Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2018

Open Access 01-12-2018 | Research

The role of HFE genotype in macrophage phenotype

Authors: Anne M. Nixon, Elizabeth Neely, Ian A. Simpson, James R. Connor

Published in: Journal of Neuroinflammation | Issue 1/2018

Login to get access

Abstract

Background

Iron regulation is essential for cellular energy production. Loss of cellular iron homeostasis has critical implications for both normal function and disease progression. The H63D variant of the HFE gene is the most common gene variant in Caucasians. The resulting mutant protein alters cellular iron homeostasis and is associated with a number of neurological diseases and cancer. In the brain, microglial and infiltrating macrophages are critical to maintaining iron homeostasis and modulating inflammation associated with the pathogenic process in multiple diseases. This study addresses whether HFE genotype affects macrophage function and the implications of these findings for disease processes.

Methods

Bone marrow macrophages were isolated from wildtype and H67D HFE knock-in mice. The H67D gene variant in mice is the human equivalent of the H63D variant. Upon differentiation, the macrophages were used to analyze iron regulatory proteins, cellular iron release, migration, phagocytosis, and cytokine expression.

Results

The results of this study demonstrate that the H67D HFE genotype significantly impacts a number of critical macrophage functions. Specifically, fundamental activities such as proliferation in response to iron exposure, L-ferritin expression in response to iron loading, secretion of BMP6 and cytokines, and migration and phagocytic activity were all found to be impacted by genotype. Furthermore, we demonstrated that exposure to apo-Tf (iron-poor transferrin) can increase the release of iron from macrophages. In normal conditions, 70% of circulating transferrin is unsaturated. Therefore, the ability of apo-Tf to induce iron release could be a major regulatory mechanism for iron release from macrophages.

Conclusions

These studies demonstrate that the HFE genotype impacts fundamental components of macrophage phenotype that could alter their role in degenerative and reparative processes in neurodegenerative disorders.
Literature
2.
go back to reference Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, Dormishian F, Domingo R, Ellis MC, Fullan A, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996;13(4):399–408.CrossRefPubMed Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, Dormishian F, Domingo R, Ellis MC, Fullan A, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996;13(4):399–408.CrossRefPubMed
3.
go back to reference Lebrón JA, Bennett MJ, Vaughn DE, Chirino AJ, Snow PM, Mintier GA, Feder JN, Bjorkman PJ. Crystal structure of the Hemochromatosis protein HFE and characterization of its interaction with Transferrin receptor. Cell. 1998;93(1):111–23.CrossRefPubMed Lebrón JA, Bennett MJ, Vaughn DE, Chirino AJ, Snow PM, Mintier GA, Feder JN, Bjorkman PJ. Crystal structure of the Hemochromatosis protein HFE and characterization of its interaction with Transferrin receptor. Cell. 1998;93(1):111–23.CrossRefPubMed
4.
go back to reference Bennett MJ, Lebron JA, Bjorkman PJ. Crystal structure of the hereditary haemochromatosis protein HFE complexed with transferrin receptor. Nature. 2000;403(6765):46–53.CrossRefPubMed Bennett MJ, Lebron JA, Bjorkman PJ. Crystal structure of the hereditary haemochromatosis protein HFE complexed with transferrin receptor. Nature. 2000;403(6765):46–53.CrossRefPubMed
5.
go back to reference Steinberg KK, Cogswell ME, Chang JC, Caudill SP, McQuillian GM, Bowman BA, Grummer-Strawn LM, Sampson EJ, Khoury MJ, Gallagher ML. Prevalence of C282Y and H63D mutations in the Hemochromatosis (HFE) gene in the United States. JAMA. 2001;285(17):2216–22.CrossRefPubMed Steinberg KK, Cogswell ME, Chang JC, Caudill SP, McQuillian GM, Bowman BA, Grummer-Strawn LM, Sampson EJ, Khoury MJ, Gallagher ML. Prevalence of C282Y and H63D mutations in the Hemochromatosis (HFE) gene in the United States. JAMA. 2001;285(17):2216–22.CrossRefPubMed
6.
go back to reference Marshall DS, Linfert DR, Tsongalis GJ. Prevalence of the C282Y and H63D polymorphisms in a multi-ethnic control population. Int J Mol Med. 1999;4(4):389–93.PubMed Marshall DS, Linfert DR, Tsongalis GJ. Prevalence of the C282Y and H63D polymorphisms in a multi-ethnic control population. Int J Mol Med. 1999;4(4):389–93.PubMed
7.
8.
go back to reference Burt MJ, George PM, Upton JD, Collett JA, Frampton CMA, Chapman TM, Walmsley TA, Chapman BA. The significance of haemochromatosis gene mutations in the general population: implications for screening. Gut. 1998;43(6):830–6.CrossRefPubMedPubMedCentral Burt MJ, George PM, Upton JD, Collett JA, Frampton CMA, Chapman TM, Walmsley TA, Chapman BA. The significance of haemochromatosis gene mutations in the general population: implications for screening. Gut. 1998;43(6):830–6.CrossRefPubMedPubMedCentral
9.
go back to reference Wang X-S, Lee S, Simmons Z, Boyer P, Scott K, Liu W, Connor J. Increased incidence of the Hfe mutation in amyotrophic lateral sclerosis and related cellular consequences. J Neurol Sci. 2004;227(1):27–33.CrossRefPubMed Wang X-S, Lee S, Simmons Z, Boyer P, Scott K, Liu W, Connor J. Increased incidence of the Hfe mutation in amyotrophic lateral sclerosis and related cellular consequences. J Neurol Sci. 2004;227(1):27–33.CrossRefPubMed
10.
go back to reference Goodall EF, Greenway MJ, van Marion I, Carroll CB, Hardiman O, Morrison KE. Association of the H63D polymorphism in the hemochromatosis gene with sporadic ALS. Neurology. 2005;65(6):934–7.CrossRefPubMed Goodall EF, Greenway MJ, van Marion I, Carroll CB, Hardiman O, Morrison KE. Association of the H63D polymorphism in the hemochromatosis gene with sporadic ALS. Neurology. 2005;65(6):934–7.CrossRefPubMed
11.
go back to reference Moalem S, Percy ME, Andrews DF, Kruck TP, Wong S, Dalton AJ, Mehta P, Fedor B, Warren AC. Are hereditary hemochromatosis mutations involved in Alzheimer disease? Am J Med Genet. 2000;93(1):58–66.CrossRefPubMed Moalem S, Percy ME, Andrews DF, Kruck TP, Wong S, Dalton AJ, Mehta P, Fedor B, Warren AC. Are hereditary hemochromatosis mutations involved in Alzheimer disease? Am J Med Genet. 2000;93(1):58–66.CrossRefPubMed
12.
go back to reference Nandar W, Neely EB, Simmons Z, Connor JR. H63D HFE genotype accelerates disease progression in animal models of amyotrophic lateral sclerosis. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2014;1842(12, Part A):2413–26.CrossRef Nandar W, Neely EB, Simmons Z, Connor JR. H63D HFE genotype accelerates disease progression in animal models of amyotrophic lateral sclerosis. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2014;1842(12, Part A):2413–26.CrossRef
13.
go back to reference Nandar W, Neely EB, Unger E, Connor JR. A mutation in the HFE gene is associated with altered brain iron profiles and increased oxidative stress in mice. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2013;1832(6):729–41.CrossRef Nandar W, Neely EB, Unger E, Connor JR. A mutation in the HFE gene is associated with altered brain iron profiles and increased oxidative stress in mice. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2013;1832(6):729–41.CrossRef
14.
go back to reference Ali-Rahmani F, Grigson PS, Lee S, Neely E, Connor JR, Schengrund CL. H63D mutation in hemochromatosis alters cholesterol metabolism and induces memory impairment. Neurobiol Aging. 2014;35(6):1511.e1511–2.CrossRef Ali-Rahmani F, Grigson PS, Lee S, Neely E, Connor JR, Schengrund CL. H63D mutation in hemochromatosis alters cholesterol metabolism and induces memory impairment. Neurobiol Aging. 2014;35(6):1511.e1511–2.CrossRef
15.
go back to reference Valberg LS, Simon JB, Manley PN, Corbett WE, Ludwig J. Distribution of storage iron as body iron stores expand in patients with hemochromatosis. Transl Res. 86(3):479–89. Valberg LS, Simon JB, Manley PN, Corbett WE, Ludwig J. Distribution of storage iron as body iron stores expand in patients with hemochromatosis. Transl Res. 86(3):479–89.
16.
go back to reference Brink B, Disler P, Lynch S, Jacobs P, Charlton R, Bothwell T. Patterns of iron storage in dietary iron overload and idiopathic hemochromatosis. J Lab Clin Med. 1976;88(5):725–31.PubMed Brink B, Disler P, Lynch S, Jacobs P, Charlton R, Bothwell T. Patterns of iron storage in dietary iron overload and idiopathic hemochromatosis. J Lab Clin Med. 1976;88(5):725–31.PubMed
17.
go back to reference Zhou XY, Tomatsu S, Fleming RE, Parkkila S, Waheed A, Jiang J, Fei Y, Brunt EM, Ruddy DA, Prass CE, et al. HFE gene knockout produces mouse model of hereditary hemochromatosis. Proc Natl Acad Sci. 1998;95(5):2492–7.CrossRefPubMedPubMedCentral Zhou XY, Tomatsu S, Fleming RE, Parkkila S, Waheed A, Jiang J, Fei Y, Brunt EM, Ruddy DA, Prass CE, et al. HFE gene knockout produces mouse model of hereditary hemochromatosis. Proc Natl Acad Sci. 1998;95(5):2492–7.CrossRefPubMedPubMedCentral
18.
20.
go back to reference Gratchev A, Guillot P, Hakiy N, Politz O, Orfanos CE, Schledzewski K, Goerdt S. Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein betaIG-H3. Scand J Immunol. 2001;53(4):386–92.CrossRefPubMed Gratchev A, Guillot P, Hakiy N, Politz O, Orfanos CE, Schledzewski K, Goerdt S. Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein betaIG-H3. Scand J Immunol. 2001;53(4):386–92.CrossRefPubMed
22.
go back to reference Rathnasamy G, Ling E-A, Kaur C. Iron and iron regulatory proteins in amoeboid Microglial cells are linked to Oligodendrocyte death in hypoxic neonatal rat Periventricular white matter through production of Proinflammatory cytokines and reactive oxygen/nitrogen species. J Neurosci. 2011;31(49):17982.CrossRefPubMed Rathnasamy G, Ling E-A, Kaur C. Iron and iron regulatory proteins in amoeboid Microglial cells are linked to Oligodendrocyte death in hypoxic neonatal rat Periventricular white matter through production of Proinflammatory cytokines and reactive oxygen/nitrogen species. J Neurosci. 2011;31(49):17982.CrossRefPubMed
23.
go back to reference Zhang X-Y, Cao J-B, Zhang L-M, Li Y-F, Mi W-D. Deferoxamine attenuates lipopolysaccharide-induced neuroinflammation and memory impairment in mice. J Neuroinflammation. 2015;12:20.CrossRefPubMedPubMedCentral Zhang X-Y, Cao J-B, Zhang L-M, Li Y-F, Mi W-D. Deferoxamine attenuates lipopolysaccharide-induced neuroinflammation and memory impairment in mice. J Neuroinflammation. 2015;12:20.CrossRefPubMedPubMedCentral
24.
go back to reference Mairuae N, Connor JR, Cheepsunthorn P. Increased cellular iron levels affect matrix metalloproteinase expression and phagocytosis in activated microglia. Neurosci Lett. 2011;500(1):36–40.CrossRefPubMed Mairuae N, Connor JR, Cheepsunthorn P. Increased cellular iron levels affect matrix metalloproteinase expression and phagocytosis in activated microglia. Neurosci Lett. 2011;500(1):36–40.CrossRefPubMed
25.
go back to reference Zhang X, Surguladze N, Slagle-Webb B, Cozzi A, Connor JR. Cellular iron status influences the functional relationship between microglia and oligodendrocytes. Glia. 2006;54(8):795–804.CrossRefPubMed Zhang X, Surguladze N, Slagle-Webb B, Cozzi A, Connor JR. Cellular iron status influences the functional relationship between microglia and oligodendrocytes. Glia. 2006;54(8):795–804.CrossRefPubMed
26.
go back to reference Montosi G, Paglia P, Garuti C, Guzman CA, Bastin JM, Colombo MP, Pietrangelo A. Wild-type HFE protein normalizes transferrin iron accumulation in macrophages from subjects with hereditary hemochromatosis. Blood. 2000;96(3):1125–9.PubMed Montosi G, Paglia P, Garuti C, Guzman CA, Bastin JM, Colombo MP, Pietrangelo A. Wild-type HFE protein normalizes transferrin iron accumulation in macrophages from subjects with hereditary hemochromatosis. Blood. 2000;96(3):1125–9.PubMed
27.
go back to reference Drakesmith H, Sweetland E, Schimanski L, Edwards J, Cowley D, Ashraf M, Bastin J, Townsend ARM. The hemochromatosis protein HFE inhibits iron export from macrophages. Proc Natl Acad Sci. 2002;99(24):15602–7.CrossRefPubMedPubMedCentral Drakesmith H, Sweetland E, Schimanski L, Edwards J, Cowley D, Ashraf M, Bastin J, Townsend ARM. The hemochromatosis protein HFE inhibits iron export from macrophages. Proc Natl Acad Sci. 2002;99(24):15602–7.CrossRefPubMedPubMedCentral
28.
go back to reference Lull ME, Block ML. Microglial activation & chronic Neurodegeneration. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics. 2010;7(4):354–65.CrossRef Lull ME, Block ML. Microglial activation & chronic Neurodegeneration. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics. 2010;7(4):354–65.CrossRef
29.
go back to reference Andersen HH, Johnsen KB, Moos T. Iron deposits in the chronically inflamed central nervous system and contributes to neurodegeneration. Cell Mol Life Sci. 2014;71(9):1607–22.CrossRefPubMed Andersen HH, Johnsen KB, Moos T. Iron deposits in the chronically inflamed central nervous system and contributes to neurodegeneration. Cell Mol Life Sci. 2014;71(9):1607–22.CrossRefPubMed
30.
go back to reference Berg D, Gerlach M, Youdim MBH, Double KL, Zecca L, Riederer P, Becker G. Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem. 2001;79(2):225–36.CrossRefPubMed Berg D, Gerlach M, Youdim MBH, Double KL, Zecca L, Riederer P, Becker G. Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem. 2001;79(2):225–36.CrossRefPubMed
31.
go back to reference Gorter JA, Mesquita ARM, Van Vliet EA, Da Silva FHL, Aronica E. Increased expression of Ferritin, an iron-storage protein, in specific regions of the Parahippocampal cortex of epileptic rats. Epilepsia. 2005;46(9):1371–9.CrossRefPubMed Gorter JA, Mesquita ARM, Van Vliet EA, Da Silva FHL, Aronica E. Increased expression of Ferritin, an iron-storage protein, in specific regions of the Parahippocampal cortex of epileptic rats. Epilepsia. 2005;46(9):1371–9.CrossRefPubMed
32.
go back to reference London A, Cohen M, Schwartz M. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci. 2013;7:34.CrossRefPubMedPubMedCentral London A, Cohen M, Schwartz M. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci. 2013;7:34.CrossRefPubMedPubMedCentral
33.
go back to reference Simard AR, Soulet D, Gowing G, Julien JP, Rivest S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron. 2006;49(4):489–502.CrossRefPubMed Simard AR, Soulet D, Gowing G, Julien JP, Rivest S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron. 2006;49(4):489–502.CrossRefPubMed
34.
go back to reference Goldstein EZ, Church JS, Pukos N, Gottipati MK, Popovich PG, McTigue DM. Intraspinal TLR4 activation promotes iron storage but does not protect neurons or oligodendrocytes from progressive iron-mediated damage. Exp Neurol. 2017;298(Part A):42–56.CrossRefPubMed Goldstein EZ, Church JS, Pukos N, Gottipati MK, Popovich PG, McTigue DM. Intraspinal TLR4 activation promotes iron storage but does not protect neurons or oligodendrocytes from progressive iron-mediated damage. Exp Neurol. 2017;298(Part A):42–56.CrossRefPubMed
35.
36.
go back to reference Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 2016;19(1):20–7.CrossRefPubMedPubMedCentral Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 2016;19(1):20–7.CrossRefPubMedPubMedCentral
37.
go back to reference Martinez di Montemuros F, Tavazzi D, Salsano E, Piepoli T, Pollo B, Fiorelli G, Finocchiaro G. High frequency of the H63D mutation of the hemochromatosis gene (HFE) in malignant gliomas. Neurology. 2001;57(7):1342.CrossRefPubMed Martinez di Montemuros F, Tavazzi D, Salsano E, Piepoli T, Pollo B, Fiorelli G, Finocchiaro G. High frequency of the H63D mutation of the hemochromatosis gene (HFE) in malignant gliomas. Neurology. 2001;57(7):1342.CrossRefPubMed
38.
go back to reference Gunel-Ozcan A, Alyılmaz-Bekmez S, Guler EN, Guc D. HFE H63D mutation frequency shows an increase in Turkish women with breast cancer. BMC Cancer. 2006;6:37.CrossRefPubMedPubMedCentral Gunel-Ozcan A, Alyılmaz-Bekmez S, Guler EN, Guc D. HFE H63D mutation frequency shows an increase in Turkish women with breast cancer. BMC Cancer. 2006;6:37.CrossRefPubMedPubMedCentral
39.
go back to reference Gharib AF, Karam RA, Pasha HF, Radwan MI, Elsawy WH. Polymorphisms of hemochromatosis, and alpha-1 antitrypsin genes in Egyptian HCV patients with and without hepatocellular carcinoma. Gene. 2011;489(2):98–102.CrossRefPubMed Gharib AF, Karam RA, Pasha HF, Radwan MI, Elsawy WH. Polymorphisms of hemochromatosis, and alpha-1 antitrypsin genes in Egyptian HCV patients with and without hepatocellular carcinoma. Gene. 2011;489(2):98–102.CrossRefPubMed
40.
go back to reference Tomatsu S, Orii KO, Fleming RE, Holden CC, Waheed A, Britton RS, Gutierrez MA, Velez-Castrillon S, Bacon BR, Sly WS. Contribution of the H63D mutation in HFE to murine hereditary hemochromatosis. Proc Natl Acad Sci. 2003;100(26):15788–93.CrossRefPubMedPubMedCentral Tomatsu S, Orii KO, Fleming RE, Holden CC, Waheed A, Britton RS, Gutierrez MA, Velez-Castrillon S, Bacon BR, Sly WS. Contribution of the H63D mutation in HFE to murine hereditary hemochromatosis. Proc Natl Acad Sci. 2003;100(26):15788–93.CrossRefPubMedPubMedCentral
41.
go back to reference Zhang X, Goncalves R, Mosser DM: The isolation and characterization of Murine macrophages. Current protocols in immunology / edited by John E Coligan [et al] 2008, CHAPTER:Unit-14.11. Zhang X, Goncalves R, Mosser DM: The isolation and characterization of Murine macrophages. Current protocols in immunology / edited by John E Coligan [et al] 2008, CHAPTER:Unit-14.11.
42.
go back to reference Cooper PH, Mayer P, Baggiolini M. Stimulation of phagocytosis in bone marrow-derived mouse macrophages by bacterial lipopolysaccharide: correlation with biochemical and functional parameters. Journal of immunology (Baltimore, Md : 1950). 1984;133(2):913–22. Cooper PH, Mayer P, Baggiolini M. Stimulation of phagocytosis in bone marrow-derived mouse macrophages by bacterial lipopolysaccharide: correlation with biochemical and functional parameters. Journal of immunology (Baltimore, Md : 1950). 1984;133(2):913–22.
43.
go back to reference Day BJ, Patel M, Calavetta L, Chang L-Y, Stamler JS. A mechanism of paraquat toxicity involving nitric oxide synthase. Proc Natl Acad Sci U S A. 1999;96(22):12760–5.CrossRefPubMedPubMedCentral Day BJ, Patel M, Calavetta L, Chang L-Y, Stamler JS. A mechanism of paraquat toxicity involving nitric oxide synthase. Proc Natl Acad Sci U S A. 1999;96(22):12760–5.CrossRefPubMedPubMedCentral
44.
go back to reference Bali PK, Zak O, Aisen P. A new role for the transferrin receptor in the release of iron from transferrin. Biochemistry. 1991;30(2):324–8.CrossRefPubMed Bali PK, Zak O, Aisen P. A new role for the transferrin receptor in the release of iron from transferrin. Biochemistry. 1991;30(2):324–8.CrossRefPubMed
45.
go back to reference Weston C, Connor J. Evidence for the influence of the iron regulatory MHC class I molecule HFE on tumor progression in experimental models and clinical populations. Translational Oncogenomics. 2014;6:1–12.CrossRefPubMedPubMedCentral Weston C, Connor J. Evidence for the influence of the iron regulatory MHC class I molecule HFE on tumor progression in experimental models and clinical populations. Translational Oncogenomics. 2014;6:1–12.CrossRefPubMedPubMedCentral
46.
go back to reference Wu X-g, Wang Y, Wu Q, Cheng W-H, Liu W, Zhao Y, Mayeur C, Schmidt PJ, PB Y, Wang F, et al. HFE interacts with the BMP type I receptor ALK3 to regulate hepcidin expression. Blood. 2014;124(8):1335–43.CrossRefPubMedPubMedCentral Wu X-g, Wang Y, Wu Q, Cheng W-H, Liu W, Zhao Y, Mayeur C, Schmidt PJ, PB Y, Wang F, et al. HFE interacts with the BMP type I receptor ALK3 to regulate hepcidin expression. Blood. 2014;124(8):1335–43.CrossRefPubMedPubMedCentral
47.
go back to reference Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, Vaulont S. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci U S A. 2001;98(15):8780–5.CrossRefPubMedPubMedCentral Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, Vaulont S. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci U S A. 2001;98(15):8780–5.CrossRefPubMedPubMedCentral
49.
go back to reference Pourcelot E, Lenon M, Mobilia N, Cahn JY, Arnaud J, Fanchon E, Moulis JM, Mossuz P. Iron for proliferation of cell lines and hematopoietic progenitors: nailing down the intracellular functional iron concentration. Biochim Biophys Acta. 2015;1853(7):1596–605.CrossRefPubMed Pourcelot E, Lenon M, Mobilia N, Cahn JY, Arnaud J, Fanchon E, Moulis JM, Mossuz P. Iron for proliferation of cell lines and hematopoietic progenitors: nailing down the intracellular functional iron concentration. Biochim Biophys Acta. 2015;1853(7):1596–605.CrossRefPubMed
50.
go back to reference Oria R, Alvarez-Hernández X, Licéaga J, Brock JH. Uptake and handling of iron from transferrin, lactoferrin and immune complexes by a macrophage cell line. Biochem J. 1988;252(1):221–5.CrossRefPubMedPubMedCentral Oria R, Alvarez-Hernández X, Licéaga J, Brock JH. Uptake and handling of iron from transferrin, lactoferrin and immune complexes by a macrophage cell line. Biochem J. 1988;252(1):221–5.CrossRefPubMedPubMedCentral
51.
go back to reference Knutson MD, Vafa MR, Haile DJ, Wessling-Resnick M. Iron loading and erythrophagocytosis increase ferroportin 1 (FPN1) expression in J774 macrophages. Blood. 2003;102(12):4191–7.CrossRefPubMed Knutson MD, Vafa MR, Haile DJ, Wessling-Resnick M. Iron loading and erythrophagocytosis increase ferroportin 1 (FPN1) expression in J774 macrophages. Blood. 2003;102(12):4191–7.CrossRefPubMed
52.
go back to reference Hentze MW, Caughman SW, Rouault TA, Barriocanal JG, Dancis A, Harford JB, Klausner RD. Identification of the iron-responsive element for the translational regulation of human Ferritin mRNA. Science. 1987;238(4833):1570–3.CrossRefPubMed Hentze MW, Caughman SW, Rouault TA, Barriocanal JG, Dancis A, Harford JB, Klausner RD. Identification of the iron-responsive element for the translational regulation of human Ferritin mRNA. Science. 1987;238(4833):1570–3.CrossRefPubMed
53.
go back to reference Hentze MW, Caughman SW, Casey JL, Kodier DM, Rouault TA, Harford JB, Klausner RD. A model for the structure and functions of iron-responsive elements. Gene. 1988;72(1–2):201–8.CrossRefPubMed Hentze MW, Caughman SW, Casey JL, Kodier DM, Rouault TA, Harford JB, Klausner RD. A model for the structure and functions of iron-responsive elements. Gene. 1988;72(1–2):201–8.CrossRefPubMed
54.
go back to reference Ganz T. Macrophages and iron metabolism. Microbiology spectrum. 2016;4(5):MCHD-0037-2016. Ganz T. Macrophages and iron metabolism. Microbiology spectrum. 2016;4(5):MCHD-0037-2016.
55.
go back to reference Delaby C, Pilard N, Puy H, Canonne-Hergaux F. Sequential regulation of ferroportin expression after erythrophagocytosis in murine macrophages: early mRNA induction by haem, followed by iron-dependent protein expression. Biochem J. 2008;411(1):123.CrossRefPubMed Delaby C, Pilard N, Puy H, Canonne-Hergaux F. Sequential regulation of ferroportin expression after erythrophagocytosis in murine macrophages: early mRNA induction by haem, followed by iron-dependent protein expression. Biochem J. 2008;411(1):123.CrossRefPubMed
56.
go back to reference Cohen LA, Gutierrez L, Weiss A, Leichtmann-Bardoogo Y, Zhang D-l, Crooks DR, Sougrat R, Morgenstern A, Galy B, Hentze MW, et al. Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood. 2010;116(9):1574–84.CrossRefPubMed Cohen LA, Gutierrez L, Weiss A, Leichtmann-Bardoogo Y, Zhang D-l, Crooks DR, Sougrat R, Morgenstern A, Galy B, Hentze MW, et al. Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood. 2010;116(9):1574–84.CrossRefPubMed
58.
go back to reference Simpson IA, Ponnuru P, Klinger ME, Myers RL, Devraj K, Coe CL, Lubach GR, Carruthers A, Connor JR. A novel model for brain iron uptake: introducing the concept of regulation. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2015;35(1):48–57.CrossRef Simpson IA, Ponnuru P, Klinger ME, Myers RL, Devraj K, Coe CL, Lubach GR, Carruthers A, Connor JR. A novel model for brain iron uptake: introducing the concept of regulation. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2015;35(1):48–57.CrossRef
59.
go back to reference Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J. Hepcidin regulates cellular iron efflux by binding to Ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3.CrossRefPubMed Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J. Hepcidin regulates cellular iron efflux by binding to Ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3.CrossRefPubMed
60.
go back to reference Willemetz A, Beatty S, Richer E, Rubio A, Auriac A, Milkereit RJ, Thibaudeau O, Vaulont S, Malo D, Canonne-Hergaux F. Iron- and Hepcidin-independent Downregulation of the iron exporter Ferroportin in macrophages during salmonella infection. Front Immunol. 2017;8:498.CrossRefPubMedPubMedCentral Willemetz A, Beatty S, Richer E, Rubio A, Auriac A, Milkereit RJ, Thibaudeau O, Vaulont S, Malo D, Canonne-Hergaux F. Iron- and Hepcidin-independent Downregulation of the iron exporter Ferroportin in macrophages during salmonella infection. Front Immunol. 2017;8:498.CrossRefPubMedPubMedCentral
61.
go back to reference Wang L, Johnson EE, Shi HN, Allan Walker W, Wessling-Resnick M, Cherayil BJ. Attenuated inflammatory responses in hemochromatosis reveal a role for iron in the regulation of macrophage cytokine translation. Journal of immunology (Baltimore, Md : 1950). 2008;181(4):2723–31.CrossRef Wang L, Johnson EE, Shi HN, Allan Walker W, Wessling-Resnick M, Cherayil BJ. Attenuated inflammatory responses in hemochromatosis reveal a role for iron in the regulation of macrophage cytokine translation. Journal of immunology (Baltimore, Md : 1950). 2008;181(4):2723–31.CrossRef
62.
go back to reference Jiang T, Zhang YD, Gao Q, Zhou JS, Zhu XC, Lu H, Shi JQ, Tan L, Chen Q, JT Y. TREM1 facilitates microglial phagocytosis of amyloid beta. Acta Neuropathol. 2016;132(5):667–83.CrossRefPubMed Jiang T, Zhang YD, Gao Q, Zhou JS, Zhu XC, Lu H, Shi JQ, Tan L, Chen Q, JT Y. TREM1 facilitates microglial phagocytosis of amyloid beta. Acta Neuropathol. 2016;132(5):667–83.CrossRefPubMed
63.
go back to reference Kim JY, Kim DH, Kim JH, Lee D, Jeon HB, Kwon SJ, Kim SM, Yoo YJ, Lee EH, Choi SJ, et al. Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-beta plaques. Cell Death Differ. 2012;19(4):680–91.CrossRefPubMed Kim JY, Kim DH, Kim JH, Lee D, Jeon HB, Kwon SJ, Kim SM, Yoo YJ, Lee EH, Choi SJ, et al. Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-beta plaques. Cell Death Differ. 2012;19(4):680–91.CrossRefPubMed
64.
go back to reference Mitchell RM, Simmons Z, Beard JL, Stephens HE, Connor JR. Plasma biomarkers associated with ALS and their relationship to iron homeostasis. Muscle Nerve. 2010;42(1):95–103.CrossRefPubMed Mitchell RM, Simmons Z, Beard JL, Stephens HE, Connor JR. Plasma biomarkers associated with ALS and their relationship to iron homeostasis. Muscle Nerve. 2010;42(1):95–103.CrossRefPubMed
65.
go back to reference Mitchell RM, Lee SY, Randazzo WT, Simmons Z, Connor JR: Influence of HFE variants and cellular iron on monocyte chemoattractant protein-1. J Neuroinflammation 2009, 6:6. Mitchell RM, Lee SY, Randazzo WT, Simmons Z, Connor JR: Influence of HFE variants and cellular iron on monocyte chemoattractant protein-1. J Neuroinflammation 2009, 6:6.
66.
go back to reference Shooshtari P, Fortuno ES, Blimkie D, Yu M, Gupta A, Kollmann TR, Brinkman RR. Correlation analysis of intracellular and secreted cytokines via the generalized integrated mean fluorescence intensity (GiMFI). Cytometry Part A : the journal of the International Society for Analytical Cytology. 2010;77(9):873–80.CrossRef Shooshtari P, Fortuno ES, Blimkie D, Yu M, Gupta A, Kollmann TR, Brinkman RR. Correlation analysis of intracellular and secreted cytokines via the generalized integrated mean fluorescence intensity (GiMFI). Cytometry Part A : the journal of the International Society for Analytical Cytology. 2010;77(9):873–80.CrossRef
67.
go back to reference Schuerwegh AJ, De Clerck LS, Bridts CH, Stevens WJ. Comparison of intracellular cytokine production with extracellular cytokine levels using two flow cytometric techniques. Cytometry B Clin Cytom. 2003;55(1):52–8.CrossRefPubMed Schuerwegh AJ, De Clerck LS, Bridts CH, Stevens WJ. Comparison of intracellular cytokine production with extracellular cytokine levels using two flow cytometric techniques. Cytometry B Clin Cytom. 2003;55(1):52–8.CrossRefPubMed
Metadata
Title
The role of HFE genotype in macrophage phenotype
Authors
Anne M. Nixon
Elizabeth Neely
Ian A. Simpson
James R. Connor
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2018
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-018-1057-0

Other articles of this Issue 1/2018

Journal of Neuroinflammation 1/2018 Go to the issue