955–965PubMedCrossRef Thompson RB, Allen PS (2001) Response of metabolites with coupled spins to the STEAM sequence. Magn Reson Med 45:955–965PubMedCrossRef
23.
go back to reference Dou W, Palomero-Gallagher N, van Tol MJ, Kaufmann J, Zhong K, Bernstein HG, Heinze HJ, Speck O, Walter M (2013) Systematic regional variations of GABA, glutamine and glutamate concentrations follow receptor fingerprints of human cingulate cortex. J Neurosci 33:12698–12704PubMedCrossRef Dou W, Palomero-Gallagher N, van Tol MJ, Kaufmann J, Zhong K, Bernstein HG, Heinze HJ, Speck O, Walter M (2013) Systematic regional variations of GABA, glutamine and glutamate concentrations follow receptor fingerprints of human cingulate cortex. J Neurosci 33:12698–12704PubMedCrossRef
24.
go back to reference Elywa M, Mulla-Osman S, Godenschweger F, Speck O (2012) Proton magnetic resonance spectroscopy in deep human brain structures at 7 T. J Appl Spectrosc 79:120–125CrossRef Elywa M, Mulla-Osman S, Godenschweger F, Speck O (2012) Proton magnetic resonance spectroscopy in deep human brain structures at 7 T. J Appl Spectrosc 79:120–125CrossRef
25.
go back to reference Hargreaves BA, Cunningham CH, Nishimura DG, Conolly SM (2004) Variable-rate selective excitation for rapid MRI sequences. Magn Reson Med 52:590–597PubMedCrossRef Hargreaves BA, Cunningham CH, Nishimura DG, Conolly SM (2004) Variable-rate selective excitation for rapid MRI sequences. Magn Reson Med 52:590–597PubMedCrossRef
26.
go back to reference Mandal PK (2007) Magnetic resonance spectroscopy (MRS) and its application in Alzheimer’s disease. Concepts Magn Reson 30:40–64CrossRef Mandal PK (2007) Magnetic resonance spectroscopy (MRS) and its application in Alzheimer’s disease. Concepts Magn Reson 30:40–64CrossRef
27.
go back to reference Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679PubMedCrossRef Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679PubMedCrossRef
29.
go back to reference Tkác I, Öz G, Adriany G, Ugurbil K, Gruetter R (2009) In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: metabolite quantification at 4 T versus 7 T. Magn Reson Med 62(4):868–879PubMedCentralPubMedCrossRef Tkác I, Öz G, Adriany G, Ugurbil K, Gruetter R (2009) In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: metabolite quantification at 4 T versus 7 T. Magn Reson Med 62(4):868–879PubMedCentralPubMedCrossRef
30.
go back to reference Li Y, Xu D, Chen AP, Vigneron DB, Nelson SJ (2008) Proton spectroscopy of human brain at 3 T and 7 T: signal-to-noise ratio, spectral linewidth and relaxation times. In: Proceedings of the 16th scientific meeting, International Society for Magnetic Resonance in medicine, Toronto, p 1592 Li Y, Xu D, Chen AP, Vigneron DB, Nelson SJ (2008) Proton spectroscopy of human brain at 3 T and 7 T: signal-to-noise ratio, spectral linewidth and relaxation times. In: Proceedings of the 16th scientific meeting, International Society for Magnetic Resonance in medicine, Toronto, p 1592
31.
go back to reference Hurd R, Sailasuta N, Srinivasan R, Vigneron DB, Pelletier D, Nelson SJ (2004) Measurement of brain glutamate using TE-averaged PRESS at 3 T. Magn Reson Med 51:435–440PubMedCrossRef Hurd R, Sailasuta N, Srinivasan R, Vigneron DB, Pelletier D, Nelson SJ (2004) Measurement of brain glutamate using TE-averaged PRESS at 3 T. Magn Reson Med 51:435–440PubMedCrossRef
32.
go back to reference Wijtenburg S, Rowland L, Edden R, Barker P, Phil D (2013) Reproducibility of brain spectroscopy at 7 T using conventional localization and spectral editing techniques. J Magn Reson Imaging 38(2):460–467PubMedCentralPubMedCrossRef Wijtenburg S, Rowland L, Edden R, Barker P, Phil D (2013) Reproducibility of brain spectroscopy at 7 T using conventional localization and spectral editing techniques. J Magn Reson Imaging 38(2):460–467PubMedCentralPubMedCrossRef
33.
go back to reference Seeger U, Klose U, Mader I, Grodd W, Nagele T (2003) Parameterized evaluation of macromolecules and lipids in proton MR spectroscopy of brain diseases. Magn Reson Med 49:19–28PubMedCrossRef Seeger U, Klose U, Mader I, Grodd W, Nagele T (2003) Parameterized evaluation of macromolecules and lipids in proton MR spectroscopy of brain diseases. Magn Reson Med 49:19–28PubMedCrossRef
34.
go back to reference Schaller B, Xin L, Cudalbu C, Gruetter R (2013) Quantification of the neurochemical profile using simulated macromolecule resonances at 3 T. NMR Biomed 26(5):593–599PubMedCrossRef Schaller B, Xin L, Cudalbu C, Gruetter R (2013) Quantification of the neurochemical profile using simulated macromolecule resonances at 3 T. NMR Biomed 26(5):593–599PubMedCrossRef
35.
go back to reference Schaller B, Xin L, Gruetter R (2014) Is the macromolecule signal tissue-specific in healthy human brain? A 1H MRS study at 7 tesla in the occipital lobe. Magn Reson Med 72:934–940PubMedCrossRef Schaller B, Xin L, Gruetter R (2014) Is the macromolecule signal tissue-specific in healthy human brain? A 1H MRS study at 7 tesla in the occipital lobe. Magn Reson Med 72:934–940PubMedCrossRef
36.
go back to reference Clementi V, Tonon C, Lodi R, Malucelli E, Barbiroli B, Iotti S (2005) Assessment of glutamate and glutamine contribution to in vivo N-acetylaspartate quantification in human brain by (1)H-magnetic resonance spectroscopy. Magn Reson Med 54:1333–1339PubMedCrossRef Clementi V, Tonon C, Lodi R, Malucelli E, Barbiroli B, Iotti S (2005) Assessment of glutamate and glutamine contribution to in vivo N-acetylaspartate quantification in human brain by (1)H-magnetic resonance spectroscopy. Magn Reson Med 54:1333–1339PubMedCrossRef
37.
go back to reference Kakeda S, Korogi Y, Moriya J, Ohnari N, Sato T, Ueno S, Yanagihara N, Harada M, Matsuda T (2011) Influence of work shift on glutamic acid and gamma-aminobutyric acid (GABA): evaluation with proton magnetic resonance spectroscopy at 3 T. Psychiatry Res 192:55–59PubMedCrossRef Kakeda S, Korogi Y, Moriya J, Ohnari N, Sato T, Ueno S, Yanagihara N, Harada M, Matsuda T (2011) Influence of work shift on glutamic acid and gamma-aminobutyric acid (GABA): evaluation with proton magnetic resonance spectroscopy at 3 T. Psychiatry Res 192:55–59PubMedCrossRef
38.
go back to reference Öz G, Tkáč I (2011) Short-echo, single-shot, full-intensity proton magnetic resonance spectroscopy for neurochemical profiling at 4 T: validation in the cerebellum and brainstem. Magn Reson Med 65:901–910PubMedCrossRef Öz G, Tkáč I (2011) Short-echo, single-shot, full-intensity proton magnetic resonance spectroscopy for neurochemical profiling at 4 T: validation in the cerebellum and brainstem. Magn Reson Med 65:901–910PubMedCrossRef
39.
go back to reference Walter M, Henning A, Grimm S, Schulte RF, Beck J, Dydak U, Schnepf B, Boeker H, Boesiger P, Northoff G (2009) The relationship between aberrant neuronal activation in the pregenual anterior cingulate, altered glutamatergic metabolism, and anhedonia in major depression. Arch Gen Psychiatry 66:478–486PubMedCrossRef Walter M, Henning A, Grimm S, Schulte RF, Beck J, Dydak U, Schnepf B, Boeker H, Boesiger P, Northoff G (2009) The relationship between aberrant neuronal activation in the pregenual anterior cingulate, altered glutamatergic metabolism, and anhedonia in major depression. Arch Gen Psychiatry 66:478–486PubMedCrossRef
40.
go back to reference Henry ME, Lauriat TL, Shanahan M, Renshaw PF, Jensen JE (2011) Accuracy and stability of measuring GABA, glutamate, and glutamine by proton magnetic resonance spectroscopy: a phantom study at 4 tesla. J Magn Reson 208:210–218PubMedCrossRef Henry ME, Lauriat TL, Shanahan M, Renshaw PF, Jensen JE (2011) Accuracy and stability of measuring GABA, glutamate, and glutamine by proton magnetic resonance spectroscopy: a phantom study at 4 tesla. J Magn Reson 208:210–218PubMedCrossRef
Metadata
Title
The separation of Gln and Glu in STEAM: a comparison study using short and long TEs/TMs at 3 and 7 T
Authors
Weiqiang Dou
Jörn Kaufmann
Meng Li
Kai Zhong
Martin Walter
Oliver Speck
Publication date
01-08-2015
Publisher
Springer Berlin Heidelberg
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 4/2015
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-014-0479-7

Other articles of this Issue 4/2015

Magnetic Resonance Materials in Physics, Biology and Medicine 4/2015 Go to the issue