Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2017

Open Access 01-12-2017 | Research article

The safe screw path along inferior border of the arcuate line at acetabular area: an anatomical study based on CT scans

Authors: Chun Bi, Jiandong Wang, Xiaoxi Ji, Zhijian Ma, Fang Wang, Xiangsen Zeng, Dongmei Wang, Qiugen Wang

Published in: BMC Musculoskeletal Disorders | Issue 1/2017

Login to get access

Abstract

Background

Misplaced screw during the internal fixation of acetabular fractures may penetrate the hip joint which might cause chondrolysis and traumatic osteoarthritis in the future. This study aims to acquire the safe path for screw insertion along inferior border of the arcuate line fixation route at acetabular area.

Methods

Computed tomography (CT) scans of 98 patients without pelvic trauma were rebuilt for three-dimensional models of pelvis. After depicting the fixation route curve, five cross-sections perpendicularly to the curve were established from the anterior of pelvis to the posterior along inferior border of the arcuate line. The safe screw lengths for section 1 and 5 were measured from the computer models. In section 2, 3 and 4, a line from the screw entry point tangent to the inferior edge of the acetabulum was depicted and the measurements of minimum safe direction of screw insertion were performed then marked with angle θ.

Results

The safe screw lengths for section 1 and 5 were 22.29 ± 4.41 mm and 32.64 ± 4.70 mm (n = 98). The minimum safe angles of screw insertion for the middle three sections 2, 3, and 4 were 65.38 ± 10.23°, 74.20 ± 10.20°, and 57.88 ± 11.11°(n = 98), respectively. The results for the male group (n = 98) indicated smaller minimum safe angles in these three sections compared with the female (n = 98).

Conclusions

Compared to male, the minimum safe angles of screw placement at acetabular area for female should be more away from inferior edge of acetabulum and tilt to the bottom of pelvis along inferior border fixation route in surgical management of acetabular fractures.
Literature
1.
go back to reference Deo SD, Tavares SP, Pandey RK, El-Saied G, Willett KM, Worlock PH. Operative management of acetabular fractures in Oxford. Injury. 2001;32(7):581–6.CrossRefPubMed Deo SD, Tavares SP, Pandey RK, El-Saied G, Willett KM, Worlock PH. Operative management of acetabular fractures in Oxford. Injury. 2001;32(7):581–6.CrossRefPubMed
2.
go back to reference Keel MJ, Tomagra S, Bonel HM, Siebenrock KA, Bastian JD. Clinical results of acetabular fracture management with the Pararectus approach. Injury. 2014;45(12):1900–7.CrossRefPubMed Keel MJ, Tomagra S, Bonel HM, Siebenrock KA, Bastian JD. Clinical results of acetabular fracture management with the Pararectus approach. Injury. 2014;45(12):1900–7.CrossRefPubMed
3.
go back to reference Schopfer A, Willett K, Powell J, Tile M. Cerclage wiring in internal fixation of acetabular fractures. J Orthop Trauma. 1993;7(3):236–41.CrossRefPubMed Schopfer A, Willett K, Powell J, Tile M. Cerclage wiring in internal fixation of acetabular fractures. J Orthop Trauma. 1993;7(3):236–41.CrossRefPubMed
4.
go back to reference Hammad AS, El-Khadrawe TA. Accuracy of reduction and early clinical outcome in acetabular fractures treated by the standard ilio-inguinal versus the Stoppa/iliac approaches. Injury. 2015;46(2):320–6.CrossRefPubMed Hammad AS, El-Khadrawe TA. Accuracy of reduction and early clinical outcome in acetabular fractures treated by the standard ilio-inguinal versus the Stoppa/iliac approaches. Injury. 2015;46(2):320–6.CrossRefPubMed
5.
go back to reference Ji X, Bi C, Wang F, Jiang Y, Wang D, Wang Q. Digital anatomical measurements of safe screw placement at superior border of the arcuate line for acetabular fractures. BMC Musculoskelet Disord. 2015;16:55.CrossRefPubMedPubMedCentral Ji X, Bi C, Wang F, Jiang Y, Wang D, Wang Q. Digital anatomical measurements of safe screw placement at superior border of the arcuate line for acetabular fractures. BMC Musculoskelet Disord. 2015;16:55.CrossRefPubMedPubMedCentral
6.
go back to reference Helfet DL, Borrelli Jr J, DiPasquale T, Sanders R. Stabilization of acetabular fractures in elderly patients. J Bone Joint Surg Am. 1992;74(5):753–65.CrossRefPubMed Helfet DL, Borrelli Jr J, DiPasquale T, Sanders R. Stabilization of acetabular fractures in elderly patients. J Bone Joint Surg Am. 1992;74(5):753–65.CrossRefPubMed
7.
go back to reference Matta JM. Operative treatment of acetabular fractures through the ilioinguinal approach: a 10-year perspective. J Orthop Trauma. 2006;20(1 Suppl):S20–29.PubMed Matta JM. Operative treatment of acetabular fractures through the ilioinguinal approach: a 10-year perspective. J Orthop Trauma. 2006;20(1 Suppl):S20–29.PubMed
8.
go back to reference Cole JD, Bolhofner BR. Acetabular fracture fixation via a modified Stoppa limited intrapelvic approach. Description of operative technique and preliminary treatment results. Clin Orthop Relat Res. 1994;305:112–23.CrossRef Cole JD, Bolhofner BR. Acetabular fracture fixation via a modified Stoppa limited intrapelvic approach. Description of operative technique and preliminary treatment results. Clin Orthop Relat Res. 1994;305:112–23.CrossRef
9.
go back to reference Papakostidis C, Kanakaris NK, Kontakis G, Giannoudis PV. Pelvic ring disruptions: treatment modalities and analysis of outcomes. Int Orthop. 2009;33(2):329–38.CrossRefPubMed Papakostidis C, Kanakaris NK, Kontakis G, Giannoudis PV. Pelvic ring disruptions: treatment modalities and analysis of outcomes. Int Orthop. 2009;33(2):329–38.CrossRefPubMed
10.
go back to reference Ebraheim NA, Savolaine ER, Hoeflinger MJ, Jackson WT. Radiological diagnosis of screw penetration of the hip joint in acetabular fracture reconstruction. J Orthop Trauma. 1989;3(3):196–201.CrossRefPubMed Ebraheim NA, Savolaine ER, Hoeflinger MJ, Jackson WT. Radiological diagnosis of screw penetration of the hip joint in acetabular fracture reconstruction. J Orthop Trauma. 1989;3(3):196–201.CrossRefPubMed
11.
go back to reference Ebraheim NA, Waldrop J, Yeasting RA, Jackson WT. Danger zone of the acetabulum. J Orthop Trauma. 1992;6(2):146–51.CrossRefPubMed Ebraheim NA, Waldrop J, Yeasting RA, Jackson WT. Danger zone of the acetabulum. J Orthop Trauma. 1992;6(2):146–51.CrossRefPubMed
12.
go back to reference Anglen JO, DiPasquale T. The reliability of detecting screw penetration of the acetabulum by intraoperative auscultation. J Orthop Trauma. 1994;8(5):404–8.CrossRefPubMed Anglen JO, DiPasquale T. The reliability of detecting screw penetration of the acetabulum by intraoperative auscultation. J Orthop Trauma. 1994;8(5):404–8.CrossRefPubMed
13.
go back to reference Vlachopoulos L, Dunner C, Gass T, Graf M, Goksel O, Gerber C, Szekely G, Furnstahl P. Computer algorithms for three-dimensional measurement of humeral anatomy: analysis of 140 paired humeri. J Shoulder Elbow Surg. 2016;25(2):e38–48.CrossRefPubMed Vlachopoulos L, Dunner C, Gass T, Graf M, Goksel O, Gerber C, Szekely G, Furnstahl P. Computer algorithms for three-dimensional measurement of humeral anatomy: analysis of 140 paired humeri. J Shoulder Elbow Surg. 2016;25(2):e38–48.CrossRefPubMed
14.
go back to reference Tosounidis TI, Giannoudis PV. Pelvic fractures presenting with haemodynamic instability: treatment options and outcomes. Surgeon. 2013;11(6):344–51.CrossRefPubMed Tosounidis TI, Giannoudis PV. Pelvic fractures presenting with haemodynamic instability: treatment options and outcomes. Surgeon. 2013;11(6):344–51.CrossRefPubMed
15.
go back to reference Shiramizu K, Naito M, Yatsunami M. Quantitative anatomic characterisation of the pelvic brim to facilitate internal fixation through an anterior approach. J Orthop Surg. 2003;11(2):137–40.CrossRef Shiramizu K, Naito M, Yatsunami M. Quantitative anatomic characterisation of the pelvic brim to facilitate internal fixation through an anterior approach. J Orthop Surg. 2003;11(2):137–40.CrossRef
16.
go back to reference Zhang S, Su W, Luo Q, Leung F, Chen B. Measurement of the “safe zone” and the “dangerous zone” for the screw placement on the quadrilateral surface in the treatment of pelvic and acetabular fractures with Stoppa approach by computational 3D technology. Biomed Res Int. 2014;2014:386950.PubMedPubMedCentral Zhang S, Su W, Luo Q, Leung F, Chen B. Measurement of the “safe zone” and the “dangerous zone” for the screw placement on the quadrilateral surface in the treatment of pelvic and acetabular fractures with Stoppa approach by computational 3D technology. Biomed Res Int. 2014;2014:386950.PubMedPubMedCentral
17.
go back to reference Xian-quan W, Jin-fang C, Xue-cheng C, Wei-dong M, Wei Z, Shui S, Jin-lu Z, Jian W, Wei L. A quantitative anatomic study of plate-screw fixation of the acetabular anterior column through an anterior approach. Arch Orthop Trauma Surg. 2010;130(2):257–62.CrossRefPubMed Xian-quan W, Jin-fang C, Xue-cheng C, Wei-dong M, Wei Z, Shui S, Jin-lu Z, Jian W, Wei L. A quantitative anatomic study of plate-screw fixation of the acetabular anterior column through an anterior approach. Arch Orthop Trauma Surg. 2010;130(2):257–62.CrossRefPubMed
18.
go back to reference Guy P, Al-Otaibi M, Harvey EJ, Helmy N. The ‘safe zone’ for extra-articular screw placement during intra-pelvic acetabular surgery. J Orthop Trauma. 2010;24(5):279–83.CrossRefPubMed Guy P, Al-Otaibi M, Harvey EJ, Helmy N. The ‘safe zone’ for extra-articular screw placement during intra-pelvic acetabular surgery. J Orthop Trauma. 2010;24(5):279–83.CrossRefPubMed
Metadata
Title
The safe screw path along inferior border of the arcuate line at acetabular area: an anatomical study based on CT scans
Authors
Chun Bi
Jiandong Wang
Xiaoxi Ji
Zhijian Ma
Fang Wang
Xiangsen Zeng
Dongmei Wang
Qiugen Wang
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2017
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-017-1453-0

Other articles of this Issue 1/2017

BMC Musculoskeletal Disorders 1/2017 Go to the issue