Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2014

Open Access 01-12-2014 | Review

The roles of mesenchymal stem cells in tumor inflammatory microenvironment

Authors: Zhao Sun, Shihua Wang, Robert Chunhua Zhao

Published in: Journal of Hematology & Oncology | Issue 1/2014

Login to get access

Abstract

Tumor behavior is not entirely determined by tumor cells. Studies have demonstrated that a variety of non-tumor cells in the tumor microenvironment affect tumor behavior; thus, a new focus of cancer research has been the development of novel cancer treatment ideas and therapeutic targets based on the effects of these cells. Mesenchymal stem cells (MSCs) are an important component of the tumor microenvironment; however, previous studies have produced controversial results regarding whether MSCs promote or inhibit tumor growth and progression. In particular, Naïve MSCs and tumor-derived MSCs (T-MSCs) have different functions. Naïve MSCs could exert bidirectional effects on tumors because these cells can both promote and inhibit tumor progression while T-MSCs promote tumor progression due to influences from the tumor itself and from the inflammatory tumor microenvironment. As an unhealed wound, tumor produces a continuous source of inflammatory mediators and causes aggregation of numerous inflammatory cells, which constitute an inflammatory microenvironment. Inflammatory factors can induce homing of circulating MSCs and MSCs in adjacent tissues into tumors, which are then being “educated” by the tumor microenvironment to support tumor growth. T-MSCs could recruit more immune cells into the tumor microenvironment, increase the proportion of cancer stem cells and promote tumor angiogenesis, further supporting tumor progression. However, as plasti city is a fundamental feature of MSCs, MSCs can also inhibit tumors by activating various MSC-based signaling pathways. Studies of the mechanisms by which interactions among tumors, MSCs, and the inflammatory microenvironment occur and methods to disrupt these interactions will likely reveal new targets for cancer therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hanahan D, Weinberg RA: The hallmarks of cancer. Cell. 2000, 100 (1): 57-70. 10.1016/S0092-8674(00)81683-9.CrossRefPubMed Hanahan D, Weinberg RA: The hallmarks of cancer. Cell. 2000, 100 (1): 57-70. 10.1016/S0092-8674(00)81683-9.CrossRefPubMed
2.
go back to reference Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Cespedes MV: Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell. 2012, 22 (5): 571-584. 10.1016/j.ccr.2012.08.013.PubMedCentralCrossRefPubMed Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Cespedes MV: Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell. 2012, 22 (5): 571-584. 10.1016/j.ccr.2012.08.013.PubMedCentralCrossRefPubMed
3.
go back to reference Riss J, Khanna C, Koo S, Chandramouli GV, Yang HH, Hu Y: Cancers as wounds that do not heal: differences and similarities between renal regeneration/repair and renal cell carcinoma. Cancer Res. 2006, 66 (14): 7216-7224. 10.1158/0008-5472.CAN-06-0040.CrossRefPubMed Riss J, Khanna C, Koo S, Chandramouli GV, Yang HH, Hu Y: Cancers as wounds that do not heal: differences and similarities between renal regeneration/repair and renal cell carcinoma. Cancer Res. 2006, 66 (14): 7216-7224. 10.1158/0008-5472.CAN-06-0040.CrossRefPubMed
4.
go back to reference Wu J, Li J, Salcedo R, Mivechi NF, Trinchieri G, Horuzsko A: The proinflammatory myeloid cell receptor TREM-1 controls Kupffer cell activation and development of hepatocellular carcinoma. Cancer Res. 2012, 72 (16): 3977-3986. 10.1158/0008-5472.CAN-12-0938.PubMedCentralCrossRefPubMed Wu J, Li J, Salcedo R, Mivechi NF, Trinchieri G, Horuzsko A: The proinflammatory myeloid cell receptor TREM-1 controls Kupffer cell activation and development of hepatocellular carcinoma. Cancer Res. 2012, 72 (16): 3977-3986. 10.1158/0008-5472.CAN-12-0938.PubMedCentralCrossRefPubMed
6.
go back to reference Al-Zoubi M, Salem AF, Martinez-Outschoorn UE, Whitaker-Menezes D, Lamb R, Hulit J: Creating a tumor-resistant microenvironment: cell-mediated delivery of TNFalpha completely prevents breast cancer tumor formation in vivo. Cell Cycle. 2013, 12 (3): 480-490. 10.4161/cc.23370.PubMedCentralCrossRefPubMed Al-Zoubi M, Salem AF, Martinez-Outschoorn UE, Whitaker-Menezes D, Lamb R, Hulit J: Creating a tumor-resistant microenvironment: cell-mediated delivery of TNFalpha completely prevents breast cancer tumor formation in vivo. Cell Cycle. 2013, 12 (3): 480-490. 10.4161/cc.23370.PubMedCentralCrossRefPubMed
7.
go back to reference Spear P, Barber A, Rynda-Apple A, Sentman CL: Chimeric antigen receptor T cells shape myeloid cell function within the tumor microenvironment through IFN-gamma and GM-CSF. J Immunol. 2012, 188 (12): 6389-6398. 10.4049/jimmunol.1103019.PubMedCentralCrossRefPubMed Spear P, Barber A, Rynda-Apple A, Sentman CL: Chimeric antigen receptor T cells shape myeloid cell function within the tumor microenvironment through IFN-gamma and GM-CSF. J Immunol. 2012, 188 (12): 6389-6398. 10.4049/jimmunol.1103019.PubMedCentralCrossRefPubMed
8.
go back to reference Frederick DT, Piris A, Cogdill AP, Cooper ZA, Lezcano C, Ferrone CR: BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res. 2013, 19 (5): 1225-1231. 10.1158/1078-0432.CCR-12-1630.PubMedCentralCrossRefPubMed Frederick DT, Piris A, Cogdill AP, Cooper ZA, Lezcano C, Ferrone CR: BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res. 2013, 19 (5): 1225-1231. 10.1158/1078-0432.CCR-12-1630.PubMedCentralCrossRefPubMed
9.
go back to reference Hassan H, Greve B, Pavao MS, Kiesel L, Ibrahim SA, Gotte M: Syndecan-1 modulates beta-integrin-dependent and interleukin-6-dependent functions in breast cancer cell adhesion, migration, and resistance to irradiation. FEBS J. 2013, 280 (10): 2216-2227. 10.1111/febs.12111.CrossRefPubMed Hassan H, Greve B, Pavao MS, Kiesel L, Ibrahim SA, Gotte M: Syndecan-1 modulates beta-integrin-dependent and interleukin-6-dependent functions in breast cancer cell adhesion, migration, and resistance to irradiation. FEBS J. 2013, 280 (10): 2216-2227. 10.1111/febs.12111.CrossRefPubMed
10.
go back to reference Munson JM, Bellamkonda RV, Swartz MA: Interstitial flow in a 3D microenvironment increases glioma invasion by a CXCR4-dependent mechanism. Cancer Res. 2013, 73 (5): 1536-1546. 10.1158/0008-5472.CAN-12-2838.CrossRefPubMed Munson JM, Bellamkonda RV, Swartz MA: Interstitial flow in a 3D microenvironment increases glioma invasion by a CXCR4-dependent mechanism. Cancer Res. 2013, 73 (5): 1536-1546. 10.1158/0008-5472.CAN-12-2838.CrossRefPubMed
11.
go back to reference Gorgun GT, Whitehill G, Anderson JL, Hideshima T, Maguire C, Laubach J: Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood. 2013, 121 (15): 2975-2987. 10.1182/blood-2012-08-448548.PubMedCentralCrossRefPubMed Gorgun GT, Whitehill G, Anderson JL, Hideshima T, Maguire C, Laubach J: Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood. 2013, 121 (15): 2975-2987. 10.1182/blood-2012-08-448548.PubMedCentralCrossRefPubMed
12.
go back to reference D’Souza N, Burns JS, Grisendi G, Candini O, Veronesi E, Piccinno S: MSC and Tumors: Homing, Differentiation, and Secretion Influence Therapeutic Potential. Adv Biochem Eng Biotechnol. 2012, Epub ahead of print, doi:10.1007/10_2012_150. D’Souza N, Burns JS, Grisendi G, Candini O, Veronesi E, Piccinno S: MSC and Tumors: Homing, Differentiation, and Secretion Influence Therapeutic Potential. Adv Biochem Eng Biotechnol. 2012, Epub ahead of print, doi:10.1007/10_2012_150.
14.
go back to reference Zhao Z, Wang Z, Li Q, Li W, You Y, Zou P: The different immunoregulatory functions of mesenchymal stem cells in patients with low-risk or high-risk myelodysplastic syndromes. PLoS One. 2012, 7 (9): e45675-10.1371/journal.pone.0045675.PubMedCentralCrossRefPubMed Zhao Z, Wang Z, Li Q, Li W, You Y, Zou P: The different immunoregulatory functions of mesenchymal stem cells in patients with low-risk or high-risk myelodysplastic syndromes. PLoS One. 2012, 7 (9): e45675-10.1371/journal.pone.0045675.PubMedCentralCrossRefPubMed
15.
go back to reference Han Q, Sun Z, Liu L, Chen B, Cao Y, Li K: Impairment in immuno-modulatory function of Flk1(+)CD31(-)CD34(-) MSCs from MDS-RA patients. Leuk Res. 2007, 31 (11): 1469-1478. 10.1016/j.leukres.2006.12.016.CrossRefPubMed Han Q, Sun Z, Liu L, Chen B, Cao Y, Li K: Impairment in immuno-modulatory function of Flk1(+)CD31(-)CD34(-) MSCs from MDS-RA patients. Leuk Res. 2007, 31 (11): 1469-1478. 10.1016/j.leukres.2006.12.016.CrossRefPubMed
16.
go back to reference Pontikoglou C, Kastrinaki MC, Klaus M, Kalpadakis C, Katonis P, Alpantaki K: Study of the quantitative, functional, cytogenetic, and immunoregulatory properties of bone marrow mesenchymal stem cells in patients with B-cell chronic lymphocytic leukemia. Stem Cells Dev. 2013, 22 (9): 1329-1341. 10.1089/scd.2012.0255.PubMedCentralCrossRefPubMed Pontikoglou C, Kastrinaki MC, Klaus M, Kalpadakis C, Katonis P, Alpantaki K: Study of the quantitative, functional, cytogenetic, and immunoregulatory properties of bone marrow mesenchymal stem cells in patients with B-cell chronic lymphocytic leukemia. Stem Cells Dev. 2013, 22 (9): 1329-1341. 10.1089/scd.2012.0255.PubMedCentralCrossRefPubMed
17.
go back to reference Xu S, Evans H, Buckle C, De Veirman K, Hu J, Xu D: Impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients is associated with a blockade in the deactivation of the Notch signaling pathway. Leukemia. 2012, 26 (12): 2546-2549. 10.1038/leu.2012.126.CrossRefPubMed Xu S, Evans H, Buckle C, De Veirman K, Hu J, Xu D: Impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients is associated with a blockade in the deactivation of the Notch signaling pathway. Leukemia. 2012, 26 (12): 2546-2549. 10.1038/leu.2012.126.CrossRefPubMed
18.
go back to reference Kojima K, McQueen T, Chen Y, Jacamo R, Konopleva M, Shinojima N: p53 activation of mesenchymal stromal cells partially abrogates microenvironment-mediated resistance to FLT3 inhibition in AML through HIF-1alpha-mediated down-regulation of CXCL12. Blood. 2011, 118 (16): 4431-4439. 10.1182/blood-2011-02-334136.PubMedCentralCrossRefPubMed Kojima K, McQueen T, Chen Y, Jacamo R, Konopleva M, Shinojima N: p53 activation of mesenchymal stromal cells partially abrogates microenvironment-mediated resistance to FLT3 inhibition in AML through HIF-1alpha-mediated down-regulation of CXCL12. Blood. 2011, 118 (16): 4431-4439. 10.1182/blood-2011-02-334136.PubMedCentralCrossRefPubMed
19.
go back to reference Despeaux M, Labat E, Gadelorge M, Prade N, Bertrand J, Demur C: Critical features of FAK-expressing AML bone marrow microenvironment through leukemia stem cell hijacking of mesenchymal stromal cells. Leukemia. 2011, 25 (11): 1789-1793. 10.1038/leu.2011.145.CrossRefPubMed Despeaux M, Labat E, Gadelorge M, Prade N, Bertrand J, Demur C: Critical features of FAK-expressing AML bone marrow microenvironment through leukemia stem cell hijacking of mesenchymal stromal cells. Leukemia. 2011, 25 (11): 1789-1793. 10.1038/leu.2011.145.CrossRefPubMed
20.
go back to reference Balakrishnan K, Burger JA, Quiroga MP, Henneberg M, Ayres ML, Wierda WG: Influence of bone marrow stromal microenvironment on forodesine-induced responses in CLL primary cells. Blood. 2010, 116 (7): 1083-1091. 10.1182/blood-2009-10-246199.PubMedCentralCrossRefPubMed Balakrishnan K, Burger JA, Quiroga MP, Henneberg M, Ayres ML, Wierda WG: Influence of bone marrow stromal microenvironment on forodesine-induced responses in CLL primary cells. Blood. 2010, 116 (7): 1083-1091. 10.1182/blood-2009-10-246199.PubMedCentralCrossRefPubMed
21.
go back to reference Ren G, Zhao X, Wang Y, Zhang X, Chen X, Xu C: CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFalpha. Cell Stem Cell. 2012, 11 (6): 812-824. 10.1016/j.stem.2012.08.013.PubMedCentralCrossRefPubMed Ren G, Zhao X, Wang Y, Zhang X, Chen X, Xu C: CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFalpha. Cell Stem Cell. 2012, 11 (6): 812-824. 10.1016/j.stem.2012.08.013.PubMedCentralCrossRefPubMed
22.
go back to reference Zhu Y, Sun Z, Han Q, Liao L, Wang J, Bian C: Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia. 2009, 23 (5): 925-933. 10.1038/leu.2008.384.CrossRefPubMed Zhu Y, Sun Z, Han Q, Liao L, Wang J, Bian C: Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia. 2009, 23 (5): 925-933. 10.1038/leu.2008.384.CrossRefPubMed
23.
go back to reference Sun B, Roh KH, Park JR, Lee SR, Park SB, Jung JW: Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy. 2009, 11 (3): 289-298. 10.1080/14653240902807026. 281 p following 298CrossRefPubMed Sun B, Roh KH, Park JR, Lee SR, Park SB, Jung JW: Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy. 2009, 11 (3): 289-298. 10.1080/14653240902807026. 281 p following 298CrossRefPubMed
24.
go back to reference Luo J, Ok Lee S, Liang L, Huang CK, Li L, Wen S: Infiltrating bone marrow mesenchymal stem cells increase prostate cancer stem cell population and metastatic ability via secreting cytokines to suppress androgen receptor signaling. Oncogene. 2013, Epub ahead of print. doi:10.1038/onc.2013.233. Luo J, Ok Lee S, Liang L, Huang CK, Li L, Wen S: Infiltrating bone marrow mesenchymal stem cells increase prostate cancer stem cell population and metastatic ability via secreting cytokines to suppress androgen receptor signaling. Oncogene. 2013, Epub ahead of print. doi:10.1038/onc.2013.233.
25.
go back to reference Nishimura K, Semba S, Aoyagi K, Sasaki H, Yokozaki H: Mesenchymal stem cells provide an advantageous tumor microenvironment for the restoration of cancer stem cells. Pathobiology. 2012, 79 (6): 290-306. 10.1159/000337296.CrossRefPubMed Nishimura K, Semba S, Aoyagi K, Sasaki H, Yokozaki H: Mesenchymal stem cells provide an advantageous tumor microenvironment for the restoration of cancer stem cells. Pathobiology. 2012, 79 (6): 290-306. 10.1159/000337296.CrossRefPubMed
26.
go back to reference Kidd S, Spaeth E, Watson K, Burks J, Lu H, Klopp A: Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS One. 2012, 7 (2): e30563-10.1371/journal.pone.0030563.PubMedCentralCrossRefPubMed Kidd S, Spaeth E, Watson K, Burks J, Lu H, Klopp A: Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS One. 2012, 7 (2): e30563-10.1371/journal.pone.0030563.PubMedCentralCrossRefPubMed
27.
go back to reference Uchibori R, Tsukahara T, Mizuguchi H, Saga Y, Urabe M, Mizukami H: NF-kappaB activity regulates mesenchymal stem cell accumulation at tumor sites. Cancer Res. 2013, 73 (1): 364-372. 10.1158/0008-5472.CAN-12-0088.CrossRefPubMed Uchibori R, Tsukahara T, Mizuguchi H, Saga Y, Urabe M, Mizukami H: NF-kappaB activity regulates mesenchymal stem cell accumulation at tumor sites. Cancer Res. 2013, 73 (1): 364-372. 10.1158/0008-5472.CAN-12-0088.CrossRefPubMed
28.
go back to reference Teo GS, Ankrum JA, Martinelli R, Boetto SE, Simms K, Sciuto TE: Mesenchymal stem cells transmigrate between and directly through tumor necrosis factor-alpha-activated endothelial cells via both leukocyte-like and novel mechanisms. Stem Cells. 2012, 30 (11): 2472-2486. 10.1002/stem.1198.PubMedCentralCrossRefPubMed Teo GS, Ankrum JA, Martinelli R, Boetto SE, Simms K, Sciuto TE: Mesenchymal stem cells transmigrate between and directly through tumor necrosis factor-alpha-activated endothelial cells via both leukocyte-like and novel mechanisms. Stem Cells. 2012, 30 (11): 2472-2486. 10.1002/stem.1198.PubMedCentralCrossRefPubMed
29.
go back to reference Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F: Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 2011, 71 (2): 614-624. 10.1158/0008-5472.CAN-10-0538.PubMedCentralCrossRefPubMed Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F: Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 2011, 71 (2): 614-624. 10.1158/0008-5472.CAN-10-0538.PubMedCentralCrossRefPubMed
30.
go back to reference Lin G, Yang R, Banie L, Wang G, Ning H, Li LC: Effects of transplantation of adipose tissue-derived stem cells on prostate tumor. Prostate. 2010, 70 (10): 1066-1073. 10.1002/pros.21140.PubMedCentralCrossRefPubMed Lin G, Yang R, Banie L, Wang G, Ning H, Li LC: Effects of transplantation of adipose tissue-derived stem cells on prostate tumor. Prostate. 2010, 70 (10): 1066-1073. 10.1002/pros.21140.PubMedCentralCrossRefPubMed
31.
go back to reference Gao H, Priebe W, Glod J, Banerjee D: Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to tumor cell-conditioned medium. Stem Cells. 2009, 27 (4): 857-865. 10.1002/stem.23.CrossRefPubMed Gao H, Priebe W, Glod J, Banerjee D: Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to tumor cell-conditioned medium. Stem Cells. 2009, 27 (4): 857-865. 10.1002/stem.23.CrossRefPubMed
32.
go back to reference Shi M, Li J, Liao L, Chen B, Li B, Chen L: Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica. 2007, 92 (7): 897-904. 10.3324/haematol.10669.CrossRefPubMed Shi M, Li J, Liao L, Chen B, Li B, Chen L: Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica. 2007, 92 (7): 897-904. 10.3324/haematol.10669.CrossRefPubMed
33.
go back to reference Chaturvedi P, Gilkes DM, Wong CC, Luo W, Zhang H, Wei H: Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Invest. 2013, 123 (1): 189-205.PubMedCentralPubMed Chaturvedi P, Gilkes DM, Wong CC, Luo W, Zhang H, Wei H: Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Invest. 2013, 123 (1): 189-205.PubMedCentralPubMed
34.
go back to reference Rattigan Y, Hsu JM, Mishra PJ, Glod J, Banerjee D: Interleukin 6 mediated recruitment of mesenchymal stem cells to the hypoxic tumor milieu. Exp Cell Res. 2010, 316 (20): 3417-3424. 10.1016/j.yexcr.2010.07.002.CrossRefPubMed Rattigan Y, Hsu JM, Mishra PJ, Glod J, Banerjee D: Interleukin 6 mediated recruitment of mesenchymal stem cells to the hypoxic tumor milieu. Exp Cell Res. 2010, 316 (20): 3417-3424. 10.1016/j.yexcr.2010.07.002.CrossRefPubMed
35.
go back to reference Senst C, Nazari-Shafti T, Kruger S, Honer Zu Bentrup K, Dupin CL, Chaffin AE: Prospective dual role of mesenchymal stem cells in breast tumor microenvironment. Breast Cancer Res Treat. 2013, 137 (1): 69-79. 10.1007/s10549-012-2321-0.CrossRefPubMed Senst C, Nazari-Shafti T, Kruger S, Honer Zu Bentrup K, Dupin CL, Chaffin AE: Prospective dual role of mesenchymal stem cells in breast tumor microenvironment. Breast Cancer Res Treat. 2013, 137 (1): 69-79. 10.1007/s10549-012-2321-0.CrossRefPubMed
36.
go back to reference Goldstein RH, Reagan MR, Anderson K, Kaplan DL, Rosenblatt M: Human bone marrow-derived MSCs can home to orthotopic breast cancer tumors and promote bone metastasis. Cancer Res. 2010, 70 (24): 10044-10050. 10.1158/0008-5472.CAN-10-1254.PubMedCentralCrossRefPubMed Goldstein RH, Reagan MR, Anderson K, Kaplan DL, Rosenblatt M: Human bone marrow-derived MSCs can home to orthotopic breast cancer tumors and promote bone metastasis. Cancer Res. 2010, 70 (24): 10044-10050. 10.1158/0008-5472.CAN-10-1254.PubMedCentralCrossRefPubMed
37.
go back to reference Ho IA, Chan KY, Ng WH, Guo CM, Hui KM, Cheang P: Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells. 2009, 27 (6): 1366-1375. 10.1002/stem.50.PubMedCentralCrossRefPubMed Ho IA, Chan KY, Ng WH, Guo CM, Hui KM, Cheang P: Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells. 2009, 27 (6): 1366-1375. 10.1002/stem.50.PubMedCentralCrossRefPubMed
38.
go back to reference Hu Y, Cheng P, Xue YX, Liu YH: Glioma cells promote the expression of vascular cell adhesion molecule-1 on bone marrow-derived mesenchymal stem cells: a possible mechanism for their tropism toward gliomas. J Mol Neurosci. 2012, 48 (1): 127-135. 10.1007/s12031-012-9784-7.CrossRefPubMed Hu Y, Cheng P, Xue YX, Liu YH: Glioma cells promote the expression of vascular cell adhesion molecule-1 on bone marrow-derived mesenchymal stem cells: a possible mechanism for their tropism toward gliomas. J Mol Neurosci. 2012, 48 (1): 127-135. 10.1007/s12031-012-9784-7.CrossRefPubMed
39.
go back to reference Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM: Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res. 2007, 13 (17): 5020-5027. 10.1158/1078-0432.CCR-07-0731.CrossRefPubMed Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM: Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res. 2007, 13 (17): 5020-5027. 10.1158/1078-0432.CCR-07-0731.CrossRefPubMed
40.
go back to reference Coffelt SB, Marini FC, Watson K, Zwezdaryk KJ, Dembinski JL, LaMarca HL: The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci U S A. 2009, 106 (10): 3806-3811. 10.1073/pnas.0900244106.PubMedCentralCrossRefPubMed Coffelt SB, Marini FC, Watson K, Zwezdaryk KJ, Dembinski JL, LaMarca HL: The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci U S A. 2009, 106 (10): 3806-3811. 10.1073/pnas.0900244106.PubMedCentralCrossRefPubMed
41.
go back to reference Paunescu V, Bojin FM, Tatu CA, Gavriliuc OI, Rosca A, Gruia AT: Tumour-associated fibroblasts and mesenchymal stem cells: more similarities than differences. J Cell Mol Med. 2011, 15 (3): 635-646. 10.1111/j.1582-4934.2010.01044.x.PubMedCentralCrossRefPubMed Paunescu V, Bojin FM, Tatu CA, Gavriliuc OI, Rosca A, Gruia AT: Tumour-associated fibroblasts and mesenchymal stem cells: more similarities than differences. J Cell Mol Med. 2011, 15 (3): 635-646. 10.1111/j.1582-4934.2010.01044.x.PubMedCentralCrossRefPubMed
42.
go back to reference Grisendi G, Bussolari R, Veronesi E, Piccinno S, Burns JS, De Santis G: Understanding tumor-stroma interplays for targeted therapies by armed mesenchymal stromal progenitors: the Mesenkillers. Am J Cancer Res. 2011, 1 (6): 787-805.PubMedCentralPubMed Grisendi G, Bussolari R, Veronesi E, Piccinno S, Burns JS, De Santis G: Understanding tumor-stroma interplays for targeted therapies by armed mesenchymal stromal progenitors: the Mesenkillers. Am J Cancer Res. 2011, 1 (6): 787-805.PubMedCentralPubMed
43.
go back to reference Lecomte J, Masset A, Blacher S, Maertens L, Gothot A, Delgaudine M: Bone marrow-derived myofibroblasts are the providers of pro-invasive matrix metalloproteinase 13 in primary tumor. Neoplasia. 2012, 14 (10): 943-951.PubMedCentralCrossRefPubMed Lecomte J, Masset A, Blacher S, Maertens L, Gothot A, Delgaudine M: Bone marrow-derived myofibroblasts are the providers of pro-invasive matrix metalloproteinase 13 in primary tumor. Neoplasia. 2012, 14 (10): 943-951.PubMedCentralCrossRefPubMed
44.
go back to reference Muehlberg FL, Song YH, Krohn A, Pinilla SP, Droll LH, Leng X: Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis. 2009, 30 (4): 589-597. 10.1093/carcin/bgp036.CrossRefPubMed Muehlberg FL, Song YH, Krohn A, Pinilla SP, Droll LH, Leng X: Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis. 2009, 30 (4): 589-597. 10.1093/carcin/bgp036.CrossRefPubMed
45.
go back to reference Shinagawa K, Kitadai Y, Tanaka M, Sumida T, Kodama M, Higashi Y: Mesenchymal stem cells enhance growth and metastasis of colon cancer. Int J Cancer. 2010, 127 (10): 2323-2333. 10.1002/ijc.25440.CrossRefPubMed Shinagawa K, Kitadai Y, Tanaka M, Sumida T, Kodama M, Higashi Y: Mesenchymal stem cells enhance growth and metastasis of colon cancer. Int J Cancer. 2010, 127 (10): 2323-2333. 10.1002/ijc.25440.CrossRefPubMed
46.
go back to reference Gottschling S, Granzow M, Kuner R, Jauch A, Herpel E, Xu EC: Mesenchymal stem cells in non-small cell lung cancer–different from others? Insights from comparative molecular and functional analyses. Lung Cancer. 2013, 80 (1): 19-29. 10.1016/j.lungcan.2012.12.015.CrossRefPubMed Gottschling S, Granzow M, Kuner R, Jauch A, Herpel E, Xu EC: Mesenchymal stem cells in non-small cell lung cancer–different from others? Insights from comparative molecular and functional analyses. Lung Cancer. 2013, 80 (1): 19-29. 10.1016/j.lungcan.2012.12.015.CrossRefPubMed
47.
go back to reference Suzuki K, Sun R, Origuchi M, Kanehira M, Takahata T, Itoh J: Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med. 2011, 17 (7–8): 579-587.PubMedCentralPubMed Suzuki K, Sun R, Origuchi M, Kanehira M, Takahata T, Itoh J: Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med. 2011, 17 (7–8): 579-587.PubMedCentralPubMed
48.
go back to reference McLean K, Gong Y, Choi Y, Deng N, Yang K, Bai S: Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. J Clin Invest. 2011, 121 (8): 3206-3219. 10.1172/JCI45273.PubMedCentralCrossRefPubMed McLean K, Gong Y, Choi Y, Deng N, Yang K, Bai S: Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. J Clin Invest. 2011, 121 (8): 3206-3219. 10.1172/JCI45273.PubMedCentralCrossRefPubMed
49.
go back to reference Brune JC, Tormin A, Johansson MC, Rissler P, Brosjo O, Lofvenberg R: Mesenchymal stromal cells from primary osteosarcoma are non-malignant and strikingly similar to their bone marrow counterparts. Int J Cancer. 2011, 129 (2): 319-330. 10.1002/ijc.25697.CrossRefPubMed Brune JC, Tormin A, Johansson MC, Rissler P, Brosjo O, Lofvenberg R: Mesenchymal stromal cells from primary osteosarcoma are non-malignant and strikingly similar to their bone marrow counterparts. Int J Cancer. 2011, 129 (2): 319-330. 10.1002/ijc.25697.CrossRefPubMed
50.
go back to reference Lin JT, Wang JY, Chen MK, Chen HC, Chang TH, Su BW: Colon cancer mesenchymal stem cells modulate the tumorigenicity of colon cancer through interleukin 6. Exp Cell Res. 2013, 319 (14): 2216-2229. 10.1016/j.yexcr.2013.06.003.CrossRefPubMed Lin JT, Wang JY, Chen MK, Chen HC, Chang TH, Su BW: Colon cancer mesenchymal stem cells modulate the tumorigenicity of colon cancer through interleukin 6. Exp Cell Res. 2013, 319 (14): 2216-2229. 10.1016/j.yexcr.2013.06.003.CrossRefPubMed
51.
go back to reference Cao H, Xu W, Qian H, Zhu W, Yan Y, Zhou H: Mesenchymal stem cell-like cells derived from human gastric cancer tissues. Cancer Lett. 2009, 274 (1): 61-71. 10.1016/j.canlet.2008.08.036.CrossRefPubMed Cao H, Xu W, Qian H, Zhu W, Yan Y, Zhou H: Mesenchymal stem cell-like cells derived from human gastric cancer tissues. Cancer Lett. 2009, 274 (1): 61-71. 10.1016/j.canlet.2008.08.036.CrossRefPubMed
52.
go back to reference Sun X, Cai H, Qian H, Zhu W, Yan Y, Xu H: Mesenchymal stem cells isolated from human uterine cervix cancer tissues. Cell Biol Int. 2011, 35 (2): 119-123. 10.1042/CBI20100132.CrossRefPubMed Sun X, Cai H, Qian H, Zhu W, Yan Y, Xu H: Mesenchymal stem cells isolated from human uterine cervix cancer tissues. Cell Biol Int. 2011, 35 (2): 119-123. 10.1042/CBI20100132.CrossRefPubMed
53.
go back to reference Hernanda PY, Pedroza-Gonzalez A, van der Laan LJ, Broker ME, Hoogduijn MJ, Ijzermans JN: Tumor promotion through the mesenchymal stem cell compartment in human hepatocellular carcinoma. Carcinogenesis. 2013 Hernanda PY, Pedroza-Gonzalez A, van der Laan LJ, Broker ME, Hoogduijn MJ, Ijzermans JN: Tumor promotion through the mesenchymal stem cell compartment in human hepatocellular carcinoma. Carcinogenesis. 2013
54.
go back to reference Xu X, Zhang X, Wang S, Qian H, Zhu W, Cao H: Isolation and comparison of mesenchymal stem-like cells from human gastric cancer and adjacent non-cancerous tissues. J Cancer Res Clin Oncol. 2011, 137 (3): 495-504. 10.1007/s00432-010-0908-6.CrossRefPubMed Xu X, Zhang X, Wang S, Qian H, Zhu W, Cao H: Isolation and comparison of mesenchymal stem-like cells from human gastric cancer and adjacent non-cancerous tissues. J Cancer Res Clin Oncol. 2011, 137 (3): 495-504. 10.1007/s00432-010-0908-6.CrossRefPubMed
55.
go back to reference Ding G, Shao J, Ding Q, Fang Z, Wu Z, Xu J: Comparison of the characteristics of mesenchymal stem cells obtained from prostate tumors and from bone marrow cultured in conditioned medium. Exp Ther Med. 2012, 4 (4): 711-715.PubMedCentralPubMed Ding G, Shao J, Ding Q, Fang Z, Wu Z, Xu J: Comparison of the characteristics of mesenchymal stem cells obtained from prostate tumors and from bone marrow cultured in conditioned medium. Exp Ther Med. 2012, 4 (4): 711-715.PubMedCentralPubMed
56.
go back to reference Johann PD, Vaegler M, Gieseke F, Mang P, Armeanu-Ebinger S, Kluba T: Tumour stromal cells derived from paediatric malignancies display MSC-like properties and impair NK cell cytotoxicity. BMC Cancer. 2010, 10: 501-10.1186/1471-2407-10-501.PubMedCentralCrossRefPubMed Johann PD, Vaegler M, Gieseke F, Mang P, Armeanu-Ebinger S, Kluba T: Tumour stromal cells derived from paediatric malignancies display MSC-like properties and impair NK cell cytotoxicity. BMC Cancer. 2010, 10: 501-10.1186/1471-2407-10-501.PubMedCentralCrossRefPubMed
57.
go back to reference Ramasamy R, Lam EW, Soeiro I, Tisato V, Bonnet D, Dazzi F: Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia. 2007, 21 (2): 304-310. 10.1038/sj.leu.2404489.CrossRefPubMed Ramasamy R, Lam EW, Soeiro I, Tisato V, Bonnet D, Dazzi F: Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia. 2007, 21 (2): 304-310. 10.1038/sj.leu.2404489.CrossRefPubMed
58.
go back to reference Lu YR, Yuan Y, Wang XJ, Wei LL, Chen YN, Cong C: The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther. 2008, 7 (2): 245-251. 10.4161/cbt.7.2.5296.CrossRefPubMed Lu YR, Yuan Y, Wang XJ, Wei LL, Chen YN, Cong C: The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther. 2008, 7 (2): 245-251. 10.4161/cbt.7.2.5296.CrossRefPubMed
59.
go back to reference Qiao L, Xu ZL, Zhao TJ, Ye LH, Zhang XD: Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett. 2008, 269 (1): 67-77. 10.1016/j.canlet.2008.04.032.CrossRefPubMed Qiao L, Xu ZL, Zhao TJ, Ye LH, Zhang XD: Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett. 2008, 269 (1): 67-77. 10.1016/j.canlet.2008.04.032.CrossRefPubMed
60.
go back to reference Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC: Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res. 2008, 18 (4): 500-507. 10.1038/cr.2008.40.CrossRefPubMed Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC: Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res. 2008, 18 (4): 500-507. 10.1038/cr.2008.40.CrossRefPubMed
61.
go back to reference Secchiero P, Zorzet S, Tripodo C, Corallini F, Melloni E, Caruso L: Human bone marrow mesenchymal stem cells display anti-cancer activity in SCID mice bearing disseminated non-Hodgkin’s lymphoma xenografts. PLoS One. 2010, 5 (6): e11140-10.1371/journal.pone.0011140.PubMedCentralCrossRefPubMed Secchiero P, Zorzet S, Tripodo C, Corallini F, Melloni E, Caruso L: Human bone marrow mesenchymal stem cells display anti-cancer activity in SCID mice bearing disseminated non-Hodgkin’s lymphoma xenografts. PLoS One. 2010, 5 (6): e11140-10.1371/journal.pone.0011140.PubMedCentralCrossRefPubMed
62.
go back to reference Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S, Bhattacharya J: Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood. 2009, 113 (18): 4197-4205. 10.1182/blood-2008-09-176198.PubMedCentralCrossRefPubMed Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S, Bhattacharya J: Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood. 2009, 113 (18): 4197-4205. 10.1182/blood-2008-09-176198.PubMedCentralCrossRefPubMed
63.
go back to reference Ho IA, Toh HC, Ng WH, Teo YL, Guo CM, Hui KM: Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells. 2013, 31 (1): 146-155. 10.1002/stem.1247.CrossRefPubMed Ho IA, Toh HC, Ng WH, Teo YL, Guo CM, Hui KM: Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells. 2013, 31 (1): 146-155. 10.1002/stem.1247.CrossRefPubMed
64.
go back to reference Huang WH, Chang MC, Tsai KS, Hung MC, Chen HL, Hung SC: Mesenchymal stem cells promote growth and angiogenesis of tumors in mice. Oncogene. 2013, 32 (37): 4343-4354. 10.1038/onc.2012.458.CrossRefPubMed Huang WH, Chang MC, Tsai KS, Hung MC, Chen HL, Hung SC: Mesenchymal stem cells promote growth and angiogenesis of tumors in mice. Oncogene. 2013, 32 (37): 4343-4354. 10.1038/onc.2012.458.CrossRefPubMed
66.
go back to reference Xu WT, Bian ZY, Fan QM, Li G, Tang TT: Human mesenchymal stem cells (hMSCs) target osteosarcoma and promote its growth and pulmonary metastasis. Cancer Lett. 2009, 281 (1): 32-41. 10.1016/j.canlet.2009.02.022.CrossRefPubMed Xu WT, Bian ZY, Fan QM, Li G, Tang TT: Human mesenchymal stem cells (hMSCs) target osteosarcoma and promote its growth and pulmonary metastasis. Cancer Lett. 2009, 281 (1): 32-41. 10.1016/j.canlet.2009.02.022.CrossRefPubMed
67.
go back to reference Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW: Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007, 449 (7162): 557-563. 10.1038/nature06188.CrossRefPubMed Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW: Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007, 449 (7162): 557-563. 10.1038/nature06188.CrossRefPubMed
68.
go back to reference Corcoran KE, Trzaska KA, Fernandes H, Bryan M, Taborga M, Srinivas V: Mesenchymal stem cells in early entry of breast cancer into bone marrow. PLoS One. 2008, 3 (6): e2563-10.1371/journal.pone.0002563.PubMedCentralCrossRefPubMed Corcoran KE, Trzaska KA, Fernandes H, Bryan M, Taborga M, Srinivas V: Mesenchymal stem cells in early entry of breast cancer into bone marrow. PLoS One. 2008, 3 (6): e2563-10.1371/journal.pone.0002563.PubMedCentralCrossRefPubMed
69.
go back to reference Tsukamoto S, Honoki K, Fujii H, Tohma Y, Kido A, Mori T: Mesenchymal stem cells promote tumor engraftment and metastatic colonization in rat osteosarcoma model. Int J Oncol. 2012, 40 (1): 163-169.PubMed Tsukamoto S, Honoki K, Fujii H, Tohma Y, Kido A, Mori T: Mesenchymal stem cells promote tumor engraftment and metastatic colonization in rat osteosarcoma model. Int J Oncol. 2012, 40 (1): 163-169.PubMed
70.
go back to reference Martin FT, Dwyer RM, Kelly J, Khan S, Murphy JM, Curran C: Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat. 2010, 124 (2): 317-326. 10.1007/s10549-010-0734-1.CrossRefPubMed Martin FT, Dwyer RM, Kelly J, Khan S, Murphy JM, Curran C: Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat. 2010, 124 (2): 317-326. 10.1007/s10549-010-0734-1.CrossRefPubMed
71.
go back to reference Bhattacharya SD, Mi Z, Talbot LJ, Guo H, Kuo PC: Human mesenchymal stem cell and epithelial hepatic carcinoma cell lines in admixture: concurrent stimulation of cancer-associated fibroblasts and epithelial-to-mesenchymal transition markers. Surgery. 2012, 152 (3): 449-454. 10.1016/j.surg.2012.06.011.PubMedCentralCrossRefPubMed Bhattacharya SD, Mi Z, Talbot LJ, Guo H, Kuo PC: Human mesenchymal stem cell and epithelial hepatic carcinoma cell lines in admixture: concurrent stimulation of cancer-associated fibroblasts and epithelial-to-mesenchymal transition markers. Surgery. 2012, 152 (3): 449-454. 10.1016/j.surg.2012.06.011.PubMedCentralCrossRefPubMed
72.
go back to reference Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J: Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003, 102 (10): 3837-3844. 10.1182/blood-2003-04-1193.CrossRefPubMed Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J: Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003, 102 (10): 3837-3844. 10.1182/blood-2003-04-1193.CrossRefPubMed
73.
go back to reference Razmkhah M, Jaberipour M, Erfani N, Habibagahi M, Talei AR, Ghaderi A: Adipose derived stem cells (ASCs) isolated from breast cancer tissue express IL-4, IL-10 and TGF-beta1 and upregulate expression of regulatory molecules on T cells: do they protect breast cancer cells from the immune response?. Cell Immunol. 2011, 266 (2): 116-122. 10.1016/j.cellimm.2010.09.005.CrossRefPubMed Razmkhah M, Jaberipour M, Erfani N, Habibagahi M, Talei AR, Ghaderi A: Adipose derived stem cells (ASCs) isolated from breast cancer tissue express IL-4, IL-10 and TGF-beta1 and upregulate expression of regulatory molecules on T cells: do they protect breast cancer cells from the immune response?. Cell Immunol. 2011, 266 (2): 116-122. 10.1016/j.cellimm.2010.09.005.CrossRefPubMed
74.
go back to reference Montesinos JJ, Mora-Garcia Mde L, Mayani H, Flores-Figueroa E, Garcia-Rocha R, Fajardo-Orduna GR: In vitro evidence of the presence of mesenchymal stromal cells in cervical cancer and their role in protecting cancer cells from cytotoxic T cell activity. Stem Cells Dev. 2013, 22 (18): 2508-2519. 10.1089/scd.2013.0084.PubMedCentralCrossRefPubMed Montesinos JJ, Mora-Garcia Mde L, Mayani H, Flores-Figueroa E, Garcia-Rocha R, Fajardo-Orduna GR: In vitro evidence of the presence of mesenchymal stromal cells in cervical cancer and their role in protecting cancer cells from cytotoxic T cell activity. Stem Cells Dev. 2013, 22 (18): 2508-2519. 10.1089/scd.2013.0084.PubMedCentralCrossRefPubMed
75.
go back to reference Liu Y, Han ZP, Zhang SS, Jing YY, Bu XX, Wang CY: Effects of inflammatory factors on mesenchymal stem cells and their role in the promotion of tumor angiogenesis in colon cancer. J Biol Chem. 2011, 286 (28): 25007-25015. 10.1074/jbc.M110.213108.PubMedCentralCrossRefPubMed Liu Y, Han ZP, Zhang SS, Jing YY, Bu XX, Wang CY: Effects of inflammatory factors on mesenchymal stem cells and their role in the promotion of tumor angiogenesis in colon cancer. J Biol Chem. 2011, 286 (28): 25007-25015. 10.1074/jbc.M110.213108.PubMedCentralCrossRefPubMed
76.
go back to reference Waterman RS, Henkle SL, Betancourt AM: Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis. PLoS One. 2012, 7 (9): e45590-10.1371/journal.pone.0045590.PubMedCentralCrossRefPubMed Waterman RS, Henkle SL, Betancourt AM: Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis. PLoS One. 2012, 7 (9): e45590-10.1371/journal.pone.0045590.PubMedCentralCrossRefPubMed
77.
go back to reference Kabashima-Niibe A, Higuchi H, Takaishi H, Masugi Y, Matsuzaki Y, Mabuchi Y: Mesenchymal stem cells regulate epithelial-mesenchymal transition and tumor progression of pancreatic cancer cells. Cancer Sci. 2013, 104 (2): 157-164. 10.1111/cas.12059.CrossRefPubMed Kabashima-Niibe A, Higuchi H, Takaishi H, Masugi Y, Matsuzaki Y, Mabuchi Y: Mesenchymal stem cells regulate epithelial-mesenchymal transition and tumor progression of pancreatic cancer cells. Cancer Sci. 2013, 104 (2): 157-164. 10.1111/cas.12059.CrossRefPubMed
78.
go back to reference Cho JA, Park H, Lim EH, Lee KW: Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. Int J Oncol. 2012, 40 (1): 130-138.PubMed Cho JA, Park H, Lim EH, Lee KW: Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. Int J Oncol. 2012, 40 (1): 130-138.PubMed
79.
go back to reference Han Z, Tian Z, Lv G, Zhang L, Jiang G, Sun K: Immunosuppressive effect of bone marrow-derived mesenchymal stem cells in inflammatory microenvironment favours the growth of B16 melanoma cells. J Cell Mol Med. 2011, 15 (11): 2343-2352. 10.1111/j.1582-4934.2010.01215.x.PubMedCentralCrossRefPubMed Han Z, Tian Z, Lv G, Zhang L, Jiang G, Sun K: Immunosuppressive effect of bone marrow-derived mesenchymal stem cells in inflammatory microenvironment favours the growth of B16 melanoma cells. J Cell Mol Med. 2011, 15 (11): 2343-2352. 10.1111/j.1582-4934.2010.01215.x.PubMedCentralCrossRefPubMed
80.
go back to reference Cheng J, Li L, Liu Y, Wang Z, Zhu X, Bai X: Interleukin-1alpha induces immunosuppression by mesenchymal stem cells promoting the growth of prostate cancer cells. Mol Med Rep. 2012, 6 (5): 955-960.PubMed Cheng J, Li L, Liu Y, Wang Z, Zhu X, Bai X: Interleukin-1alpha induces immunosuppression by mesenchymal stem cells promoting the growth of prostate cancer cells. Mol Med Rep. 2012, 6 (5): 955-960.PubMed
81.
go back to reference Jing Y, Han Z, Liu Y, Sun K, Zhang S, Jiang G: Mesenchymal stem cells in inflammation microenvironment accelerates hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition. PLoS One. 2012, 7 (8): e43272-10.1371/journal.pone.0043272.PubMedCentralCrossRefPubMed Jing Y, Han Z, Liu Y, Sun K, Zhang S, Jiang G: Mesenchymal stem cells in inflammation microenvironment accelerates hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition. PLoS One. 2012, 7 (8): e43272-10.1371/journal.pone.0043272.PubMedCentralCrossRefPubMed
82.
go back to reference Shin SY, Nam JS, Lim Y, Lee YH: TNFalpha-exposed bone marrow-derived mesenchymal stem cells promote locomotion of MDA-MB-231 breast cancer cells through transcriptional activation of CXCR3 ligand chemokines. J Biol Chem. 2010, 285 (40): 30731-30740. 10.1074/jbc.M110.128124.PubMedCentralCrossRefPubMed Shin SY, Nam JS, Lim Y, Lee YH: TNFalpha-exposed bone marrow-derived mesenchymal stem cells promote locomotion of MDA-MB-231 breast cancer cells through transcriptional activation of CXCR3 ligand chemokines. J Biol Chem. 2010, 285 (40): 30731-30740. 10.1074/jbc.M110.128124.PubMedCentralCrossRefPubMed
83.
go back to reference Cho JA, Park H, Lim EH, Kim KH, Choi JS, Lee JH: Exosomes from ovarian cancer cells induce adipose tissue-derived mesenchymal stem cells to acquire the physical and functional characteristics of tumor-supporting myofibroblasts. Gynecol Oncol. 2011, 123 (2): 379-386. 10.1016/j.ygyno.2011.08.005.CrossRefPubMed Cho JA, Park H, Lim EH, Kim KH, Choi JS, Lee JH: Exosomes from ovarian cancer cells induce adipose tissue-derived mesenchymal stem cells to acquire the physical and functional characteristics of tumor-supporting myofibroblasts. Gynecol Oncol. 2011, 123 (2): 379-386. 10.1016/j.ygyno.2011.08.005.CrossRefPubMed
Metadata
Title
The roles of mesenchymal stem cells in tumor inflammatory microenvironment
Authors
Zhao Sun
Shihua Wang
Robert Chunhua Zhao
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2014
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/1756-8722-7-14

Other articles of this Issue 1/2014

Journal of Hematology & Oncology 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine