Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 8/2014

01-11-2014

The Role of Intrinsic Apoptotic Signaling in Hemorrhagic Shock-Induced Microvascular Endothelial Cell Barrier Dysfunction

Authors: Devendra A. Sawant, Binu Tharakan, Felicia A. Hunter, Ed W. Childs

Published in: Journal of Cardiovascular Translational Research | Issue 8/2014

Login to get access

Abstract

Hemorrhagic shock leads to endothelial cell barrier dysfunction resulting in microvascular hyperpermeability. Hemorrhagic shock-induced microvascular hyperpermeability is associated with worse clinical outcomes in patients with traumatic injuries. The results from our laboratory have illustrated a possible pathophysiological mechanism showing involvement of mitochondria-mediated “intrinsic” apoptotic signaling in regulating hemorrhagic shock-induced microvascular hyperpermeability. Hemorrhagic shock results in overexpression of Bcl-2 family of pro-apoptotic protein, BAK, in the microvascular endothelial cells. The increase in BAK initiates “intrinsic” apoptotic signaling cascade with the release of mitochondrial cytochrome c in the cytoplasm and activation of downstream effector caspase-3, leading to loss of endothelial cell barrier integrity. Thus, this review article offers a brief overview of important findings from our past and present research work along with new leads for future research. The summary of our research work will provide information leading to different avenues in developing novel strategies against microvascular hyperpermeability following hemorrhagic shock.
Literature
1.
go back to reference Childs, E. W., Udobi, K. F., Hunter, F. A., & Dhevan, V. (2005). Evidence of transcellular albumin transport after hemorrhagic shock. Shock, 23, 565–570.PubMed Childs, E. W., Udobi, K. F., Hunter, F. A., & Dhevan, V. (2005). Evidence of transcellular albumin transport after hemorrhagic shock. Shock, 23, 565–570.PubMed
2.
go back to reference Dewar, D., Moore, F. A., Moore, E. E., & Balogh, Z. (2009). Postinjury multiple organ failure. Injury, 40, 912–918.PubMedCrossRef Dewar, D., Moore, F. A., Moore, E. E., & Balogh, Z. (2009). Postinjury multiple organ failure. Injury, 40, 912–918.PubMedCrossRef
6.
go back to reference Yuan, S. Y., & Rigor, R. R. (2010). Regulation of endothelial barrier function. In: Colloquium series on integrated systems physiology: from molecule to function to disease. San Rafael: Morgan & Claypool Life Sciences. Yuan, S. Y., & Rigor, R. R. (2010). Regulation of endothelial barrier function. In: Colloquium series on integrated systems physiology: from molecule to function to disease. San Rafael: Morgan & Claypool Life Sciences.
7.
go back to reference Vandenbroucke, E., Mehta, D., Minshall, R., & Malik, A. B. (2008). Regulation of endothelial junctional permeability. Annals New York Academy Science, 1123, 134–145.CrossRef Vandenbroucke, E., Mehta, D., Minshall, R., & Malik, A. B. (2008). Regulation of endothelial junctional permeability. Annals New York Academy Science, 1123, 134–145.CrossRef
8.
go back to reference Mehta, D., & Malik, A. B. (2006). Signaling mechanisms regulating endothelial permeability. Physiological Reviews, 86, 279–367.PubMedCrossRef Mehta, D., & Malik, A. B. (2006). Signaling mechanisms regulating endothelial permeability. Physiological Reviews, 86, 279–367.PubMedCrossRef
9.
go back to reference Minshall, R. D., Sessa, W. C., Stan, R. V., Anderson, R. G., & Malik, A. B. (2003). Caveolin regulation of endothelial function. American Journal of Physiology. Lung Cellular and Molecular Physiology, 285, L1179–1183.PubMed Minshall, R. D., Sessa, W. C., Stan, R. V., Anderson, R. G., & Malik, A. B. (2003). Caveolin regulation of endothelial function. American Journal of Physiology. Lung Cellular and Molecular Physiology, 285, L1179–1183.PubMed
10.
go back to reference Simionescu, N., Simonionescu, M., & Palade, G. E. (1978). Open junctions in the endothelium of the postcapillary venules of the diaphragm. Journal of Cell Biology, 79, 27–44.PubMedCrossRef Simionescu, N., Simonionescu, M., & Palade, G. E. (1978). Open junctions in the endothelium of the postcapillary venules of the diaphragm. Journal of Cell Biology, 79, 27–44.PubMedCrossRef
11.
go back to reference Niessen, C. M. (2007). Tight junctions/adherens junctions: basic structure and function. Journal of Investigative Dermatology, 127, 2525–2532.PubMedCrossRef Niessen, C. M. (2007). Tight junctions/adherens junctions: basic structure and function. Journal of Investigative Dermatology, 127, 2525–2532.PubMedCrossRef
12.
go back to reference Gianfranco, B., & Dejana, E. (2008). Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiological Reviews, 84, 869–901. Gianfranco, B., & Dejana, E. (2008). Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiological Reviews, 84, 869–901.
13.
go back to reference Lampugnani, M. G., et al. (1995). The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin). Journal of Cell Biology, 129, 203–217.PubMedCrossRef Lampugnani, M. G., et al. (1995). The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin). Journal of Cell Biology, 129, 203–217.PubMedCrossRef
14.
go back to reference Hartsock, A., & Nelson, W. J. (2008). Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochimica et Biophysica Acta, 1778, 660–669.PubMedCentralPubMedCrossRef Hartsock, A., & Nelson, W. J. (2008). Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochimica et Biophysica Acta, 1778, 660–669.PubMedCentralPubMedCrossRef
15.
go back to reference Kanlaya, R., Pattanakitsakul, S. N., Sinchaikul, S., Chen, S. T., & Thongboonkerd, V. (2009). Alterations in actin cytoskeletal assembly and junctional protein complexes in human endothelial cells induced by dengue virus infection and mimicry of leukocyte transendothelial migration. Journal of Proteome Research, 8, 2551–2262.PubMedCrossRef Kanlaya, R., Pattanakitsakul, S. N., Sinchaikul, S., Chen, S. T., & Thongboonkerd, V. (2009). Alterations in actin cytoskeletal assembly and junctional protein complexes in human endothelial cells induced by dengue virus infection and mimicry of leukocyte transendothelial migration. Journal of Proteome Research, 8, 2551–2262.PubMedCrossRef
16.
go back to reference Fulda, S., & Debatin, K. M. (2006). Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene, 25, 4798–4811.PubMedCrossRef Fulda, S., & Debatin, K. M. (2006). Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene, 25, 4798–4811.PubMedCrossRef
18.
go back to reference Dejana, E., Spagnuolo, R., & Bazzoni, G. (2001). Interendothelial junctions and their role in the control of angiogenesis, vascular permeability and leukocyte transmigration. Thrombosis and Haemostasis, 86, 308–315.PubMed Dejana, E., Spagnuolo, R., & Bazzoni, G. (2001). Interendothelial junctions and their role in the control of angiogenesis, vascular permeability and leukocyte transmigration. Thrombosis and Haemostasis, 86, 308–315.PubMed
19.
go back to reference Dejana, E., Orsenigo, F., & Lampugnani, M. G. (2008). The role of adherens junctions and VE-cadherin in the control of vascular permeability. Journal of Cell Science, 121, 2115–2122.PubMedCrossRef Dejana, E., Orsenigo, F., & Lampugnani, M. G. (2008). The role of adherens junctions and VE-cadherin in the control of vascular permeability. Journal of Cell Science, 121, 2115–2122.PubMedCrossRef
20.
go back to reference Childs, E. W., Tharakan, B., Hunter, F. A., Tinsley, J. H., & Cao, X. (2007). Apoptotic signaling induces hyperpermeability following hemorrhagic shock. American Journal of Physiology Heart and Circulatory Physiology, 292, H3179–H3189.PubMedCrossRef Childs, E. W., Tharakan, B., Hunter, F. A., Tinsley, J. H., & Cao, X. (2007). Apoptotic signaling induces hyperpermeability following hemorrhagic shock. American Journal of Physiology Heart and Circulatory Physiology, 292, H3179–H3189.PubMedCrossRef
21.
go back to reference Moffitt, K. L., Martin, S. L., & Walker, B. (2010). From sentencing to execution—the processes of apoptosis. Journal of Pharmacy and Pharmacology, 62, 547–562.PubMed Moffitt, K. L., Martin, S. L., & Walker, B. (2010). From sentencing to execution—the processes of apoptosis. Journal of Pharmacy and Pharmacology, 62, 547–562.PubMed
22.
go back to reference Galluzzi, L., Blomgren, K., & Kroemer, G. (2009). Mitochondrial membrane permeabilization in neuronal injury. Nature Review Neuroscience, 10, 481–494.CrossRef Galluzzi, L., Blomgren, K., & Kroemer, G. (2009). Mitochondrial membrane permeabilization in neuronal injury. Nature Review Neuroscience, 10, 481–494.CrossRef
23.
go back to reference Childs, E. W., Tharakan, B., Hunter, F. A., Isong, M., & Liggins, N. D. (2008). Mitochondrial complex III is involved in proapoptotic BAK-induced microvascular endothelial cell hyperpermeability. Shock, 29, 636–641.PubMedCrossRef Childs, E. W., Tharakan, B., Hunter, F. A., Isong, M., & Liggins, N. D. (2008). Mitochondrial complex III is involved in proapoptotic BAK-induced microvascular endothelial cell hyperpermeability. Shock, 29, 636–641.PubMedCrossRef
24.
go back to reference Roumen, R. M., Hendriks, T., van der Ven-Jongekrijg, J., Nieuwenhuijzen, G. A., Sauerwein, R. W., van der Meer, J. W., & Gori, R. J. (1993). Cytokine patterns in patients after major vascular surgery, hemorrhagic shock, and severe blunt trauma. Relation with subsequent adult respiratory distress syndrome and multiple organ failure. Annals of Surgery, 218, 769–776.PubMedCentralPubMedCrossRef Roumen, R. M., Hendriks, T., van der Ven-Jongekrijg, J., Nieuwenhuijzen, G. A., Sauerwein, R. W., van der Meer, J. W., & Gori, R. J. (1993). Cytokine patterns in patients after major vascular surgery, hemorrhagic shock, and severe blunt trauma. Relation with subsequent adult respiratory distress syndrome and multiple organ failure. Annals of Surgery, 218, 769–776.PubMedCentralPubMedCrossRef
25.
go back to reference Sawant, D. A., Tharakan, B., Wilson, R. L., Stagg, H. W., Hunter, F. A., & Childs, E. W. (2013). Regulation of tumor necrosis factor-α-induced microvascular endothelial cell hyperpermeability by recombinant B-cell lymphoma-extra large. Journal of Surgical Research, 184(1), 628–37.PubMedCentralPubMedCrossRef Sawant, D. A., Tharakan, B., Wilson, R. L., Stagg, H. W., Hunter, F. A., & Childs, E. W. (2013). Regulation of tumor necrosis factor-α-induced microvascular endothelial cell hyperpermeability by recombinant B-cell lymphoma-extra large. Journal of Surgical Research, 184(1), 628–37.PubMedCentralPubMedCrossRef
26.
go back to reference Petrache, I., Verin, A. D., Crow, M. T., et al. (2001). Differential effect of MLC kinase in TNF-alpha-induced endothelial cell apoptosis and barrier dysfunction. American Journal of Physiology. Lung Cellular and Molecular Physiology, 280, L1168–1178.PubMed Petrache, I., Verin, A. D., Crow, M. T., et al. (2001). Differential effect of MLC kinase in TNF-alpha-induced endothelial cell apoptosis and barrier dysfunction. American Journal of Physiology. Lung Cellular and Molecular Physiology, 280, L1168–1178.PubMed
27.
go back to reference Petrache, I., Birukova, A., Ramirez, S. I., et al. (2003). The role of the microtubules in tumor necrosis factor-alpha-induced endothelial cell permeability. American Journal of Respiratory Cell and Molecular Biology, 28, 574–581.PubMedCrossRef Petrache, I., Birukova, A., Ramirez, S. I., et al. (2003). The role of the microtubules in tumor necrosis factor-alpha-induced endothelial cell permeability. American Journal of Respiratory Cell and Molecular Biology, 28, 574–581.PubMedCrossRef
28.
go back to reference Goldblum, S. E., Hennig, B., Jay, M., et al. (1989). Tumor necrosis factor alpha-induced pulmonary vascular endothelial injury. Infection and Immunity, 57, 1218–1226.PubMedCentralPubMed Goldblum, S. E., Hennig, B., Jay, M., et al. (1989). Tumor necrosis factor alpha-induced pulmonary vascular endothelial injury. Infection and Immunity, 57, 1218–1226.PubMedCentralPubMed
29.
go back to reference Campbell, M. T., Dagher, P., Hile, K. L., et al. (2008). Tumor necrosis factor-α induces intrinsic apoptotic signaling during renal obstruction through truncated Bid activation. Journal of Urology, 180, 2694–2700.PubMedCentralPubMedCrossRef Campbell, M. T., Dagher, P., Hile, K. L., et al. (2008). Tumor necrosis factor-α induces intrinsic apoptotic signaling during renal obstruction through truncated Bid activation. Journal of Urology, 180, 2694–2700.PubMedCentralPubMedCrossRef
30.
go back to reference Sawant, D. A., Tharakan, B., Tobin, R. P., Stagg, H. W., Hunter, F. A., Newell, M. K., Smythe, W. R., & Childs, E. W. (2013). Inhibition of Fas-Fas ligand interaction attenuates microvascular hyperpermeability following hemorrhagic shock. Shock, 39, 161–167.PubMedCentralPubMedCrossRef Sawant, D. A., Tharakan, B., Tobin, R. P., Stagg, H. W., Hunter, F. A., Newell, M. K., Smythe, W. R., & Childs, E. W. (2013). Inhibition of Fas-Fas ligand interaction attenuates microvascular hyperpermeability following hemorrhagic shock. Shock, 39, 161–167.PubMedCentralPubMedCrossRef
31.
go back to reference Reap, E. A., Roof, K., Maynor, K., Borrero, M., Booker, J., & Cohen, P. L. (1997). Radiation and stress-induced apoptosis: a role for Fas/Fas ligand interactions. Proceedings of the National Academy of Science, 94, 5750–5755.CrossRef Reap, E. A., Roof, K., Maynor, K., Borrero, M., Booker, J., & Cohen, P. L. (1997). Radiation and stress-induced apoptosis: a role for Fas/Fas ligand interactions. Proceedings of the National Academy of Science, 94, 5750–5755.CrossRef
32.
go back to reference Sawant, D. A., Tharakan, B., Tobin, R. P., Reilly, J., Hunter, F. A., Newell, M. K., Smythe, W. R., & Childs, E. W. (2013). Microvascular endothelial cell hyperpermeability induced by endogenous caspase 3 activator staurosporine. Journal Trauma Acute Care Surgery, 74, 516–523.CrossRef Sawant, D. A., Tharakan, B., Tobin, R. P., Reilly, J., Hunter, F. A., Newell, M. K., Smythe, W. R., & Childs, E. W. (2013). Microvascular endothelial cell hyperpermeability induced by endogenous caspase 3 activator staurosporine. Journal Trauma Acute Care Surgery, 74, 516–523.CrossRef
33.
go back to reference Childs, E. W., Tharakan, B., Byrge, N., Tinsley, J. H., Hunter, F. A., & Smythe, W. R. (2008). Angiopoietin-1 inhibits intrinsic apoptotic signaling and vascular hyperpermeability following hemorrhagic shock. American Journal of Physiology Heart and Circulatory Physiology, 294, H2285–H2295.PubMedCrossRef Childs, E. W., Tharakan, B., Byrge, N., Tinsley, J. H., Hunter, F. A., & Smythe, W. R. (2008). Angiopoietin-1 inhibits intrinsic apoptotic signaling and vascular hyperpermeability following hemorrhagic shock. American Journal of Physiology Heart and Circulatory Physiology, 294, H2285–H2295.PubMedCrossRef
34.
go back to reference Gamble, J. R., Drew, J., Trezise, L., Underwood, A., Parsons, M., Kasminkas, L., Rudge, J., Yancopoulos, G., & Vadas, M. A. (2000). Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circulation Research, 87, 603–607.PubMedCrossRef Gamble, J. R., Drew, J., Trezise, L., Underwood, A., Parsons, M., Kasminkas, L., Rudge, J., Yancopoulos, G., & Vadas, M. A. (2000). Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circulation Research, 87, 603–607.PubMedCrossRef
35.
go back to reference Tharakan, B., Hunter, F. A., Smythe, W. R., & Childs, E. W. (2008). Alpha-lipoic acid attenuates hemorrhagic shock-induced apoptotic signaling and vascular hyperpermeability. Shock, 30, 571–577.PubMedCrossRef Tharakan, B., Hunter, F. A., Smythe, W. R., & Childs, E. W. (2008). Alpha-lipoic acid attenuates hemorrhagic shock-induced apoptotic signaling and vascular hyperpermeability. Shock, 30, 571–577.PubMedCrossRef
36.
go back to reference Eremeeva, M. E., & Silverman, D. J. (1998). Effects of the antioxidant alpha-lipoic acid on human umbilical vein endothelial cells infected with Rickettsia rickettsii. Infection and Immunity, 66, 2290–2299.PubMedCentralPubMed Eremeeva, M. E., & Silverman, D. J. (1998). Effects of the antioxidant alpha-lipoic acid on human umbilical vein endothelial cells infected with Rickettsia rickettsii. Infection and Immunity, 66, 2290–2299.PubMedCentralPubMed
37.
go back to reference Ola, M. S., Nawaz, M., & Ahsan, H. (2011). Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Molecular and Cellular Biochemistry, 351, 41–58.PubMedCrossRef Ola, M. S., Nawaz, M., & Ahsan, H. (2011). Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Molecular and Cellular Biochemistry, 351, 41–58.PubMedCrossRef
38.
go back to reference Distelhorst, C. W., & Bootman, M. D. (2011). Bcl-2 interaction with the inositol 1,4,5-trisphosphate receptor: role in Ca (2+) signaling and disease. Cell Calcium, 50(3), 234–241.PubMedCentralPubMedCrossRef Distelhorst, C. W., & Bootman, M. D. (2011). Bcl-2 interaction with the inositol 1,4,5-trisphosphate receptor: role in Ca (2+) signaling and disease. Cell Calcium, 50(3), 234–241.PubMedCentralPubMedCrossRef
39.
go back to reference Tornero, D., Posadas, I., & Ceña, V. (2011). Bcl-x (L) blocks a mitochondrial inner membrane channel and prevents Ca2+ overload-mediated cell death. PloS One, 6, e20423.PubMedCentralPubMedCrossRef Tornero, D., Posadas, I., & Ceña, V. (2011). Bcl-x (L) blocks a mitochondrial inner membrane channel and prevents Ca2+ overload-mediated cell death. PloS One, 6, e20423.PubMedCentralPubMedCrossRef
40.
go back to reference Childs, E. W., Tharakan, B., Nurudeen, S., Delmas, T. L., Hellman, J., Christie, T., Hunter, F. A., & Smythe, W. R. (2010). Cyclosporine a—protection against microvascular hyperpermeability is calcineurin independent. American Journal of Surgery, 199, 542–548.PubMedCentralPubMedCrossRef Childs, E. W., Tharakan, B., Nurudeen, S., Delmas, T. L., Hellman, J., Christie, T., Hunter, F. A., & Smythe, W. R. (2010). Cyclosporine a—protection against microvascular hyperpermeability is calcineurin independent. American Journal of Surgery, 199, 542–548.PubMedCentralPubMedCrossRef
41.
go back to reference Crabtree, G. R. (2001). Calcium, calcineurin, and the control of transcription. Journal of Biological Chemistry, 276, 2313–2316.PubMedCrossRef Crabtree, G. R. (2001). Calcium, calcineurin, and the control of transcription. Journal of Biological Chemistry, 276, 2313–2316.PubMedCrossRef
42.
go back to reference Armstrong, J. S., Yang, H., Duan, W., & Whiteman, M. (2004). Cytochrome bc (1) regulates the mitochondrial permeability transition by two distinct pathways. Journal of Biological Chemistry, 279, 50420–50428.PubMedCrossRef Armstrong, J. S., Yang, H., Duan, W., & Whiteman, M. (2004). Cytochrome bc (1) regulates the mitochondrial permeability transition by two distinct pathways. Journal of Biological Chemistry, 279, 50420–50428.PubMedCrossRef
43.
go back to reference Tharakan, B., Hunter, F. A., Smythe, W. R., & Childs, E. W. (2010). Curcumin inhibits reactive oxygen species formation and vascular hyperpermeability following haemorrhagic shock. Clinical and Experimental Pharmacology and Physiology, 37, 939–944.PubMedCrossRef Tharakan, B., Hunter, F. A., Smythe, W. R., & Childs, E. W. (2010). Curcumin inhibits reactive oxygen species formation and vascular hyperpermeability following haemorrhagic shock. Clinical and Experimental Pharmacology and Physiology, 37, 939–944.PubMedCrossRef
44.
go back to reference Teiten, M. H., Gaigneaux, A., Chateauvieux, S., Billing, A. M., Planchon, S., Fack, F., Renaut, J., Mack, F., Muller, C. P., Dicato, M., & Diederich, M. (2012). Identification of differentially expressed proteins in curcumin-treated prostate cancer cell lines. OMICS, 16, 289–300.PubMedCrossRef Teiten, M. H., Gaigneaux, A., Chateauvieux, S., Billing, A. M., Planchon, S., Fack, F., Renaut, J., Mack, F., Muller, C. P., Dicato, M., & Diederich, M. (2012). Identification of differentially expressed proteins in curcumin-treated prostate cancer cell lines. OMICS, 16, 289–300.PubMedCrossRef
45.
go back to reference Childs, E. W., Tharakan, B., Hunter, F. A., & Smythe, W. R. (2010). 17beta-estradiol mediated protection against vascular leak after hemorrhagic shock: role of estrogen receptors and apoptotic signaling. Shock, 34, 229–235.PubMedCentralPubMedCrossRef Childs, E. W., Tharakan, B., Hunter, F. A., & Smythe, W. R. (2010). 17beta-estradiol mediated protection against vascular leak after hemorrhagic shock: role of estrogen receptors and apoptotic signaling. Shock, 34, 229–235.PubMedCentralPubMedCrossRef
46.
go back to reference Kawasaki, T., & Chaudry, I. H. (2012). The effects of estrogen on various organs: therapeutic approach for sepsis, trauma, and reperfusion injury. Part 1: central nervous system, lung, and heart. Journal of Anesthesia, 26, 883–891.PubMedCrossRef Kawasaki, T., & Chaudry, I. H. (2012). The effects of estrogen on various organs: therapeutic approach for sepsis, trauma, and reperfusion injury. Part 1: central nervous system, lung, and heart. Journal of Anesthesia, 26, 883–891.PubMedCrossRef
47.
go back to reference Harris, E. S., & Nelson, W. J. (2010). VE-cadherin: at the front, center, and sides of endothelial cell organization and function. Current Opinion in Cell Biology, 22, 651–658.PubMedCentralPubMedCrossRef Harris, E. S., & Nelson, W. J. (2010). VE-cadherin: at the front, center, and sides of endothelial cell organization and function. Current Opinion in Cell Biology, 22, 651–658.PubMedCentralPubMedCrossRef
48.
go back to reference Dejana, E., Taddei, A., & Randi, A. M. (2007). Foxs and Ets in the transcriptional regulation of endothelial cell differentiation and angiogenesis. Biochimica et Biophysica Acta, 1775, 298–312.PubMed Dejana, E., Taddei, A., & Randi, A. M. (2007). Foxs and Ets in the transcriptional regulation of endothelial cell differentiation and angiogenesis. Biochimica et Biophysica Acta, 1775, 298–312.PubMed
49.
go back to reference Furuyama, T., Kitayama, K., Shimoda, Y., Ogawa, M., Sone, K., Yoshida-Araki, K., Hisatsune, H., Nishikawa, S., Nakayama, K., Ikeda, K., Motoyama, N., & Mori, N. (2004). Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. Journal of Biological Chemistry, 279, 34741–34749.PubMedCrossRef Furuyama, T., Kitayama, K., Shimoda, Y., Ogawa, M., Sone, K., Yoshida-Araki, K., Hisatsune, H., Nishikawa, S., Nakayama, K., Ikeda, K., Motoyama, N., & Mori, N. (2004). Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. Journal of Biological Chemistry, 279, 34741–34749.PubMedCrossRef
50.
go back to reference Taddei, A., Giampietro, C., Conti, A., Orsenigo, F., Breviario, F., Pirazzoli, V., Potente, M., Daly, C., Dimmeler, S., & Dejana, E. (2008). Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nature Cell Biology, 10, 923–934.PubMedCrossRef Taddei, A., Giampietro, C., Conti, A., Orsenigo, F., Breviario, F., Pirazzoli, V., Potente, M., Daly, C., Dimmeler, S., & Dejana, E. (2008). Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nature Cell Biology, 10, 923–934.PubMedCrossRef
51.
go back to reference Steinhusen, U., Badock, V., Baurer, A., Behrens, J., Wittman-Liebold, B., Dörken, B., & Bommert, K. (2000). Apoptosis-induced cleavage of beta-catenin by caspase-3 results in proteolytic fragments with reduced transactivation potential. Journal of Biological Chemistry, 275, 16345–16353.PubMedCrossRef Steinhusen, U., Badock, V., Baurer, A., Behrens, J., Wittman-Liebold, B., Dörken, B., & Bommert, K. (2000). Apoptosis-induced cleavage of beta-catenin by caspase-3 results in proteolytic fragments with reduced transactivation potential. Journal of Biological Chemistry, 275, 16345–16353.PubMedCrossRef
52.
go back to reference Hinck, L., Näthke, I. S., Papkoff, J., & Nelson, W. J. (1994). Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. The Journal of Cell Biology, 125, 1327–1340.PubMedCrossRef Hinck, L., Näthke, I. S., Papkoff, J., & Nelson, W. J. (1994). Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. The Journal of Cell Biology, 125, 1327–1340.PubMedCrossRef
53.
go back to reference Lilien, J., & Balsamo, J. (2005). The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Current Opinion in Cell Biology, 17, 459–465.PubMedCrossRef Lilien, J., & Balsamo, J. (2005). The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Current Opinion in Cell Biology, 17, 459–465.PubMedCrossRef
54.
go back to reference Miller, J. R., Hocking, A. M., Brown, J. D., & Moon, R. T. (1999). Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene, 18, 7860–7872.PubMedCrossRef Miller, J. R., Hocking, A. M., Brown, J. D., & Moon, R. T. (1999). Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene, 18, 7860–7872.PubMedCrossRef
55.
go back to reference Novak, A., & Dedhar, S. (1999). Signaling through beta-catenin and Lef/Tcf. Cellular and Molecular Life Sciences, 56, 523–537.PubMedCrossRef Novak, A., & Dedhar, S. (1999). Signaling through beta-catenin and Lef/Tcf. Cellular and Molecular Life Sciences, 56, 523–537.PubMedCrossRef
56.
go back to reference Dejana, E. (2010). The role of wnt signaling in physiological and pathological angiogenesis. Circulation Research, 107, 943–952.PubMedCrossRef Dejana, E. (2010). The role of wnt signaling in physiological and pathological angiogenesis. Circulation Research, 107, 943–952.PubMedCrossRef
57.
go back to reference Davidson, S. M., & Duchen, M. R. (2007). Endothelial mitochondria: contributing to vascular function and disease. Circulation Research, 100, 1128–1141.PubMedCrossRef Davidson, S. M., & Duchen, M. R. (2007). Endothelial mitochondria: contributing to vascular function and disease. Circulation Research, 100, 1128–1141.PubMedCrossRef
58.
go back to reference Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E., & Chaudhuri, G. (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proceedings of the National Academy of Sciences of the United States of America, 84, 9265–9269.PubMedCentralPubMedCrossRef Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E., & Chaudhuri, G. (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proceedings of the National Academy of Sciences of the United States of America, 84, 9265–9269.PubMedCentralPubMedCrossRef
59.
go back to reference Clementi, E., Brown, G. C., Foxwell, N., & Moncada, S. (1999). On the mechanism by which vascular endothelial cells regulate their oxygen consumption. Proceedings of the National Academy of Sciences of the United States of America, 96, 1559–1562.PubMedCentralPubMedCrossRef Clementi, E., Brown, G. C., Foxwell, N., & Moncada, S. (1999). On the mechanism by which vascular endothelial cells regulate their oxygen consumption. Proceedings of the National Academy of Sciences of the United States of America, 96, 1559–1562.PubMedCentralPubMedCrossRef
60.
go back to reference Moncada, S., & Erusalimsky, J. D. (2002). Does nitric oxide modulate mitochondrial energy generation and apoptosis. Nature Reviews Molecular Cell Biology, 3, 214–220.PubMedCrossRef Moncada, S., & Erusalimsky, J. D. (2002). Does nitric oxide modulate mitochondrial energy generation and apoptosis. Nature Reviews Molecular Cell Biology, 3, 214–220.PubMedCrossRef
61.
go back to reference Sánchez, F. A., Ehrenfeld, I. P., & Durán, W. N. (2013). S-nitrosation of proteins: an emergent regulatory mechanism in microvascular permeability and vascular function. Tissue Barriers, 1, e23896.PubMedCentralPubMedCrossRef Sánchez, F. A., Ehrenfeld, I. P., & Durán, W. N. (2013). S-nitrosation of proteins: an emergent regulatory mechanism in microvascular permeability and vascular function. Tissue Barriers, 1, e23896.PubMedCentralPubMedCrossRef
62.
go back to reference Soetkamp, D., Nguyen, T. T., Menazza, S., Hirschhäuser, C., Hendgen-Cotta, U. B., Rassaf, T., Schlüter, K. D., Boengler, K., Murphy, E., & Schulz, R. (2014). S-nitrosation of mitochondrial connexin 43 regulates mitochondrial function. Basic Research in Cardiology, 109, 433.PubMedCentralPubMedCrossRef Soetkamp, D., Nguyen, T. T., Menazza, S., Hirschhäuser, C., Hendgen-Cotta, U. B., Rassaf, T., Schlüter, K. D., Boengler, K., Murphy, E., & Schulz, R. (2014). S-nitrosation of mitochondrial connexin 43 regulates mitochondrial function. Basic Research in Cardiology, 109, 433.PubMedCentralPubMedCrossRef
63.
go back to reference Hu, Q., Yu, Z. X., Ferrans, V. J., Takeda, K., Irani, K., & Ziegelstein, R. C. (2002). Critical role of NADPH oxidase-derived reactive oxygen species in generating Ca2+ oscillations in human aortic endothelial cells stimulated by histamine. Journal of Biological Chemistry, 277, 32546–32551.PubMedCrossRef Hu, Q., Yu, Z. X., Ferrans, V. J., Takeda, K., Irani, K., & Ziegelstein, R. C. (2002). Critical role of NADPH oxidase-derived reactive oxygen species in generating Ca2+ oscillations in human aortic endothelial cells stimulated by histamine. Journal of Biological Chemistry, 277, 32546–32551.PubMedCrossRef
64.
go back to reference Hu, Q., & Ziegelstein, R. C. (2000). Hypoxia/reoxygenation stimulates intracellular calcium oscillations in human aortic endothelial cells. Circulation, 102, 2541–2547.PubMedCrossRef Hu, Q., & Ziegelstein, R. C. (2000). Hypoxia/reoxygenation stimulates intracellular calcium oscillations in human aortic endothelial cells. Circulation, 102, 2541–2547.PubMedCrossRef
65.
go back to reference Tan, G., Shi, Y., & Wu, Z. H. (2012). MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN. Biochemical and Biophysical Research Communications, 417, 546–551.PubMedCentralPubMedCrossRef Tan, G., Shi, Y., & Wu, Z. H. (2012). MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN. Biochemical and Biophysical Research Communications, 417, 546–551.PubMedCentralPubMedCrossRef
66.
go back to reference Wang, H., Zhu, H. Q., Wang, F., Zhou, Q., Gui, S. Y., & Wang, Y. (2013). MicroRNA-1 prevents high-fat diet-induced endothelial permeability in apoE knock-out mice. Molecular and Cellular Biochemistry, 378, 153–159.PubMedCentralPubMedCrossRef Wang, H., Zhu, H. Q., Wang, F., Zhou, Q., Gui, S. Y., & Wang, Y. (2013). MicroRNA-1 prevents high-fat diet-induced endothelial permeability in apoE knock-out mice. Molecular and Cellular Biochemistry, 378, 153–159.PubMedCentralPubMedCrossRef
67.
go back to reference Urbich, C., Kuehbacher, A., & Dimmeler, S. (2008). Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovascular Research, 79, 581–588.PubMedCrossRef Urbich, C., Kuehbacher, A., & Dimmeler, S. (2008). Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovascular Research, 79, 581–588.PubMedCrossRef
Metadata
Title
The Role of Intrinsic Apoptotic Signaling in Hemorrhagic Shock-Induced Microvascular Endothelial Cell Barrier Dysfunction
Authors
Devendra A. Sawant
Binu Tharakan
Felicia A. Hunter
Ed W. Childs
Publication date
01-11-2014
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 8/2014
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-014-9589-x

Other articles of this Issue 8/2014

Journal of Cardiovascular Translational Research 8/2014 Go to the issue