Skip to main content
Top
Published in: Pathology & Oncology Research 2/2013

01-04-2013 | Review

The Role of Endocytic Pathways in TGF-β Signaling

Authors: P. Balogh, S. Katz, A. L. Kiss

Published in: Pathology & Oncology Research | Issue 2/2013

Login to get access

Abstract

Transforming growth factor β (TGF-β) superfamily consists of numerous cytokins that regulate various cellular processes. TGF-β, the prototype of the family, signals through its cell surface serine/threonin kinase receptors and besides its role in cell differentiation, migration, adhesion etc. it is also able to induce epithelial-mesenchymal (EMT) transition via both Smad- pathway and MAPK- pathway. Among the different types of epithelial-mesenchymal transition, type II that is described to be associated with wound healing, tissue regeneration, organ fibrosis and is induced upon inflammatory stimuli. It can be triggered by secretion of growth factors such as TGF-β, EGF. Different endocytic routes are used for the internalization of TGF-β ligand and its receptors and these pathways can control the activity of downstream events. Internalization via clathrin-coated vesicles promotes the signaling while the caveola-mediated endocytosis plays important role in the termination of the events, although the steps of the latter event are less clear. The early endosome is considered a clue compartment in promoting the signaling. Recently published data suggest that the early endosome plays crucial role in the termination of the TGFβ signaling as well. It is not only maintain a special environment for the effective signaling but can direct the internalized cargos towards degradative pathways (multivesicular bodies, lysosomes).
Literature
2.
go back to reference Shook D, Keller R (2003) Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev 120:1351–83PubMedCrossRef Shook D, Keller R (2003) Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev 120:1351–83PubMedCrossRef
3.
go back to reference Strutz F, Zeisberg M, Ziyadeh FN, Yang CQ, Kalluri R, Müller GA, Neilson EG (2002) Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int 61:1714–28PubMedCrossRef Strutz F, Zeisberg M, Ziyadeh FN, Yang CQ, Kalluri R, Müller GA, Neilson EG (2002) Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int 61:1714–28PubMedCrossRef
4.
go back to reference Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–28PubMedCrossRef Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–28PubMedCrossRef
5.
go back to reference Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J (1994) Mechanism of activation of TGF-β receptor. Nature 370:341–47PubMedCrossRef Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J (1994) Mechanism of activation of TGF-β receptor. Nature 370:341–47PubMedCrossRef
6.
go back to reference Shi Y, Massagué J (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113:685–700PubMedCrossRef Shi Y, Massagué J (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113:685–700PubMedCrossRef
7.
go back to reference Moustakas A, Souchelnytskyi S, Heldin CH (2001) Smad regulation in TGF-β signal transduction. J Cell Sci 11:4359–69 Moustakas A, Souchelnytskyi S, Heldin CH (2001) Smad regulation in TGF-β signal transduction. J Cell Sci 11:4359–69
8.
go back to reference Zhang Y, Chang C, Gehling JD, Hemmati-Brivanlou A, Derynck R (2001) Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci U S A 98:974–79PubMedCrossRef Zhang Y, Chang C, Gehling JD, Hemmati-Brivanlou A, Derynck R (2001) Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci U S A 98:974–79PubMedCrossRef
9.
go back to reference Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana L (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGF-β receptor. Cell 95:779–91PubMedCrossRef Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana L (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGF-β receptor. Cell 95:779–91PubMedCrossRef
10.
go back to reference Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana L (2003) Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nat Cell Biol 5:410–21PubMedCrossRef Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana L (2003) Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nat Cell Biol 5:410–21PubMedCrossRef
12.
go back to reference Chen YG, Wang Z, Ma Y, Zhang L, Lu Z (2007) Endofin, a FYVE domain protein, interacts with Smad4 and facilitates transforming growth factor-beta signaling. J Biol Chem 282:9688–96PubMedCrossRef Chen YG, Wang Z, Ma Y, Zhang L, Lu Z (2007) Endofin, a FYVE domain protein, interacts with Smad4 and facilitates transforming growth factor-beta signaling. J Biol Chem 282:9688–96PubMedCrossRef
13.
go back to reference Gillooly DJ, Simonsen A, Stenmark H (2001) Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. Biochem J 355:249–58PubMedCrossRef Gillooly DJ, Simonsen A, Stenmark H (2001) Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. Biochem J 355:249–58PubMedCrossRef
14.
go back to reference Itoh F, Divecha N, Brocks L, Brocks L, Oomen L, Janssen H, Calafar J, Itoh S, Dijke PP (2002) The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGF-beta/Smad signalling. Genes Cells 7:321–31PubMedCrossRef Itoh F, Divecha N, Brocks L, Brocks L, Oomen L, Janssen H, Calafar J, Itoh S, Dijke PP (2002) The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGF-beta/Smad signalling. Genes Cells 7:321–31PubMedCrossRef
15.
go back to reference Le Roy C, Wrana L (2005) Clathrin- and non-clathrin- mediated endocytic regulation of cell signalling. Nat Rev Cell Biol 6:112–26CrossRef Le Roy C, Wrana L (2005) Clathrin- and non-clathrin- mediated endocytic regulation of cell signalling. Nat Rev Cell Biol 6:112–26CrossRef
16.
go back to reference Bonifacino JS, Lippincott-Schwartz J (2003) Coat proteins: shaping membrane transport. Nat Rev Mol Cell Biol 4:409–14PubMedCrossRef Bonifacino JS, Lippincott-Schwartz J (2003) Coat proteins: shaping membrane transport. Nat Rev Mol Cell Biol 4:409–14PubMedCrossRef
17.
go back to reference Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447PubMedCrossRef Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447PubMedCrossRef
18.
go back to reference Hayes S, Chawla A, Corvera S (2002) TGFβ receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J Cell Biol 158:1239–49PubMedCrossRef Hayes S, Chawla A, Corvera S (2002) TGFβ receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J Cell Biol 158:1239–49PubMedCrossRef
19.
go back to reference Penheiter SG, Mitchell H, Garamszegi N, Edens M, Dore JJJ, Leof EB (2002) Internalization-dependent and –independent requirements for trasfotming growth factor beta receptor signaling via the Smad pathway. Mol Cell Biol 22:4750–59PubMedCrossRef Penheiter SG, Mitchell H, Garamszegi N, Edens M, Dore JJJ, Leof EB (2002) Internalization-dependent and –independent requirements for trasfotming growth factor beta receptor signaling via the Smad pathway. Mol Cell Biol 22:4750–59PubMedCrossRef
20.
go back to reference Xu L, Chen YG, Massagué J (2000) The nuclear import function of Smad2 is masked by SARA and unmasked by TGFb-dependent phosphorylation. Nat Cell Biol 2:559–62PubMedCrossRef Xu L, Chen YG, Massagué J (2000) The nuclear import function of Smad2 is masked by SARA and unmasked by TGFb-dependent phosphorylation. Nat Cell Biol 2:559–62PubMedCrossRef
21.
22.
go back to reference Kurisaki A, Kose S, Yoneda Y, Heldin CH, Moustakas A (2001) Transforming growth factor-beta induces nuclear import of Smad3 in an importin-beta1 and Ran-dependent manner. Mol Biol Cell 12:1079–91PubMed Kurisaki A, Kose S, Yoneda Y, Heldin CH, Moustakas A (2001) Transforming growth factor-beta induces nuclear import of Smad3 in an importin-beta1 and Ran-dependent manner. Mol Biol Cell 12:1079–91PubMed
23.
go back to reference Xiao Z, Latek R, Lodish HF (2003) An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity. Oncogene 22:1057–69PubMedCrossRef Xiao Z, Latek R, Lodish HF (2003) An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity. Oncogene 22:1057–69PubMedCrossRef
24.
go back to reference Mitchell H, Choudhury A, Pagano RE, Leof EB (2004) Ligand-dependent and –independent transforming growth factor-beta receptor recycling regulated by clathrin-mediated endocytosis and Rab11. Mol Biol Cell 15:4166–78PubMedCrossRef Mitchell H, Choudhury A, Pagano RE, Leof EB (2004) Ligand-dependent and –independent transforming growth factor-beta receptor recycling regulated by clathrin-mediated endocytosis and Rab11. Mol Biol Cell 15:4166–78PubMedCrossRef
25.
go back to reference Lisanti MP, Scherer P, Tang ZL, Sargiacomo M (1994) Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol 4:231–35PubMedCrossRef Lisanti MP, Scherer P, Tang ZL, Sargiacomo M (1994) Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol 4:231–35PubMedCrossRef
26.
go back to reference Couet J, Li S, Okamoto T, Scherer P, Lisanti MP (1997) Molecular and cellular biology of caveolae: paradoxes and plasticities. Trends Cardiovasc Med 7:103–10PubMedCrossRef Couet J, Li S, Okamoto T, Scherer P, Lisanti MP (1997) Molecular and cellular biology of caveolae: paradoxes and plasticities. Trends Cardiovasc Med 7:103–10PubMedCrossRef
27.
go back to reference Pelkmans L, Kartenbeck J, Helenius A (2001) Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular transport pathway to the ER. Nat Cell Biol 3:475–83CrossRef Pelkmans L, Kartenbeck J, Helenius A (2001) Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular transport pathway to the ER. Nat Cell Biol 3:475–83CrossRef
28.
go back to reference Nicols BJ (2002) A distinct class of endosome mediates clathrin- independent endocytosis to the Golgi complex. Nat Cell Biol 4:374–78 Nicols BJ (2002) A distinct class of endosome mediates clathrin- independent endocytosis to the Golgi complex. Nat Cell Biol 4:374–78
29.
30.
go back to reference Kiss AL, Botos E (2009) Endocytosis via caveolae: alternative pathway with distinct cellular compartments to avoid lysosomal degradation? J Cell Mol Med 13:1228–37PubMedCrossRef Kiss AL, Botos E (2009) Endocytosis via caveolae: alternative pathway with distinct cellular compartments to avoid lysosomal degradation? J Cell Mol Med 13:1228–37PubMedCrossRef
31.
go back to reference Hayer A, Stoaber M, Ritz D, Engel S, Meyer HH, Helenius A (2010) Caveolin-1 is ubiquitinated and targeted to intraluminal vesicles in endolysosomes for degradation. J Cell Biol 191:615–29PubMedCrossRef Hayer A, Stoaber M, Ritz D, Engel S, Meyer HH, Helenius A (2010) Caveolin-1 is ubiquitinated and targeted to intraluminal vesicles in endolysosomes for degradation. J Cell Biol 191:615–29PubMedCrossRef
32.
go back to reference Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, PtP D (1997) Identification of Smad7, a TGF-beta inducible antagonist of TGF-beta signalling. Nature 389:631–35PubMedCrossRef Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, PtP D (1997) Identification of Smad7, a TGF-beta inducible antagonist of TGF-beta signalling. Nature 389:631–35PubMedCrossRef
33.
go back to reference Hayashi H, Abdollah S, Qui Y, Cai J, Xu JJ, Grinnell BW, Richardson MA, Topper JN, Gimbrone MA Jr, Wrana JL, Falb D (1997) The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 89:1165–73PubMedCrossRef Hayashi H, Abdollah S, Qui Y, Cai J, Xu JJ, Grinnell BW, Richardson MA, Topper JN, Gimbrone MA Jr, Wrana JL, Falb D (1997) The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 89:1165–73PubMedCrossRef
34.
go back to reference Zhang S, Fei T, Zhang L, Zhang R, Chen F, Ning Y, Han Y, Feng XH, Meng A, Chen YG (2007) Smad7 antagonizes transforming growth factor beta signaling in the nucleus by interfering with functional Smad-DNA complex formation. Mol Cell Biol 27:4488–99PubMedCrossRef Zhang S, Fei T, Zhang L, Zhang R, Chen F, Ning Y, Han Y, Feng XH, Meng A, Chen YG (2007) Smad7 antagonizes transforming growth factor beta signaling in the nucleus by interfering with functional Smad-DNA complex formation. Mol Cell Biol 27:4488–99PubMedCrossRef
35.
go back to reference Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF-beta receptor for degradation. Mol Cell 6:1365–75PubMedCrossRef Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF-beta receptor for degradation. Mol Cell 6:1365–75PubMedCrossRef
36.
go back to reference Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K (2001) Smurf1 interacts with transforming growth factor-beta type-I receptor through Smad7 and induces receptor degradation. J Biol Chem 276:12477–80PubMedCrossRef Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K (2001) Smurf1 interacts with transforming growth factor-beta type-I receptor through Smad7 and induces receptor degradation. J Biol Chem 276:12477–80PubMedCrossRef
37.
go back to reference Itoh S, Landström M, Hermansson A, Itoh F, Heldin CH, Heldin NE, PtP D (1998) Transforming growth factor beta1 induces nuclear export of inhibitory Smad7. J Biol Chem 273:29195–201PubMedCrossRef Itoh S, Landström M, Hermansson A, Itoh F, Heldin CH, Heldin NE, PtP D (1998) Transforming growth factor beta1 induces nuclear export of inhibitory Smad7. J Biol Chem 273:29195–201PubMedCrossRef
38.
go back to reference Kowanetz M, Lönn P, Vanlandewijck M, Kowanetz K, Heldin CH, Moustakas A (2008) TGFbeta induces SIK to negatively regulate type I receptor kinase signaling. J Cell Biol 182:655–62PubMedCrossRef Kowanetz M, Lönn P, Vanlandewijck M, Kowanetz K, Heldin CH, Moustakas A (2008) TGFbeta induces SIK to negatively regulate type I receptor kinase signaling. J Cell Biol 182:655–62PubMedCrossRef
39.
go back to reference Bizet AA, Liu K, Tran-Khanh N, Saksena A, Vorstenbosch J, Finnson KW, Buschmann MD, Philip A (2011) The TFG-β co-receptor, CD109, promotes internalization and degradation of TGF-β receptors. Biochim Biophys Acta 1813:742–53PubMedCrossRef Bizet AA, Liu K, Tran-Khanh N, Saksena A, Vorstenbosch J, Finnson KW, Buschmann MD, Philip A (2011) The TFG-β co-receptor, CD109, promotes internalization and degradation of TGF-β receptors. Biochim Biophys Acta 1813:742–53PubMedCrossRef
40.
go back to reference Mukhopadhyay D, Riezman H (2007) Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315:201–205PubMedCrossRef Mukhopadhyay D, Riezman H (2007) Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315:201–205PubMedCrossRef
41.
go back to reference Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Mol Cel Biol 6:79–86 Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Mol Cel Biol 6:79–86
42.
go back to reference Felder S, Miller K, Moshren G, Ullrich A, Schlessinger J, Hopkins CR (1990) Kinase activity controls the sorting of the epidermal growth factor receptor within the multivesicular body. Cell 61:623–34PubMedCrossRef Felder S, Miller K, Moshren G, Ullrich A, Schlessinger J, Hopkins CR (1990) Kinase activity controls the sorting of the epidermal growth factor receptor within the multivesicular body. Cell 61:623–34PubMedCrossRef
43.
go back to reference Gruenberg J, Maxfield F (1995) Membrane transport in the endocytic pathway. Curr Op Cell Biol 7:552–63PubMedCrossRef Gruenberg J, Maxfield F (1995) Membrane transport in the endocytic pathway. Curr Op Cell Biol 7:552–63PubMedCrossRef
44.
go back to reference von Gersdoff G, Susztak K, Rezvani F, Bitzer M, Liang D, Böttinger EP (2000) Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor beta. J Biol Chem 275:11320–26CrossRef von Gersdoff G, Susztak K, Rezvani F, Bitzer M, Liang D, Böttinger EP (2000) Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor beta. J Biol Chem 275:11320–26CrossRef
45.
go back to reference Katzmann DJ, Babst M, Emr DS (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106:145–55PubMedCrossRef Katzmann DJ, Babst M, Emr DS (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106:145–55PubMedCrossRef
46.
go back to reference Soond SM, Chantry A (2011) How ubiqitination regulates the TGF-β signalling pathway: new insights and new players. Bioessays 33:749–58PubMedCrossRef Soond SM, Chantry A (2011) How ubiqitination regulates the TGF-β signalling pathway: new insights and new players. Bioessays 33:749–58PubMedCrossRef
47.
go back to reference Ito I, Hanyu A, Wayama M, Goto N, Katsuno Y, Kawasaki S, Nakajima Y, Kajiro M, Komatsu Y, Fujimura A, Hirota R, Murayama A, Kimura K, Imamura T, Yanagisawa J (2010) Estrogen inhibits transforming growth factor β signaling by promoting Smad2/3 degradation. J Biol Chem 285:14747–55PubMedCrossRef Ito I, Hanyu A, Wayama M, Goto N, Katsuno Y, Kawasaki S, Nakajima Y, Kajiro M, Komatsu Y, Fujimura A, Hirota R, Murayama A, Kimura K, Imamura T, Yanagisawa J (2010) Estrogen inhibits transforming growth factor β signaling by promoting Smad2/3 degradation. J Biol Chem 285:14747–55PubMedCrossRef
48.
go back to reference Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 424:577–584CrossRef Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 424:577–584CrossRef
50.
go back to reference Chuderland D, Seger R (2005) Protein-protein interactions in the regulation of the extracellular signal-regulated kinase. Mol Biothechnol 29:57–74CrossRef Chuderland D, Seger R (2005) Protein-protein interactions in the regulation of the extracellular signal-regulated kinase. Mol Biothechnol 29:57–74CrossRef
51.
go back to reference Adachi M, Fukuda M, Nishida E (2000) Nuclear export of MAP kinase (Erk) involves a MAP kinase kinase (MEK)-dependent active transport mechanism. J Cell Biol 148:849–856PubMedCrossRef Adachi M, Fukuda M, Nishida E (2000) Nuclear export of MAP kinase (Erk) involves a MAP kinase kinase (MEK)-dependent active transport mechanism. J Cell Biol 148:849–856PubMedCrossRef
52.
go back to reference Chen RH, Sarnecki C, Blenis J (1992) Nuclear localization and regulation of erk- and rsk-encoded protein kinase. Mol Cell Biol 12:915–927PubMed Chen RH, Sarnecki C, Blenis J (1992) Nuclear localization and regulation of erk- and rsk-encoded protein kinase. Mol Cell Biol 12:915–927PubMed
53.
go back to reference Kamaraju AK, Roberts AB (2005) Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-β-mediated Smad-dependent growth inhibition of human breast carcinom cells in vivo. J Biol Chem 280:1024–1036PubMedCrossRef Kamaraju AK, Roberts AB (2005) Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-β-mediated Smad-dependent growth inhibition of human breast carcinom cells in vivo. J Biol Chem 280:1024–1036PubMedCrossRef
54.
go back to reference Mori S, Matsuzaki K, Yoshida K, Furukawa F, Tahashi Y, Yamagata H, Sekimoto G, Seki T, Matsui H, Nishizawa M, Fujisawa J, Okazaki K (2004) TGF-β and HGF transmit the signals through JNK-dependent Smad2/3 phosphorylation at the linker region. Oncogene 23:7416–7429PubMedCrossRef Mori S, Matsuzaki K, Yoshida K, Furukawa F, Tahashi Y, Yamagata H, Sekimoto G, Seki T, Matsui H, Nishizawa M, Fujisawa J, Okazaki K (2004) TGF-β and HGF transmit the signals through JNK-dependent Smad2/3 phosphorylation at the linker region. Oncogene 23:7416–7429PubMedCrossRef
55.
go back to reference Kretzschmar M, Doody J, Timokhina I, Massagué J (1999) A mechanism of repression of TGF-β/Smad signaling by oncogenic Ras. Genes Dev 13:804–816PubMedCrossRef Kretzschmar M, Doody J, Timokhina I, Massagué J (1999) A mechanism of repression of TGF-β/Smad signaling by oncogenic Ras. Genes Dev 13:804–816PubMedCrossRef
56.
go back to reference Engel M, McDonnell MA, Law BK, Moses HL (1999) Interdependent Smad and JNK signaling in trasforming growth factor-β-mediated transcription. J Biol Chem 274:37413–37420PubMedCrossRef Engel M, McDonnell MA, Law BK, Moses HL (1999) Interdependent Smad and JNK signaling in trasforming growth factor-β-mediated transcription. J Biol Chem 274:37413–37420PubMedCrossRef
57.
go back to reference Kang JS, Liu C, Derynck R (2009) New regulatory mechanisms of TGF-β receptor function. Trends Cell Biol 19:385–394PubMedCrossRef Kang JS, Liu C, Derynck R (2009) New regulatory mechanisms of TGF-β receptor function. Trends Cell Biol 19:385–394PubMedCrossRef
58.
go back to reference Galliher AJ, Schiemann WP (2007) Src phosphorylates Tyr284 in TGF-β type II receptor and regulates TGF-β stimulation of p38 MAPK during brest cancer cell proliferation and invasion. Cancer Res 67:3752–3758PubMedCrossRef Galliher AJ, Schiemann WP (2007) Src phosphorylates Tyr284 in TGF-β type II receptor and regulates TGF-β stimulation of p38 MAPK during brest cancer cell proliferation and invasion. Cancer Res 67:3752–3758PubMedCrossRef
59.
go back to reference Taub N, Teis D, Ebner HL, Hess MW, Huber LA (2007) Late endosomal traffic of epidermal growth factor receptor ensures spatial and temporal fidelity of mitogen-activated protein kinase signaling. Mol Biol Cell 18:4698–4710PubMedCrossRef Taub N, Teis D, Ebner HL, Hess MW, Huber LA (2007) Late endosomal traffic of epidermal growth factor receptor ensures spatial and temporal fidelity of mitogen-activated protein kinase signaling. Mol Biol Cell 18:4698–4710PubMedCrossRef
60.
go back to reference Zehorai E, Yao Z, Plotnikov A, Seger R (2010) The subcellular localization of MEK and ERK-A novel nuclear translocation signal (NTS) paves a way to nucleus. Mol Cell End 314:213–220CrossRef Zehorai E, Yao Z, Plotnikov A, Seger R (2010) The subcellular localization of MEK and ERK-A novel nuclear translocation signal (NTS) paves a way to nucleus. Mol Cell End 314:213–220CrossRef
61.
go back to reference Zuo W, Chen YG (2009) Specific activation of mitogen-activated protein kinase by transforming growth factor-β receptors in lipid rafts is required for epithelial cell plasticity. Mol Biol Cell 20:1020–1029PubMedCrossRef Zuo W, Chen YG (2009) Specific activation of mitogen-activated protein kinase by transforming growth factor-β receptors in lipid rafts is required for epithelial cell plasticity. Mol Biol Cell 20:1020–1029PubMedCrossRef
62.
go back to reference Galmiche A, Fueller J, Santel A, Krohne G, Witting I, Doye A, Rolando M, Flatau G, Lemichez E, Rapp UR (2008) Isoform-specific interaction of C_RAF with mitochondria. J Biol Chem 283:14857–14866PubMedCrossRef Galmiche A, Fueller J, Santel A, Krohne G, Witting I, Doye A, Rolando M, Flatau G, Lemichez E, Rapp UR (2008) Isoform-specific interaction of C_RAF with mitochondria. J Biol Chem 283:14857–14866PubMedCrossRef
63.
go back to reference Adachi M, Fukuda M, Nishida E (1999) Two co-existing mechanisms for nuclear import of MAP kinase: passive diffusion of a monomer and active transport of a dimer. EMBO J 18:5347–5358PubMedCrossRef Adachi M, Fukuda M, Nishida E (1999) Two co-existing mechanisms for nuclear import of MAP kinase: passive diffusion of a monomer and active transport of a dimer. EMBO J 18:5347–5358PubMedCrossRef
64.
go back to reference Fukuda M, Gotoh I, Gotoh Y, Nishida E (1996) Cytoplasmic localization of MAP kinase kinase directed by its N-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export signal. J Biol Chem 271:20024–20028PubMedCrossRef Fukuda M, Gotoh I, Gotoh Y, Nishida E (1996) Cytoplasmic localization of MAP kinase kinase directed by its N-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export signal. J Biol Chem 271:20024–20028PubMedCrossRef
65.
go back to reference Fukuda M, Gotoh Y, Nishida E (1997) Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J 16:1901–1908PubMedCrossRef Fukuda M, Gotoh Y, Nishida E (1997) Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J 16:1901–1908PubMedCrossRef
Metadata
Title
The Role of Endocytic Pathways in TGF-β Signaling
Authors
P. Balogh
S. Katz
A. L. Kiss
Publication date
01-04-2013
Publisher
Springer Netherlands
Published in
Pathology & Oncology Research / Issue 2/2013
Print ISSN: 1219-4956
Electronic ISSN: 1532-2807
DOI
https://doi.org/10.1007/s12253-012-9595-8

Other articles of this Issue 2/2013

Pathology & Oncology Research 2/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine