Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 10/2015

01-10-2015 | Knee

The role of the deep medial collateral ligament in controlling rotational stability of the knee

Authors: Etienne Cavaignac, Karel Carpentier, Regis Pailhé, Thomas Luyckx, Johan Bellemans

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 10/2015

Login to get access

Abstract

Purpose

The tibial insertion of the deep medial collateral ligament (dMCL) is frequently sacrificed when the proximal tibial cut is performed during total knee arthroplasty. The role of the dMCL in controlling the knee’s rotational stability is still controversial. The aim of this study was to quantify the rotational laxity induced by an isolated lesion of the dMCL as it occurs during tibial preparation for knee arthroplasty.

Methods

An isolated resection of the deep MCL was performed in 10 fresh-frozen cadaver knees. Rotational laxity was measured during application of a standard 5.0 N.m rotational torque. Maximal tibial rotation was measured at different knee flexion angles using an image-guided navigation system (Medivision Surgetics system, Praxim, Grenoble, France) before and after dMCL resection.

Results

In all cases, internal and external tibial rotation increased after dMCL resection. Total rotational laxity increased significantly for all knee flexion angles, with an average difference of +7.8° (SD 5.7) with the knee in extension, +8.9° (SD 1.9) in 30° flexion, +7° (SD 2.9) in 60° flexion and +5.3° (SD 2.8) in 90° flexion.

Conclusions

Sacrificing the tibial insertion of the deep MCL increases rotational laxity of the knee by 5°–9°, depending on the knee flexion angle. Based on our findings, new surgical techniques and implants that preserve the dMCL insertion such as tibial inlay components should be developed. Further clinical evaluations are necessary.
Literature
1.
go back to reference Alam M, Bull AM, Thomas R, Amis AA (2011) Measurement of rotational laxity of the knee: in vitro comparison of accuracy between the tibia, overlying skin, and foot. Am J Sports Med 39(12):2575–2581CrossRefPubMed Alam M, Bull AM, Thomas R, Amis AA (2011) Measurement of rotational laxity of the knee: in vitro comparison of accuracy between the tibia, overlying skin, and foot. Am J Sports Med 39(12):2575–2581CrossRefPubMed
2.
go back to reference Alam M, Bull AM, Thomas R, Amis AA (2013) A clinical device for measuring internal–external rotational laxity of the knee. Am J Sports Med 41(1):87–94CrossRefPubMed Alam M, Bull AM, Thomas R, Amis AA (2013) A clinical device for measuring internal–external rotational laxity of the knee. Am J Sports Med 41(1):87–94CrossRefPubMed
3.
go back to reference Becker R, Mauer C, Starke C, Brosz M, Zantop T, Lohmann CH, Schulze M (2013) Anteroposterior and rotational stability in fixed and mobile bearing unicondylar knee arthroplasty: a cadaveric study using the robotic force sensor system. Knee Surg Sports Traumatol Arthrosc 21(11):2427–2432CrossRefPubMed Becker R, Mauer C, Starke C, Brosz M, Zantop T, Lohmann CH, Schulze M (2013) Anteroposterior and rotational stability in fixed and mobile bearing unicondylar knee arthroplasty: a cadaveric study using the robotic force sensor system. Knee Surg Sports Traumatol Arthrosc 21(11):2427–2432CrossRefPubMed
4.
go back to reference Canata GL, Chiey A, Leoni T (2012) Surgical technique: does mini-invasive medial collateral ligament and posterior oblique ligament repair restore knee stability in combined chronic medial and ACL injuries? Clin Orthop Relat Res 470(3):791–797PubMedCentralCrossRefPubMed Canata GL, Chiey A, Leoni T (2012) Surgical technique: does mini-invasive medial collateral ligament and posterior oblique ligament repair restore knee stability in combined chronic medial and ACL injuries? Clin Orthop Relat Res 470(3):791–797PubMedCentralCrossRefPubMed
5.
go back to reference Collier MB, Engh CA Jr, McAuley JP, Engh GA (2007) Factors associated with the loss of thickness of polyethylene tibial bearings after knee arthroplasty. J Bone Joint Surg Am 89(6):1306–1314CrossRefPubMed Collier MB, Engh CA Jr, McAuley JP, Engh GA (2007) Factors associated with the loss of thickness of polyethylene tibial bearings after knee arthroplasty. J Bone Joint Surg Am 89(6):1306–1314CrossRefPubMed
6.
go back to reference Daniilidis K, Skwara A, Vieth V, Fuchs-Winkelmann S, Heindel W, Stuckmann V, Tibesku CO (2012) Highly conforming polyethylene inlays reduce the in vivo variability of knee joint kinematics after total knee arthroplasty. Knee 19(4):260–265CrossRefPubMed Daniilidis K, Skwara A, Vieth V, Fuchs-Winkelmann S, Heindel W, Stuckmann V, Tibesku CO (2012) Highly conforming polyethylene inlays reduce the in vivo variability of knee joint kinematics after total knee arthroplasty. Knee 19(4):260–265CrossRefPubMed
7.
8.
9.
go back to reference Gioe TJ, Stroemer ES, Santos ER (2007) All-polyethylene and metal-backed tibias have similar outcomes at 10 years: a randomized level I [corrected] evidence study. Clin Orthop Relat Res 455:212–218CrossRefPubMed Gioe TJ, Stroemer ES, Santos ER (2007) All-polyethylene and metal-backed tibias have similar outcomes at 10 years: a randomized level I [corrected] evidence study. Clin Orthop Relat Res 455:212–218CrossRefPubMed
10.
go back to reference Griffith CJ, Laprade RF, Coobs BR, Olson EJ (2007) Anatomy and biomechanics of the posterolateral aspect of the canine knee. J Orthop Res 25(9):1231–1242CrossRefPubMed Griffith CJ, Laprade RF, Coobs BR, Olson EJ (2007) Anatomy and biomechanics of the posterolateral aspect of the canine knee. J Orthop Res 25(9):1231–1242CrossRefPubMed
11.
go back to reference Griffith CJ, LaPrade RF, Johansen S, Armitage B, Wijdicks C, Engebretsen L (2009) Medial knee injury: part 1, static function of the individual components of the main medial knee structures. Am J Sports Med 37(9):1762–1770CrossRefPubMed Griffith CJ, LaPrade RF, Johansen S, Armitage B, Wijdicks C, Engebretsen L (2009) Medial knee injury: part 1, static function of the individual components of the main medial knee structures. Am J Sports Med 37(9):1762–1770CrossRefPubMed
12.
go back to reference Griffith CJ, Wijdicks CA, LaPrade RF, Armitage BM, Johansen S, Engebretsen L (2009) Force measurements on the posterior oblique ligament and superficial medial collateral ligament proximal and distal divisions to applied loads. Am J Sports Med 37(1):140–148CrossRefPubMed Griffith CJ, Wijdicks CA, LaPrade RF, Armitage BM, Johansen S, Engebretsen L (2009) Force measurements on the posterior oblique ligament and superficial medial collateral ligament proximal and distal divisions to applied loads. Am J Sports Med 37(1):140–148CrossRefPubMed
13.
go back to reference Haimes JL, Wroble RR, Grood ES, Noyes FR (1994) Role of the medial structures in the intact and anterior cruciate ligament-deficient knee. Limits of motion in the human knee. Am J Sports Med 22(3):402–409CrossRefPubMed Haimes JL, Wroble RR, Grood ES, Noyes FR (1994) Role of the medial structures in the intact and anterior cruciate ligament-deficient knee. Limits of motion in the human knee. Am J Sports Med 22(3):402–409CrossRefPubMed
14.
go back to reference Harner CD, Mauro CS, Lesniak BP, Romanowski JR (2009) Biomechanical consequences of a tear of the posterior root of the medial meniscus. Surgical technique. J Bone Joint Surg Am 91(Suppl 2):257–270PubMed Harner CD, Mauro CS, Lesniak BP, Romanowski JR (2009) Biomechanical consequences of a tear of the posterior root of the medial meniscus. Surgical technique. J Bone Joint Surg Am 91(Suppl 2):257–270PubMed
15.
go back to reference Ho JY, Gardiner A, Shah V, Steiner ME (2009) Equal kinematics between central anatomic single-bundle and double-bundle anterior cruciate ligament reconstructions. Arthroscopy 25(5):464–472CrossRefPubMed Ho JY, Gardiner A, Shah V, Steiner ME (2009) Equal kinematics between central anatomic single-bundle and double-bundle anterior cruciate ligament reconstructions. Arthroscopy 25(5):464–472CrossRefPubMed
16.
go back to reference Hughston JC, Barrett GR (1983) Acute anteromedial rotatory instability. Long-term results of surgical repair. J Bone Joint Surg Am 65(2):145–153PubMed Hughston JC, Barrett GR (1983) Acute anteromedial rotatory instability. Long-term results of surgical repair. J Bone Joint Surg Am 65(2):145–153PubMed
17.
go back to reference Hughston JC, Bowden JA, Andrews JR, Norwood LA (1980) Acute tears of the posterior cruciate ligament. Results of operative treatment. J Bone Joint Surg Am 62(3):438–450PubMed Hughston JC, Bowden JA, Andrews JR, Norwood LA (1980) Acute tears of the posterior cruciate ligament. Results of operative treatment. J Bone Joint Surg Am 62(3):438–450PubMed
18.
go back to reference Hughston JC, Eilers AF (1973) The role of the posterior oblique ligament in repairs of acute medial (collateral) ligament tears of the knee. J Bone Joint Surg Am 55(5):923–940PubMed Hughston JC, Eilers AF (1973) The role of the posterior oblique ligament in repairs of acute medial (collateral) ligament tears of the knee. J Bone Joint Surg Am 55(5):923–940PubMed
19.
go back to reference Koga H, Muneta T, Yagishita K, Ju YJ, Sekiya I (2012) Surgical management of grade 3 medial knee injuries combined with cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 20(1):88–94CrossRefPubMed Koga H, Muneta T, Yagishita K, Ju YJ, Sekiya I (2012) Surgical management of grade 3 medial knee injuries combined with cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 20(1):88–94CrossRefPubMed
20.
go back to reference LaPrade RF, Engebretsen AH, Ly TV, Johansen S, Wentorf FA, Engebretsen L (2007) The anatomy of the medial part of the knee. J Bone Joint Surg Am 89(9):2000–2010CrossRefPubMed LaPrade RF, Engebretsen AH, Ly TV, Johansen S, Wentorf FA, Engebretsen L (2007) The anatomy of the medial part of the knee. J Bone Joint Surg Am 89(9):2000–2010CrossRefPubMed
21.
go back to reference LaPrade RF, Wijdicks CA (2012) The management of injuries to the medial side of the knee. J Orthop Sports Phys Ther 42(3):221–233CrossRefPubMed LaPrade RF, Wijdicks CA (2012) The management of injuries to the medial side of the knee. J Orthop Sports Phys Ther 42(3):221–233CrossRefPubMed
22.
go back to reference Last RJ (1948) Some anatomical details of the knee joint. J Bone Joint Surg Br 30B(4):683–688PubMed Last RJ (1948) Some anatomical details of the knee joint. J Bone Joint Surg Br 30B(4):683–688PubMed
23.
go back to reference Levy IM, Torzilli PA, Warren RF (1982) The effect of medial meniscectomy on anterior-posterior motion of the knee. J Bone Joint Surg Am 64(6):883–888PubMed Levy IM, Torzilli PA, Warren RF (1982) The effect of medial meniscectomy on anterior-posterior motion of the knee. J Bone Joint Surg Am 64(6):883–888PubMed
24.
go back to reference Liu P, Wang J, Xu Y, Ao Y (2014) In situ forces and length patterns of the fibular collateral ligament under controlled loading: an in vitro biomechanical study using a robotic system. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-013-2824-1 PubMedCentral Liu P, Wang J, Xu Y, Ao Y (2014) In situ forces and length patterns of the fibular collateral ligament under controlled loading: an in vitro biomechanical study using a robotic system. Knee Surg Sports Traumatol Arthrosc. doi:10.​1007/​s00167-013-2824-1 PubMedCentral
25.
go back to reference Maes M, Luyckx T, Bellemans J (2013) Does a conservative tibial cut in conventional total knee arthroplasty violate the deep medial collateral ligament? Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-013-2606-9 PubMed Maes M, Luyckx T, Bellemans J (2013) Does a conservative tibial cut in conventional total knee arthroplasty violate the deep medial collateral ligament? Knee Surg Sports Traumatol Arthrosc. doi:10.​1007/​s00167-013-2606-9 PubMed
26.
go back to reference Nouta KA, Verra WC, Pijls BG, Schoones JW, Nelissen RG (2012) All-polyethylene tibial components are equal to metal-backed components: systematic review and meta-regression. Clin Orthop Relat Res 470(12):3549–3559PubMedCentralCrossRefPubMed Nouta KA, Verra WC, Pijls BG, Schoones JW, Nelissen RG (2012) All-polyethylene tibial components are equal to metal-backed components: systematic review and meta-regression. Clin Orthop Relat Res 470(12):3549–3559PubMedCentralCrossRefPubMed
27.
go back to reference O’Donnell T, Neil MJ (2010) The Repicci II(R) unicondylar knee arthroplasty: 9-year survivorship and function. Clin Orthop Relat Res 468(11):3094–3102PubMedCentralCrossRefPubMed O’Donnell T, Neil MJ (2010) The Repicci II(R) unicondylar knee arthroplasty: 9-year survivorship and function. Clin Orthop Relat Res 468(11):3094–3102PubMedCentralCrossRefPubMed
28.
go back to reference Pearle AD, Solomon DJ, Wanich T, Moreau-Gaudry A, Granchi CC, Wickiewicz TL, Warren RF (2007) Reliability of navigated knee stability examination: a cadaveric evaluation. Am J Sports Med 35(8):1315–1320CrossRefPubMed Pearle AD, Solomon DJ, Wanich T, Moreau-Gaudry A, Granchi CC, Wickiewicz TL, Warren RF (2007) Reliability of navigated knee stability examination: a cadaveric evaluation. Am J Sports Med 35(8):1315–1320CrossRefPubMed
29.
go back to reference Price CT, Allen WC (1978) Ligament repair in the knee with preservation of the meniscus. J Bone Joint Surg Am 60(1):61–65PubMed Price CT, Allen WC (1978) Ligament repair in the knee with preservation of the meniscus. J Bone Joint Surg Am 60(1):61–65PubMed
30.
go back to reference Ritter MA, Faris GW, Faris PM, Davis KE (2004) Total knee arthroplasty in patients with angular varus or valgus deformities of > or =20 degrees. J Arthroplasty 19(7):862–866CrossRefPubMed Ritter MA, Faris GW, Faris PM, Davis KE (2004) Total knee arthroplasty in patients with angular varus or valgus deformities of > or =20 degrees. J Arthroplasty 19(7):862–866CrossRefPubMed
31.
go back to reference Robinson JR, Bull AM, Thomas RR, Amis AA (2006) The role of the medial collateral ligament and posteromedial capsule in controlling knee laxity. Am J Sports Med 34(11):1815–1823CrossRefPubMed Robinson JR, Bull AM, Thomas RR, Amis AA (2006) The role of the medial collateral ligament and posteromedial capsule in controlling knee laxity. Am J Sports Med 34(11):1815–1823CrossRefPubMed
32.
go back to reference Robinson JR, Sanchez-Ballester J, Bull AM, Thomas Rde W, Amis AA (2004) The posteromedial corner revisited. An anatomical description of the passive restraining structures of the medial aspect of the human knee. J Bone Joint Surg Br 86(5):674–681CrossRefPubMed Robinson JR, Sanchez-Ballester J, Bull AM, Thomas Rde W, Amis AA (2004) The posteromedial corner revisited. An anatomical description of the passive restraining structures of the medial aspect of the human knee. J Bone Joint Surg Br 86(5):674–681CrossRefPubMed
33.
go back to reference Romanowski MR, Repicci JA (2002) Minimally invasive unicondylar arthroplasty: eight-year follow-up. J Knee Surg 15(1):17–22PubMed Romanowski MR, Repicci JA (2002) Minimally invasive unicondylar arthroplasty: eight-year follow-up. J Knee Surg 15(1):17–22PubMed
34.
go back to reference Selvarajah E, Hooper G (2009) Restoration of the joint line in total knee arthroplasty. J Arthroplasty 24(7):1099–1102CrossRefPubMed Selvarajah E, Hooper G (2009) Restoration of the joint line in total knee arthroplasty. J Arthroplasty 24(7):1099–1102CrossRefPubMed
35.
go back to reference Slocum DB, Larson RL (1968) Rotatory instability of the knee. Its pathogenesis and a clinical test to demonstrate its presence. J Bone Joint Surg Am 50(2):211–225PubMed Slocum DB, Larson RL (1968) Rotatory instability of the knee. Its pathogenesis and a clinical test to demonstrate its presence. J Bone Joint Surg Am 50(2):211–225PubMed
36.
go back to reference Warren LA, Marshall JL, Girgis F (1974) The prime static stabilizer of the medical side of the knee. J Bone Joint Surg Am 56(4):665–674PubMed Warren LA, Marshall JL, Girgis F (1974) The prime static stabilizer of the medical side of the knee. J Bone Joint Surg Am 56(4):665–674PubMed
37.
go back to reference Warren LF, Marshall JL (1979) The supporting structures and layers on the medial side of the knee: an anatomical analysis. J Bone Joint Surg Am 61(1):56–62PubMed Warren LF, Marshall JL (1979) The supporting structures and layers on the medial side of the knee: an anatomical analysis. J Bone Joint Surg Am 61(1):56–62PubMed
38.
go back to reference Woo SL, Orlando CA, Camp JF, Akeson WH (1986) Effects of postmortem storage by freezing on ligament tensile behavior. J Biomech 19(5):399–404CrossRefPubMed Woo SL, Orlando CA, Camp JF, Akeson WH (1986) Effects of postmortem storage by freezing on ligament tensile behavior. J Biomech 19(5):399–404CrossRefPubMed
39.
go back to reference Yagishita K, Muneta T, Ikeda H (2003) Step-by-step measurements of soft tissue balancing during total knee arthroplasty for patients with varus knees. J Arthroplasty 18(3):313–320CrossRefPubMed Yagishita K, Muneta T, Ikeda H (2003) Step-by-step measurements of soft tissue balancing during total knee arthroplasty for patients with varus knees. J Arthroplasty 18(3):313–320CrossRefPubMed
Metadata
Title
The role of the deep medial collateral ligament in controlling rotational stability of the knee
Authors
Etienne Cavaignac
Karel Carpentier
Regis Pailhé
Thomas Luyckx
Johan Bellemans
Publication date
01-10-2015
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 10/2015
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-014-3095-1

Other articles of this Issue 10/2015

Knee Surgery, Sports Traumatology, Arthroscopy 10/2015 Go to the issue