Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 2/2014

01-03-2014

The Role of Sex Differences in Autophagy in the Heart During Coxsackievirus B3-Induced Myocarditis

Authors: Andreas Koenig, Adam Sateriale, Ralph C. Budd, Sally A. Huber, Iwona A. Buskiewicz

Published in: Journal of Cardiovascular Translational Research | Issue 2/2014

Login to get access

Abstract

Under normal conditions, autophagy maintains cardiomyocyte health and integrity through turnover of organelles. During stress, oxygen and nutrient deprivation, or microbial infection, autophagy prolongs cardiomyocyte survival. Sex differences in induction of cell death may to some extent explain the disparity between the sexes in many human diseases. However, sex differences in gene expression, which regulate cell death and autophagy, were so far not taken in consideration to explain the sex bias of viral myocarditis. Coxsackievirus B3 (CVB3)-induced myocarditis is a sex-biased disease, with females being substantially less susceptible than males and sex hormones largely determine this bias. CVB3 was shown to induce and subvert the autophagosome for its optimal viral RNA replication. Gene expression analysis on mouse and human, healthy and CVB3-infected, cardiac samples of both sexes, suggests sex differences in autophagy-related gene expression. This review discusses the aspects of sex bias in autophagy induction in cardiomyocytes.
Literature
1.
go back to reference Deter, R. L., & De Duve, C. (1967). Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. The Journal of Cell Biology, 33(2), 437–449.PubMedCrossRef Deter, R. L., & De Duve, C. (1967). Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. The Journal of Cell Biology, 33(2), 437–449.PubMedCrossRef
3.
go back to reference Levine, B., & Klionsky, D. J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Developmental Cell, 6(4), 463–477.PubMedCrossRef Levine, B., & Klionsky, D. J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Developmental Cell, 6(4), 463–477.PubMedCrossRef
5.
go back to reference Mizushima, N., Ohsumi, Y., & Yoshimori, T. (2002). Autophagosome formation in mammalian cells. Cell Structure and Function, 27(6), 421–429.PubMedCrossRef Mizushima, N., Ohsumi, Y., & Yoshimori, T. (2002). Autophagosome formation in mammalian cells. Cell Structure and Function, 27(6), 421–429.PubMedCrossRef
6.
go back to reference Mehrpour, M., Esclatine, A., Beau, I., & Codogno, P. (2010). Autophagy in health and disease. 1. Regulation and significance of autophagy: an overview. American Journal of Physiology - Cellular Physiology, 298(4), C776–C785. doi:10.1152/ajpcell.00507.2009.CrossRef Mehrpour, M., Esclatine, A., Beau, I., & Codogno, P. (2010). Autophagy in health and disease. 1. Regulation and significance of autophagy: an overview. American Journal of Physiology - Cellular Physiology, 298(4), C776–C785. doi:10.​1152/​ajpcell.​00507.​2009.CrossRef
8.
go back to reference Mijaljica, D., Prescott, M., & Devenish, R. J. (2011). Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy, 7(7), 673–682.PubMedCrossRef Mijaljica, D., Prescott, M., & Devenish, R. J. (2011). Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy, 7(7), 673–682.PubMedCrossRef
9.
go back to reference Bandyopadhyay, U., & Cuervo, A. M. (2008). Entering the lysosome through a transient gate by chaperone-mediated autophagy. Autophagy, 4(8), 1101–1103.PubMedCentralPubMed Bandyopadhyay, U., & Cuervo, A. M. (2008). Entering the lysosome through a transient gate by chaperone-mediated autophagy. Autophagy, 4(8), 1101–1103.PubMedCentralPubMed
12.
go back to reference Hein, S., Kostin, S., Heling, A., Maeno, Y., & Schaper, J. (2000). The role of the cytoskeleton in heart failure. Cardiovascular Research, 45(2), 273–278.PubMedCrossRef Hein, S., Kostin, S., Heling, A., Maeno, Y., & Schaper, J. (2000). The role of the cytoskeleton in heart failure. Cardiovascular Research, 45(2), 273–278.PubMedCrossRef
16.
go back to reference Shimomura, H., Terasaki, F., Hayashi, T., Kitaura, Y., Isomura, T., & Suma, H. (2001). Autophagic degeneration as a possible mechanism of myocardial cell death in dilated cardiomyopathy. Japanese Circulation Journal, 65(11), 965–968.PubMedCrossRef Shimomura, H., Terasaki, F., Hayashi, T., Kitaura, Y., Isomura, T., & Suma, H. (2001). Autophagic degeneration as a possible mechanism of myocardial cell death in dilated cardiomyopathy. Japanese Circulation Journal, 65(11), 965–968.PubMedCrossRef
17.
go back to reference Miyata, S., Takemura, G., Kawase, Y., Li, Y., Okada, H., Maruyama, R., et al. (2006). Autophagic cardiomyocyte death in cardiomyopathic hamsters and its prevention by granulocyte colony-stimulating factor. The American Journal of Pathology, 168(2), 386–397. doi:10.2353/ajpath.2006.050137.PubMedCrossRef Miyata, S., Takemura, G., Kawase, Y., Li, Y., Okada, H., Maruyama, R., et al. (2006). Autophagic cardiomyocyte death in cardiomyopathic hamsters and its prevention by granulocyte colony-stimulating factor. The American Journal of Pathology, 168(2), 386–397. doi:10.​2353/​ajpath.​2006.​050137.PubMedCrossRef
18.
go back to reference Dammrich, J., & Pfeifer, U. (1983). Cardiac hypertrophy in rats after supravalvular aortic constriction. II. Inhibition of cellular autophagy in hypertrophying cardiomyocytes. Virchows Archiv. B, Cell Pathology Including Molecular Pathology, 43(3), 287–307.PubMedCrossRef Dammrich, J., & Pfeifer, U. (1983). Cardiac hypertrophy in rats after supravalvular aortic constriction. II. Inhibition of cellular autophagy in hypertrophying cardiomyocytes. Virchows Archiv. B, Cell Pathology Including Molecular Pathology, 43(3), 287–307.PubMedCrossRef
19.
go back to reference Pfeifer, U., Fohr, J., Wilhelm, W., & Dammrich, J. (1987). Short-term inhibition of cardiac cellular autophagy by isoproterenol. Journal of Molecular and Cellular Cardiology, 19(12), 1179–1184.PubMedCrossRef Pfeifer, U., Fohr, J., Wilhelm, W., & Dammrich, J. (1987). Short-term inhibition of cardiac cellular autophagy by isoproterenol. Journal of Molecular and Cellular Cardiology, 19(12), 1179–1184.PubMedCrossRef
20.
go back to reference Nakai, A., Yamaguchi, O., Takeda, T., Higuchi, Y., Hikoso, S., Taniike, M., et al. (2007). The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nature Medicine, 13(5), 619–624. doi:10.1038/nm1574.PubMedCrossRef Nakai, A., Yamaguchi, O., Takeda, T., Higuchi, Y., Hikoso, S., Taniike, M., et al. (2007). The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nature Medicine, 13(5), 619–624. doi:10.​1038/​nm1574.PubMedCrossRef
23.
go back to reference Kallman, F., Williams, R. C., Dulbecco, R., & Vogt, M. (1958). Fine structure of changes produced in cultured cells sampled at specified intervals during a single growth cycle of polio virus. The Journal of Biophysical and Biochemical Cytology, 4(3), 301–308.PubMedCentralPubMedCrossRef Kallman, F., Williams, R. C., Dulbecco, R., & Vogt, M. (1958). Fine structure of changes produced in cultured cells sampled at specified intervals during a single growth cycle of polio virus. The Journal of Biophysical and Biochemical Cytology, 4(3), 301–308.PubMedCentralPubMedCrossRef
24.
25.
go back to reference Gannage, M., Dormann, D., Albrecht, R., Dengjel, J., Torossi, T., Ramer, P. C., et al. (2009). Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host & Microbe, 6(4), 367–380. doi:10.1016/j.chom.2009.09.005.CrossRef Gannage, M., Dormann, D., Albrecht, R., Dengjel, J., Torossi, T., Ramer, P. C., et al. (2009). Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host & Microbe, 6(4), 367–380. doi:10.​1016/​j.​chom.​2009.​09.​005.CrossRef
26.
go back to reference Kyei, G. B., Dinkins, C., Davis, A. S., Roberts, E., Singh, S. B., Dong, C., et al. (2009). Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. The Journal of Cell Biology, 186(2), 255–268. doi:10.1083/jcb.200903070.PubMedCrossRef Kyei, G. B., Dinkins, C., Davis, A. S., Roberts, E., Singh, S. B., Dong, C., et al. (2009). Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. The Journal of Cell Biology, 186(2), 255–268. doi:10.​1083/​jcb.​200903070.PubMedCrossRef
27.
30.
go back to reference Harb, J. M., & Burch, G. E. (1975). Spherical aggregates of coxsackie B4 virus particles in mouse pancreas. Beiträge zur Pathologie, 156(2), 122–127.PubMedCrossRef Harb, J. M., & Burch, G. E. (1975). Spherical aggregates of coxsackie B4 virus particles in mouse pancreas. Beiträge zur Pathologie, 156(2), 122–127.PubMedCrossRef
31.
go back to reference Alirezaei, M., Flynn, C. T., Wood, M. R., & Whitton, J. L. (2012). Pancreatic acinar cell-specific autophagy disruption reduces coxsackievirus replication and pathogenesis in vivo. Cell Host & Microbe, 11(3), 298–305. doi:10.1016/j.chom.2012.01.014.CrossRef Alirezaei, M., Flynn, C. T., Wood, M. R., & Whitton, J. L. (2012). Pancreatic acinar cell-specific autophagy disruption reduces coxsackievirus replication and pathogenesis in vivo. Cell Host & Microbe, 11(3), 298–305. doi:10.​1016/​j.​chom.​2012.​01.​014.CrossRef
32.
go back to reference Jounai, N., Takeshita, F., Kobiyama, K., Sawano, A., Miyawaki, A., Xin, K. Q., et al. (2007). The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proceedings of the National Academy of Sciences of the United States of America, 104(35), 14050–14055. doi:10.1073/pnas.0704014104.PubMedCentralPubMedCrossRef Jounai, N., Takeshita, F., Kobiyama, K., Sawano, A., Miyawaki, A., Xin, K. Q., et al. (2007). The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proceedings of the National Academy of Sciences of the United States of America, 104(35), 14050–14055. doi:10.​1073/​pnas.​0704014104.PubMedCentralPubMedCrossRef
34.
go back to reference Patel, K. K., Miyoshi, H., Beatty, W. L., Head, R. D., Malvin, N. P., Cadwell, K., et al. (2013). Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. The EMBO Journal. doi:10.1038/emboj.2013.233. Patel, K. K., Miyoshi, H., Beatty, W. L., Head, R. D., Malvin, N. P., Cadwell, K., et al. (2013). Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. The EMBO Journal. doi:10.​1038/​emboj.​2013.​233.
36.
go back to reference Tanaka, Y., Guhde, G., Suter, A., Eskelinen, E. L., Hartmann, D., Lullmann-Rauch, R., et al. (2000). Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature, 406(6798), 902–906. doi:10.1038/35022595.PubMedCrossRef Tanaka, Y., Guhde, G., Suter, A., Eskelinen, E. L., Hartmann, D., Lullmann-Rauch, R., et al. (2000). Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature, 406(6798), 902–906. doi:10.​1038/​35022595.PubMedCrossRef
37.
go back to reference Kemball, C. C., Alirezaei, M., Flynn, C. T., Wood, M. R., Harkins, S., Kiosses, W. B., et al. (2010). Coxsackievirus infection induces autophagy-like vesicles and megaphagosomes in pancreatic acinar cells in vivo. Journal of Virology, 84(23), 12110–12124. doi:10.1128/JVI.01417-10.PubMedCentralPubMedCrossRef Kemball, C. C., Alirezaei, M., Flynn, C. T., Wood, M. R., Harkins, S., Kiosses, W. B., et al. (2010). Coxsackievirus infection induces autophagy-like vesicles and megaphagosomes in pancreatic acinar cells in vivo. Journal of Virology, 84(23), 12110–12124. doi:10.​1128/​JVI.​01417-10.PubMedCentralPubMedCrossRef
38.
go back to reference Gorbea, C., Makar, K. A., Pauschinger, M., Pratt, G., Bersola, J. L., Varela, J., et al. (2010). A role for Toll-like receptor 3 variants in host susceptibility to enteroviral myocarditis and dilated cardiomyopathy. The Journal of Biological Chemistry, 285(30), 23208–23223. doi:10.1074/jbc.M109.047464.PubMedCrossRef Gorbea, C., Makar, K. A., Pauschinger, M., Pratt, G., Bersola, J. L., Varela, J., et al. (2010). A role for Toll-like receptor 3 variants in host susceptibility to enteroviral myocarditis and dilated cardiomyopathy. The Journal of Biological Chemistry, 285(30), 23208–23223. doi:10.​1074/​jbc.​M109.​047464.PubMedCrossRef
39.
go back to reference Negishi, H., Osawa, T., Ogami, K., Ouyang, X., Sakaguchi, S., Koshiba, R., et al. (2008). A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20446–20451. doi:10.1073/pnas.0810372105.PubMedCentralPubMedCrossRef Negishi, H., Osawa, T., Ogami, K., Ouyang, X., Sakaguchi, S., Koshiba, R., et al. (2008). A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20446–20451. doi:10.​1073/​pnas.​0810372105.PubMedCentralPubMedCrossRef
40.
go back to reference Gangaplara, A., Massilamany, C., Brown, D. M., Delhon, G., Pattnaik, A. K., Chapman, N., et al. (2012). Coxsackievirus B3 infection leads to the generation of cardiac myosin heavy chain-alpha-reactive CD4 T cells in A/J mice. Clinical Immunology, 144(3), 237–249. doi:10.1016/j.clim.2012.07.003.PubMedCrossRef Gangaplara, A., Massilamany, C., Brown, D. M., Delhon, G., Pattnaik, A. K., Chapman, N., et al. (2012). Coxsackievirus B3 infection leads to the generation of cardiac myosin heavy chain-alpha-reactive CD4 T cells in A/J mice. Clinical Immunology, 144(3), 237–249. doi:10.​1016/​j.​clim.​2012.​07.​003.PubMedCrossRef
41.
go back to reference Ratcliffe, N. R., Hutchins, J., Barry, B., & Hickey, W. F. (2000). Chronic myocarditis induced by T cells reactive to a single cardiac myosin peptide: persistent inflammation, cardiac dilatation, myocardial scarring and continuous myocyte apoptosis. Journal of Autoimmunity, 15(3), 359–367. doi:10.1006/jaut.2000.0432.PubMedCrossRef Ratcliffe, N. R., Hutchins, J., Barry, B., & Hickey, W. F. (2000). Chronic myocarditis induced by T cells reactive to a single cardiac myosin peptide: persistent inflammation, cardiac dilatation, myocardial scarring and continuous myocyte apoptosis. Journal of Autoimmunity, 15(3), 359–367. doi:10.​1006/​jaut.​2000.​0432.PubMedCrossRef
42.
go back to reference Steinman, R. M., & Inaba, K. (1988). The binding of antigen presenting cells to T lymphocytes. Advances in Experimental Medicine and Biology, 237, 31–41.PubMedCrossRef Steinman, R. M., & Inaba, K. (1988). The binding of antigen presenting cells to T lymphocytes. Advances in Experimental Medicine and Biology, 237, 31–41.PubMedCrossRef
46.
go back to reference Porrello, E. R., & Delbridge, L. M. (2009). Cardiomyocyte autophagy is regulated by angiotensin II type 1 and type 2 receptors. Autophagy, 5(8), 1215–1216.PubMedCrossRef Porrello, E. R., & Delbridge, L. M. (2009). Cardiomyocyte autophagy is regulated by angiotensin II type 1 and type 2 receptors. Autophagy, 5(8), 1215–1216.PubMedCrossRef
52.
go back to reference Xiao, J., Moon, M., Yan, L., Nian, M., Zhang, Y., Liu, C., et al. (2012). Cellular FLICE-inhibitory protein protects against cardiac remodelling after myocardial infarction. Basic Research In Cardiology, 107(1), 239. doi:10.1007/s00395-011-0239-z.PubMedCrossRef Xiao, J., Moon, M., Yan, L., Nian, M., Zhang, Y., Liu, C., et al. (2012). Cellular FLICE-inhibitory protein protects against cardiac remodelling after myocardial infarction. Basic Research In Cardiology, 107(1), 239. doi:10.​1007/​s00395-011-0239-z.PubMedCrossRef
53.
go back to reference Kataoka, T. (2005). The caspase-8 modulator c-FLIP. Critical Reviews in Immunology, 25(1), 31–58.PubMedCrossRef Kataoka, T. (2005). The caspase-8 modulator c-FLIP. Critical Reviews in Immunology, 25(1), 31–58.PubMedCrossRef
54.
go back to reference Irmler, M., Thome, M., Hahne, M., Schneider, P., Hofmann, K., Steiner, V., et al. (1997). Inhibition of death receptor signals by cellular FLIP. Nature, 388(6638), 190–195. doi:10.1038/40657.PubMedCrossRef Irmler, M., Thome, M., Hahne, M., Schneider, P., Hofmann, K., Steiner, V., et al. (1997). Inhibition of death receptor signals by cellular FLIP. Nature, 388(6638), 190–195. doi:10.​1038/​40657.PubMedCrossRef
55.
go back to reference Thome, M., Schneider, P., Hofmann, K., Fickenscher, H., Meinl, E., Neipel, F., et al. (1997). Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature, 386(6624), 517–521. doi:10.1038/386517a0.PubMedCrossRef Thome, M., Schneider, P., Hofmann, K., Fickenscher, H., Meinl, E., Neipel, F., et al. (1997). Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature, 386(6624), 517–521. doi:10.​1038/​386517a0.PubMedCrossRef
56.
go back to reference Dohrman, A., Russell, J. Q., Cuenin, S., Fortner, K., Tschopp, J., & Budd, R. C. (2005). Cellular FLIP long form augments caspase activity and death of T cells through heterodimerization with and activation of caspase-8. Journal of Immunology, 175(1), 311–318. Dohrman, A., Russell, J. Q., Cuenin, S., Fortner, K., Tschopp, J., & Budd, R. C. (2005). Cellular FLIP long form augments caspase activity and death of T cells through heterodimerization with and activation of caspase-8. Journal of Immunology, 175(1), 311–318.
57.
go back to reference Micheau, O., Thome, M., Schneider, P., Holler, N., Tschopp, J., Nicholson, D. W., et al. (2002). The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. The Journal of Biological Chemistry, 277(47), 45162–45171. doi:10.1074/jbc.M206882200.PubMedCrossRef Micheau, O., Thome, M., Schneider, P., Holler, N., Tschopp, J., Nicholson, D. W., et al. (2002). The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. The Journal of Biological Chemistry, 277(47), 45162–45171. doi:10.​1074/​jbc.​M206882200.PubMedCrossRef
59.
64.
go back to reference Tegos, T. J., Kalodiki, E., Sabetai, M. M., & Nicolaides, A. N. (2001). The genesis of atherosclerosis and risk factors: a review. Angiology, 52(2), 89–98.PubMedCrossRef Tegos, T. J., Kalodiki, E., Sabetai, M. M., & Nicolaides, A. N. (2001). The genesis of atherosclerosis and risk factors: a review. Angiology, 52(2), 89–98.PubMedCrossRef
67.
go back to reference Woodruff, J. F. (1980). Viral myocarditis. A review. The American Journal of Pathology, 101(2), 425–484.PubMed Woodruff, J. F. (1980). Viral myocarditis. A review. The American Journal of Pathology, 101(2), 425–484.PubMed
69.
70.
go back to reference Murphy, P. J., & Campbell, S. S. (2007). Sex hormones, sleep, and core body temperature in older postmenopausal women. Sleep, 30(12), 1788–1794.PubMed Murphy, P. J., & Campbell, S. S. (2007). Sex hormones, sleep, and core body temperature in older postmenopausal women. Sleep, 30(12), 1788–1794.PubMed
71.
go back to reference Bouma, W., Noma, M., Kanemoto, S., Matsubara, M., Leshnower, B. G., Hinmon, R., et al. (2010). Sex-related resistance to myocardial ischemia–reperfusion injury is associated with high constitutive ARC expression. American Journal of Physiology Heart and Circulatory Physiology, 298(5), H1510–H1517. doi:10.1152/ajpheart.01021.2009.PubMedCrossRef Bouma, W., Noma, M., Kanemoto, S., Matsubara, M., Leshnower, B. G., Hinmon, R., et al. (2010). Sex-related resistance to myocardial ischemia–reperfusion injury is associated with high constitutive ARC expression. American Journal of Physiology Heart and Circulatory Physiology, 298(5), H1510–H1517. doi:10.​1152/​ajpheart.​01021.​2009.PubMedCrossRef
73.
go back to reference Sobolewska, A., Gajewska, M., Zarzynska, J., Gajkowska, B., & Motyl, T. (2009). IGF-I, EGF, and sex steroids regulate autophagy in bovine mammary epithelial cells via the mTOR pathway. European Journal of Cell Biology, 88(2), 117–130. doi:10.1016/j.ejcb.2008.09.004.PubMedCrossRef Sobolewska, A., Gajewska, M., Zarzynska, J., Gajkowska, B., & Motyl, T. (2009). IGF-I, EGF, and sex steroids regulate autophagy in bovine mammary epithelial cells via the mTOR pathway. European Journal of Cell Biology, 88(2), 117–130. doi:10.​1016/​j.​ejcb.​2008.​09.​004.PubMedCrossRef
74.
go back to reference Coto-Montes, A., Tomas-Zapico, C., Martinez-Fraga, J., Vega-Naredo, I., Sierra, V., Caballero, B., et al. (2009). Sexual autophagic differences in the androgen-dependent flank organ of Syrian hamsters. Journal of Andrology, 30(2), 113–121. doi:10.2164/jandrol.108.005355.PubMedCrossRef Coto-Montes, A., Tomas-Zapico, C., Martinez-Fraga, J., Vega-Naredo, I., Sierra, V., Caballero, B., et al. (2009). Sexual autophagic differences in the androgen-dependent flank organ of Syrian hamsters. Journal of Andrology, 30(2), 113–121. doi:10.​2164/​jandrol.​108.​005355.PubMedCrossRef
76.
go back to reference Gottlieb, R. A., & Mentzer, R. M., Jr. (2011). Cardioprotection through autophagy: ready for clinical trial? Autophagy, 7(4), 434–435.PubMedCrossRef Gottlieb, R. A., & Mentzer, R. M., Jr. (2011). Cardioprotection through autophagy: ready for clinical trial? Autophagy, 7(4), 434–435.PubMedCrossRef
77.
go back to reference Kanamori, H., Takemura, G., Goto, K., Maruyama, R., Ono, K., Nagao, K., et al. (2011). Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion. American Journal of Physiology Heart and Circulatory Physiology, 300(6), H2261–H2271. doi:10.1152/ajpheart.01056.2010.PubMedCrossRef Kanamori, H., Takemura, G., Goto, K., Maruyama, R., Ono, K., Nagao, K., et al. (2011). Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion. American Journal of Physiology Heart and Circulatory Physiology, 300(6), H2261–H2271. doi:10.​1152/​ajpheart.​01056.​2010.PubMedCrossRef
78.
go back to reference Przyklenk, K., Undyala, V. V., Wider, J., Sala-Mercado, J. A., Gottlieb, R. A., & Mentzer, R. M., Jr. (2011). Acute induction of autophagy as a novel strategy for cardioprotection: getting to the heart of the matter. Autophagy, 7(4), 432–433.PubMedCrossRef Przyklenk, K., Undyala, V. V., Wider, J., Sala-Mercado, J. A., Gottlieb, R. A., & Mentzer, R. M., Jr. (2011). Acute induction of autophagy as a novel strategy for cardioprotection: getting to the heart of the matter. Autophagy, 7(4), 432–433.PubMedCrossRef
80.
go back to reference Yoon, S., Woo, S. U., Kang, J. H., Kim, K., Kwon, M. H., Park, S., et al. (2010). STAT3 transcriptional factor activated by reactive oxygen species induces IL6 in starvation-induced autophagy of cancer cells. Autophagy, 6(8), 1125–1138.PubMedCrossRef Yoon, S., Woo, S. U., Kang, J. H., Kim, K., Kwon, M. H., Park, S., et al. (2010). STAT3 transcriptional factor activated by reactive oxygen species induces IL6 in starvation-induced autophagy of cancer cells. Autophagy, 6(8), 1125–1138.PubMedCrossRef
81.
83.
go back to reference Isensee, J., Witt, H., Pregla, R., Hetzer, R., Regitz-Zagrosek, V., & Noppinger, P. R. (2008). Sexually dimorphic gene expression in the heart of mice and men. Journal of Molecular Medicine (Berlin), 86(1), 61–74. doi:10.1007/s00109-007-0240-z.CrossRef Isensee, J., Witt, H., Pregla, R., Hetzer, R., Regitz-Zagrosek, V., & Noppinger, P. R. (2008). Sexually dimorphic gene expression in the heart of mice and men. Journal of Molecular Medicine (Berlin), 86(1), 61–74. doi:10.​1007/​s00109-007-0240-z.CrossRef
84.
go back to reference Onyimba, J. A., Coronado, M. J., Garton, A. E., Kim, J. B., Bucek, A., Bedja, D., et al. (2011). The innate immune response to coxsackievirus B3 predicts progression to cardiovascular disease and heart failure in male mice. Biology of Sex Differences, 2, 2. doi:10.1186/2042-6410-2-2.PubMedCentralPubMedCrossRef Onyimba, J. A., Coronado, M. J., Garton, A. E., Kim, J. B., Bucek, A., Bedja, D., et al. (2011). The innate immune response to coxsackievirus B3 predicts progression to cardiovascular disease and heart failure in male mice. Biology of Sex Differences, 2, 2. doi:10.​1186/​2042-6410-2-2.PubMedCentralPubMedCrossRef
85.
go back to reference Rabouille, C., Strous, G. J., Crapo, J. D., Geuze, H. J., & Slot, J. W. (1993). The differential degradation of two cytosolic proteins as a tool to monitor autophagy in hepatocytes by immunocytochemistry. The Journal of Cell Biology, 120(4), 897–908.PubMedCrossRef Rabouille, C., Strous, G. J., Crapo, J. D., Geuze, H. J., & Slot, J. W. (1993). The differential degradation of two cytosolic proteins as a tool to monitor autophagy in hepatocytes by immunocytochemistry. The Journal of Cell Biology, 120(4), 897–908.PubMedCrossRef
86.
87.
go back to reference Zhaorigetu, S., Yang, Z., Toma, I., McCaffrey, T. A., & Hu, C. A. (2011). Apolipoprotein L6, induced in atherosclerotic lesions, promotes apoptosis and blocks Beclin 1-dependent autophagy in atherosclerotic cells. The Journal of Biological Chemistry, 286(31), 27389–27398. doi:10.1074/jbc.M110.210245.PubMedCrossRef Zhaorigetu, S., Yang, Z., Toma, I., McCaffrey, T. A., & Hu, C. A. (2011). Apolipoprotein L6, induced in atherosclerotic lesions, promotes apoptosis and blocks Beclin 1-dependent autophagy in atherosclerotic cells. The Journal of Biological Chemistry, 286(31), 27389–27398. doi:10.​1074/​jbc.​M110.​210245.PubMedCrossRef
88.
go back to reference McLaughlin, L., Zhu, G., Mistry, M., Ley-Ebert, C., Stuart, W. D., Florio, C. J., et al. (2000). Apolipoprotein J/clusterin limits the severity of murine autoimmune myocarditis. The Journal of Clinical Investigation, 106(9), 1105–1113. doi:10.1172/JCI9037.PubMedCentralPubMedCrossRef McLaughlin, L., Zhu, G., Mistry, M., Ley-Ebert, C., Stuart, W. D., Florio, C. J., et al. (2000). Apolipoprotein J/clusterin limits the severity of murine autoimmune myocarditis. The Journal of Clinical Investigation, 106(9), 1105–1113. doi:10.​1172/​JCI9037.PubMedCentralPubMedCrossRef
89.
go back to reference Li, Y. Y., Ishihara, S., Aziz, M. M., Oka, A., Kusunoki, R., Tada, Y., et al. (2011). Autophagy is required for toll-like receptor-mediated interleukin-8 production in intestinal epithelial cells. International Journal of Molecular Medicine, 27(3), 337–344. doi:10.3892/ijmm.2011.596.PubMed Li, Y. Y., Ishihara, S., Aziz, M. M., Oka, A., Kusunoki, R., Tada, Y., et al. (2011). Autophagy is required for toll-like receptor-mediated interleukin-8 production in intestinal epithelial cells. International Journal of Molecular Medicine, 27(3), 337–344. doi:10.​3892/​ijmm.​2011.​596.PubMed
94.
go back to reference Fredericksen, B. L., Keller, B. C., Fornek, J., Katze, M. G., & Gale, M., Jr. (2008). Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1. Journal of Virology, 82(2), 609–616. doi:10.1128/JVI.01305-07.PubMedCentralPubMedCrossRef Fredericksen, B. L., Keller, B. C., Fornek, J., Katze, M. G., & Gale, M., Jr. (2008). Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1. Journal of Virology, 82(2), 609–616. doi:10.​1128/​JVI.​01305-07.PubMedCentralPubMedCrossRef
96.
go back to reference Shingai, M., Ebihara, T., Begum, N. A., Kato, A., Honma, T., Matsumoto, K., et al. (2007). Differential type I IFN-inducing abilities of wild-type versus vaccine strains of measles virus. The Journal of Immunology, 179(9), 6123–6133.PubMed Shingai, M., Ebihara, T., Begum, N. A., Kato, A., Honma, T., Matsumoto, K., et al. (2007). Differential type I IFN-inducing abilities of wild-type versus vaccine strains of measles virus. The Journal of Immunology, 179(9), 6123–6133.PubMed
98.
go back to reference Huber, S., Dohrman, A., Sartini, D., & Budd, R. C. (2006). Reduced myocarditis following Coxsackievirus infection in cellular FLICE inhibitory protein—long form-transgenic mice. Immunology, 119(4), 541–550.PubMedCrossRef Huber, S., Dohrman, A., Sartini, D., & Budd, R. C. (2006). Reduced myocarditis following Coxsackievirus infection in cellular FLICE inhibitory protein—long form-transgenic mice. Immunology, 119(4), 541–550.PubMedCrossRef
100.
go back to reference Bell, B. D., Leverrier, S., Weist, B. M., Newton, R. H., Arechiga, A. F., Luhrs, K. A., et al. (2008). FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proceedings of the National Academy of Sciences of the United States of America, 105(43), 16677–16682. doi:10.1073/pnas.0808597105.PubMedCentralPubMedCrossRef Bell, B. D., Leverrier, S., Weist, B. M., Newton, R. H., Arechiga, A. F., Luhrs, K. A., et al. (2008). FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proceedings of the National Academy of Sciences of the United States of America, 105(43), 16677–16682. doi:10.​1073/​pnas.​0808597105.PubMedCentralPubMedCrossRef
Metadata
Title
The Role of Sex Differences in Autophagy in the Heart During Coxsackievirus B3-Induced Myocarditis
Authors
Andreas Koenig
Adam Sateriale
Ralph C. Budd
Sally A. Huber
Iwona A. Buskiewicz
Publication date
01-03-2014
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 2/2014
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-013-9525-5

Other articles of this Issue 2/2014

Journal of Cardiovascular Translational Research 2/2014 Go to the issue