Skip to main content
Top
Published in: Tumor Biology 8/2015

01-08-2015 | Research Article

The role of tumor suppressor gene SOX11 in prostate cancer

Authors: Zhiyong Yao, Bin Sun, Quan Hong, Jingmin Yan, Dawei Mu, Jianye Li, Haibo Sheng, Heqing Guo

Published in: Tumor Biology | Issue 8/2015

Login to get access

Abstract

SOX genes play an important role in a number of developmental processes. The transcription factor SOX11 is one of the members of the SOX family emerging as important transcriptional regulators. The aim of this study was to investigate the role of SOX11 in prostate cancer (PCa) and its expression pattern and clinical significance. The gene expression of SOX11 in human PCa tissues compared with benign prostate hyperplasia (BPH) tissues was detected using real-time quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) analysis and immunohositochemistry. SOX11 overexpression cell model was used to examine the role of SOX11 in cell growth and metastasis in vitro. The results showed that the positive rate of SOX11 staining was 16.67 % (10/60) in cases of prostatic carcinoma and 81.67 % (49/60) in cases of BPH, and the difference of SOX11 expression between PCa and BPH was statistically significant (P < 0.001). SOX11 mRNA level was lowly expressed in PCa cell lines compared to RWPE-1. SOX11 overexpression suppresses PCa cell migration and invasion. In conclusion, our findings demonstrate that SOX11 could suppress cell proliferation, migration, and invasion of PCa in vitro.
Literature
1.
go back to reference Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010;46:765–81.CrossRefPubMed Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010;46:765–81.CrossRefPubMed
2.
go back to reference Heidenreich A, Bellmunt J, Bolla M, Joniau S, Mason M, et al. EAU guidelines on prostate cancer. Part1: screening, diagnosis, and treatment of clinically localized disease. Eur Urol. 2011;59(1):61–71.CrossRefPubMed Heidenreich A, Bellmunt J, Bolla M, Joniau S, Mason M, et al. EAU guidelines on prostate cancer. Part1: screening, diagnosis, and treatment of clinically localized disease. Eur Urol. 2011;59(1):61–71.CrossRefPubMed
3.
go back to reference Saad F, Pantel K. The current role of circulating tumor cells in the diagnosis and management of bone metastases in advanced prostate cancer. Future Oncol. 2012;8(3):321–31.CrossRefPubMed Saad F, Pantel K. The current role of circulating tumor cells in the diagnosis and management of bone metastases in advanced prostate cancer. Future Oncol. 2012;8(3):321–31.CrossRefPubMed
4.
go back to reference Titulaer MJ, Klooster R, Potman M, Sabater L, Graus F, Hegeman IM, et al. SOX antibodies in small-cell lung cancer and Lambert-Eaton myasthenic syndrome: frequency and relation with survival. J Clin Oncol. 2009;27:4260–7.CrossRefPubMed Titulaer MJ, Klooster R, Potman M, Sabater L, Graus F, Hegeman IM, et al. SOX antibodies in small-cell lung cancer and Lambert-Eaton myasthenic syndrome: frequency and relation with survival. J Clin Oncol. 2009;27:4260–7.CrossRefPubMed
5.
go back to reference Wang H, McKnight NC, Zhang T, Lu ML, Balk SP, Yuan X. SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells. Cancer Res. 2007;67:528–36.CrossRefPubMed Wang H, McKnight NC, Zhang T, Lu ML, Balk SP, Yuan X. SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells. Cancer Res. 2007;67:528–36.CrossRefPubMed
6.
go back to reference Sock E, Rettig SD, Enderich J, Bosl MR, Tamm ER, Wegner M. Gene targeting reveals a widespread role for the high-mobility-group transcription factor Sox11 in tissue remodeling. Mol Cell Biol. 2004;24:6635–44.CrossRefPubMedPubMedCentral Sock E, Rettig SD, Enderich J, Bosl MR, Tamm ER, Wegner M. Gene targeting reveals a widespread role for the high-mobility-group transcription factor Sox11 in tissue remodeling. Mol Cell Biol. 2004;24:6635–44.CrossRefPubMedPubMedCentral
7.
go back to reference Royo C, Salaverria I, Hartmann EM, Rosenwald A, Campo E, Bea S. The complex landscape of genetic alterations in mantle cell lymphoma. Semin Cancer Biol. 2011;21(5):322–34.CrossRefPubMed Royo C, Salaverria I, Hartmann EM, Rosenwald A, Campo E, Bea S. The complex landscape of genetic alterations in mantle cell lymphoma. Semin Cancer Biol. 2011;21(5):322–34.CrossRefPubMed
8.
go back to reference Zeng W, Fu K, Quintanilla-Fend L, Lim M, Ondrejka S, Hsi ED. Cyclin D1-negative blastoid mantle cell lymphoma identified by SOX11 expression. Am J Surg Pathol. 2012;36:214–9.CrossRefPubMed Zeng W, Fu K, Quintanilla-Fend L, Lim M, Ondrejka S, Hsi ED. Cyclin D1-negative blastoid mantle cell lymphoma identified by SOX11 expression. Am J Surg Pathol. 2012;36:214–9.CrossRefPubMed
9.
go back to reference Cao B, Qi Y, Yang Y, Liu X, Xu D, Guo W, et al. 20(S)-protopanaxadiol inhibition of progression and growth of castration-resistant prostate cancer. PLoS One. 2014;9(11):e111201.CrossRefPubMedPubMedCentral Cao B, Qi Y, Yang Y, Liu X, Xu D, Guo W, et al. 20(S)-protopanaxadiol inhibition of progression and growth of castration-resistant prostate cancer. PLoS One. 2014;9(11):e111201.CrossRefPubMedPubMedCentral
10.
go back to reference Hargrave M, Wright E, Kun J, Emery J, Cooper L, Koopman P. Expression of the Sox11 gene in mouse embryos suggests roles in neuronal maturation and epithelio-mesenchymal induction. Dev Dyn. 1997;210:79–86.CrossRefPubMed Hargrave M, Wright E, Kun J, Emery J, Cooper L, Koopman P. Expression of the Sox11 gene in mouse embryos suggests roles in neuronal maturation and epithelio-mesenchymal induction. Dev Dyn. 1997;210:79–86.CrossRefPubMed
11.
go back to reference Haslinger A, Schwarz TJ, Covic M, Chichung Lie D. Expression of Sox11 in adult neurogenic niches suggests a stage-specific role in adult neurogenesis. Eur J Neurosci. 2009;29:2103–14.CrossRefPubMed Haslinger A, Schwarz TJ, Covic M, Chichung Lie D. Expression of Sox11 in adult neurogenic niches suggests a stage-specific role in adult neurogenesis. Eur J Neurosci. 2009;29:2103–14.CrossRefPubMed
12.
go back to reference Jankowski MP, Cornuet PK, McIlwrath S, Koerber HR, Albers KM. SRY-box containing gene 11 (SOX11) transcription factor is required for neuron survival and neurite growth. Neuroscience. 2006;143:501–14.CrossRefPubMedPubMedCentral Jankowski MP, Cornuet PK, McIlwrath S, Koerber HR, Albers KM. SRY-box containing gene 11 (SOX11) transcription factor is required for neuron survival and neurite growth. Neuroscience. 2006;143:501–14.CrossRefPubMedPubMedCentral
13.
go back to reference Sernbo S, Gustavsson E, Brennan DJ, Gallagher WM, Rexhepaj E, Rydnert F, et al. The tumour suppressor SOX11 is associated with improved survival among high grade epithelial ovarian cancers and is regulated by reversible promoter methylation. BMC Cancer. 2011;11:405.CrossRefPubMedPubMedCentral Sernbo S, Gustavsson E, Brennan DJ, Gallagher WM, Rexhepaj E, Rydnert F, et al. The tumour suppressor SOX11 is associated with improved survival among high grade epithelial ovarian cancers and is regulated by reversible promoter methylation. BMC Cancer. 2011;11:405.CrossRefPubMedPubMedCentral
14.
go back to reference Korkolopoulou P, Levidou G, El-Habr EA, Adamopoulos C, Fragkou P, Boviatsis E, et al. Sox11 expression in astrocytic gliomas: correlation with nestin/c-Met/IDH1-R132H expression phenotypes, p-Stat-3 and survival. Br J Cancer. 2013;108(10):2142–52.CrossRefPubMedPubMedCentral Korkolopoulou P, Levidou G, El-Habr EA, Adamopoulos C, Fragkou P, Boviatsis E, et al. Sox11 expression in astrocytic gliomas: correlation with nestin/c-Met/IDH1-R132H expression phenotypes, p-Stat-3 and survival. Br J Cancer. 2013;108(10):2142–52.CrossRefPubMedPubMedCentral
15.
go back to reference Vegliante MC, Palomero J, Pérez-Galán P, Roué G, Castellano G, Navarro A, et al. SOX11 regulates PAX5 expression and blocks terminal B-cell differentiation in aggressive mantle cell lymphoma. Blood. 2013;121(12):2175–85.CrossRefPubMed Vegliante MC, Palomero J, Pérez-Galán P, Roué G, Castellano G, Navarro A, et al. SOX11 regulates PAX5 expression and blocks terminal B-cell differentiation in aggressive mantle cell lymphoma. Blood. 2013;121(12):2175–85.CrossRefPubMed
16.
go back to reference Delot EC, Bahamonde ME, Zhao M, Lyons KM. BMP signaling is required for septation of the outflow tract of the mammalian heart. Development. 2003;130:209–20.CrossRefPubMed Delot EC, Bahamonde ME, Zhao M, Lyons KM. BMP signaling is required for septation of the outflow tract of the mammalian heart. Development. 2003;130:209–20.CrossRefPubMed
17.
go back to reference Gustavsson E, Sernbo S, Andersson E, et al. SOX11 expression correlates to promoter methylation and regulates tumor growth in hematopoietic malignancies. Mol Cancer. 2010;9:187.CrossRefPubMedPubMedCentral Gustavsson E, Sernbo S, Andersson E, et al. SOX11 expression correlates to promoter methylation and regulates tumor growth in hematopoietic malignancies. Mol Cancer. 2010;9:187.CrossRefPubMedPubMedCentral
Metadata
Title
The role of tumor suppressor gene SOX11 in prostate cancer
Authors
Zhiyong Yao
Bin Sun
Quan Hong
Jingmin Yan
Dawei Mu
Jianye Li
Haibo Sheng
Heqing Guo
Publication date
01-08-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 8/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3296-3

Other articles of this Issue 8/2015

Tumor Biology 8/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine