Skip to main content
Top
Published in: European Journal of Drug Metabolism and Pharmacokinetics 6/2017

01-12-2017 | Current opinion

The Role of Drug Metabolites in the Inhibition of Cytochrome P450 Enzymes

Authors: Momir Mikov, Maja Đanić, Nebojša Pavlović, Bojan Stanimirov, Svetlana Goločorbin-Kon, Karmen Stankov, Hani Al-Salami

Published in: European Journal of Drug Metabolism and Pharmacokinetics | Issue 6/2017

Login to get access

Abstract

Following the drug administration, patients are exposed not only to the parent drug itself, but also to the metabolites generated by drug-metabolizing enzymes. The role of drug metabolites in cytochrome P450 (CYP) inhibition and subsequent drug–drug interactions (DDIs) have recently become a topic of considerable interest and scientific debate. The list of metabolites that were found to significantly contribute to clinically relevant DDIs is constantly being expanded and reported in the literature. New strategies have been developed for better understanding how different metabolites of a drug candidate contribute to its pharmacokinetic properties and pharmacological as well as its toxicological effects. However, the testing of the role of metabolites in CYP inhibition is still not routinely performed during the process of drug development, although the evaluation of time-dependent CYP inhibition during the clinical candidate selection process may provide information on possible effects of metabolites in CYP inhibition. Due to large number of compounds to be tested in the early stages of drug discovery, the experimental approaches for assessment of CYP-mediated metabolic profiles are particularly resource demanding. Consequently, a large number of in silico or computational tools have been developed as useful complement to experimental approaches. In summary, circulating metabolites may be recognized as significant CYP inhibitors. Current data may suggest the need for an optimized effort to characterize the inhibitory potential of parent drugs metabolites on CYP, as well as the necessity to develop the advanced in vitro models that would allow a better quantitative predictive value of in vivo studies.
Literature
1.
go back to reference Nettleton DO, Einolf HJ. Assessment of cytochrome p450 enzyme inhibition and inactivation in drug discovery and development. Curr Top Med Chem. 2011;11(4):382–403.CrossRefPubMed Nettleton DO, Einolf HJ. Assessment of cytochrome p450 enzyme inhibition and inactivation in drug discovery and development. Curr Top Med Chem. 2011;11(4):382–403.CrossRefPubMed
4.
go back to reference Baillie TA, Cayen MN, Fouda H, Gerson RJ, Green JD, Grossman SJ, et al. Drug metabolites in safety testing. Toxicol Appl Pharmacol. 2002;182(3):188–96.CrossRefPubMed Baillie TA, Cayen MN, Fouda H, Gerson RJ, Green JD, Grossman SJ, et al. Drug metabolites in safety testing. Toxicol Appl Pharmacol. 2002;182(3):188–96.CrossRefPubMed
8.
go back to reference Pelkonen O, Pasanen M, Tolonen A, Koskinen M, Hakkola J, Abass K, et al. Reactive metabolites in early drug development: predictive in vitro tools. Curr Med Chem. 2015;22(4):538–50.CrossRefPubMed Pelkonen O, Pasanen M, Tolonen A, Koskinen M, Hakkola J, Abass K, et al. Reactive metabolites in early drug development: predictive in vitro tools. Curr Med Chem. 2015;22(4):538–50.CrossRefPubMed
10.
go back to reference Callegari E, Kalgutkar AS, Leung L, Obach RS, Plowchalk DR, Tse S. Drug metabolites as cytochrome p450 inhibitors: a retrospective analysis and proposed algorithm for evaluation of the pharmacokinetic interaction potential of metabolites in drug discovery and development. Drug Metab Dispos Biol Fate Chem. 2013;41(12):2047–55. doi:10.1124/dmd.113.052241.CrossRefPubMed Callegari E, Kalgutkar AS, Leung L, Obach RS, Plowchalk DR, Tse S. Drug metabolites as cytochrome p450 inhibitors: a retrospective analysis and proposed algorithm for evaluation of the pharmacokinetic interaction potential of metabolites in drug discovery and development. Drug Metab Dispos Biol Fate Chem. 2013;41(12):2047–55. doi:10.​1124/​dmd.​113.​052241.CrossRefPubMed
13.
go back to reference Iverson SL, Smith DA, editors. Metabolite safety in drug development. Wiley-Blackwell: Hoboken; 2016. Iverson SL, Smith DA, editors. Metabolite safety in drug development. Wiley-Blackwell: Hoboken; 2016.
14.
15.
go back to reference Park BK, Boobis A, Clarke S, Goldring CE, Jones D, Kenna JG, et al. Managing the challenge of chemically reactive metabolites in drug development. Nat Rev Drug Discovery. 2011;10(4):292–306. doi:10.1038/nrd3408.CrossRefPubMed Park BK, Boobis A, Clarke S, Goldring CE, Jones D, Kenna JG, et al. Managing the challenge of chemically reactive metabolites in drug development. Nat Rev Drug Discovery. 2011;10(4):292–306. doi:10.​1038/​nrd3408.CrossRefPubMed
16.
go back to reference Isoherranen N, Hachad H, Yeung CK, Levy RH. Qualitative analysis of the role of metabolites in inhibitory drug–drug interactions: literature evaluation based on the metabolism and transport drug interaction database. Chem Res Toxicol. 2009;22(2):294–8. doi:10.1021/tx800491e.CrossRefPubMedPubMedCentral Isoherranen N, Hachad H, Yeung CK, Levy RH. Qualitative analysis of the role of metabolites in inhibitory drug–drug interactions: literature evaluation based on the metabolism and transport drug interaction database. Chem Res Toxicol. 2009;22(2):294–8. doi:10.​1021/​tx800491e.CrossRefPubMedPubMedCentral
17.
go back to reference Yeung CK, Fujioka Y, Hachad H, Levy RH, Isoherranen N. Are circulating metabolites important in drug–drug interactions?: quantitative analysis of risk prediction and inhibitory potency. Clin Pharmacol Ther. 2011;89(1):105–13. doi:10.1038/clpt.2010.252.CrossRefPubMed Yeung CK, Fujioka Y, Hachad H, Levy RH, Isoherranen N. Are circulating metabolites important in drug–drug interactions?: quantitative analysis of risk prediction and inhibitory potency. Clin Pharmacol Ther. 2011;89(1):105–13. doi:10.​1038/​clpt.​2010.​252.CrossRefPubMed
18.
go back to reference Sutton D, Butler AM, Nadin L, Murray M. Role of CYP3A4 in human hepatic diltiazem N-demethylation: inhibition of CYP3A4 activity by oxidized diltiazem metabolites. J Pharmacol Exp Ther. 1997;282(1):294–300.PubMed Sutton D, Butler AM, Nadin L, Murray M. Role of CYP3A4 in human hepatic diltiazem N-demethylation: inhibition of CYP3A4 activity by oxidized diltiazem metabolites. J Pharmacol Exp Ther. 1997;282(1):294–300.PubMed
19.
go back to reference Ohyama K, Nakajima M, Suzuki M, Shimada N, Yamazaki H, Yokoi T. Inhibitory effects of amiodarone and its N-deethylated metabolite on human cytochrome P450 activities: prediction of in vivo drug interactions. Br J Clin Pharmacol. 2000;49(3):244–53.CrossRefPubMedPubMedCentral Ohyama K, Nakajima M, Suzuki M, Shimada N, Yamazaki H, Yokoi T. Inhibitory effects of amiodarone and its N-deethylated metabolite on human cytochrome P450 activities: prediction of in vivo drug interactions. Br J Clin Pharmacol. 2000;49(3):244–53.CrossRefPubMedPubMedCentral
20.
go back to reference Narimatsu S, Arai T, Masubuchi Y, Horie T, Hosokawa M, Ueno K, et al. Inactivation of rat cytochrome P450 2D enzyme by a further metabolite of 4-hydroxypropranolol, the major and active metabolite of propranolol. Biol Pharm Bull. 2001;24(9):988–94.CrossRefPubMed Narimatsu S, Arai T, Masubuchi Y, Horie T, Hosokawa M, Ueno K, et al. Inactivation of rat cytochrome P450 2D enzyme by a further metabolite of 4-hydroxypropranolol, the major and active metabolite of propranolol. Biol Pharm Bull. 2001;24(9):988–94.CrossRefPubMed
21.
go back to reference Borkar RM, Bhandi MM, Dubey AP, Ganga Reddy V, Komirishetty P, Nandekar PP, et al. An evaluation of the CYP2D6 and CYP3A4 inhibition potential of metoprolol metabolites and their contribution to drug–drug and drug–herb interaction by LC-ESI/MS/MS. Biomed Chromatogr BMC. 2016;30(10):1556–72. doi:10.1002/bmc.3721.CrossRefPubMed Borkar RM, Bhandi MM, Dubey AP, Ganga Reddy V, Komirishetty P, Nandekar PP, et al. An evaluation of the CYP2D6 and CYP3A4 inhibition potential of metoprolol metabolites and their contribution to drug–drug and drug–herb interaction by LC-ESI/MS/MS. Biomed Chromatogr BMC. 2016;30(10):1556–72. doi:10.​1002/​bmc.​3721.CrossRefPubMed
22.
go back to reference Stankov K, Sabo A, Mikov M. Pharmacogenetic biomarkers as tools for pharmacoepidemiology of severe adverse drug reactions. Drug Dev Res. 2013;74(1):1–14. doi:10.1002/ddr.21050.CrossRef Stankov K, Sabo A, Mikov M. Pharmacogenetic biomarkers as tools for pharmacoepidemiology of severe adverse drug reactions. Drug Dev Res. 2013;74(1):1–14. doi:10.​1002/​ddr.​21050.CrossRef
23.
go back to reference Stankov KM, Stanimirov BG, Mikov MM. Pharmacogenomic determinants of response to cardiovascular drugs. Med Pregl. 2015;68(7–8):259–65.CrossRefPubMed Stankov KM, Stanimirov BG, Mikov MM. Pharmacogenomic determinants of response to cardiovascular drugs. Med Pregl. 2015;68(7–8):259–65.CrossRefPubMed
25.
go back to reference Cho DY, Bae SH, Lee JK, Kim YW, Kim BT, Bae SK. Selective inhibition of cytochrome P450 2D6 by Sarpogrelate and its active metabolite, M-1, in human liver microsomes. Drug Metab Dispos Biol Fate Chem. 2014;42(1):33–9. doi:10.1124/dmd.113.054296.CrossRefPubMed Cho DY, Bae SH, Lee JK, Kim YW, Kim BT, Bae SK. Selective inhibition of cytochrome P450 2D6 by Sarpogrelate and its active metabolite, M-1, in human liver microsomes. Drug Metab Dispos Biol Fate Chem. 2014;42(1):33–9. doi:10.​1124/​dmd.​113.​054296.CrossRefPubMed
26.
go back to reference Shitara Y, Hirano M, Sato H, Sugiyama Y. Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug–drug interaction between cerivastatin and gemfibrozil. J Pharmacol Exp Ther. 2004;311(1):228–36. doi:10.1124/jpet.104.068536.CrossRefPubMed Shitara Y, Hirano M, Sato H, Sugiyama Y. Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug–drug interaction between cerivastatin and gemfibrozil. J Pharmacol Exp Ther. 2004;311(1):228–36. doi:10.​1124/​jpet.​104.​068536.CrossRefPubMed
27.
go back to reference Ogilvie BW, Zhang D, Li W, Rodrigues AD, Gipson AE, Holsapple J, et al. Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: implications for drug–drug interactions. Drug Metab Dispos Biol Fate Chem. 2006;34(1):191–7. doi:10.1124/dmd.105.007633.CrossRefPubMed Ogilvie BW, Zhang D, Li W, Rodrigues AD, Gipson AE, Holsapple J, et al. Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: implications for drug–drug interactions. Drug Metab Dispos Biol Fate Chem. 2006;34(1):191–7. doi:10.​1124/​dmd.​105.​007633.CrossRefPubMed
28.
go back to reference Gan J, Liu-Kreyche P, Humphreys WG. In vitro assessment of cytochrome P450 inhibition and induction potential of tanespimycin and its major metabolite, 17-amino-17-demethoxygeldanamycin. Cancer Chemother Pharmacol. 2012;69(1):51–6. doi:10.1007/s00280-011-1672-2.CrossRefPubMed Gan J, Liu-Kreyche P, Humphreys WG. In vitro assessment of cytochrome P450 inhibition and induction potential of tanespimycin and its major metabolite, 17-amino-17-demethoxygeldanamycin. Cancer Chemother Pharmacol. 2012;69(1):51–6. doi:10.​1007/​s00280-011-1672-2.CrossRefPubMed
31.
go back to reference Crewe HK, Lennard MS, Tucker GT, Woods FR, Haddock RE. The effect of selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. Br J Clin Pharmacol. 1992;34(3):262–5.CrossRefPubMedPubMedCentral Crewe HK, Lennard MS, Tucker GT, Woods FR, Haddock RE. The effect of selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. Br J Clin Pharmacol. 1992;34(3):262–5.CrossRefPubMedPubMedCentral
32.
go back to reference Sager JE, Lutz JD, Foti RS, Davis C, Kunze KL, Isoherranen N. Fluoxetine- and norfluoxetine-mediated complex drug–drug interactions: in vitro to in vivo correlation of effects on CYP2D6, CYP2C19, and CYP3A4. Clin Pharmacol Ther. 2014;95(6):653–62. doi:10.1038/clpt.2014.50.CrossRefPubMedPubMedCentral Sager JE, Lutz JD, Foti RS, Davis C, Kunze KL, Isoherranen N. Fluoxetine- and norfluoxetine-mediated complex drug–drug interactions: in vitro to in vivo correlation of effects on CYP2D6, CYP2C19, and CYP3A4. Clin Pharmacol Ther. 2014;95(6):653–62. doi:10.​1038/​clpt.​2014.​50.CrossRefPubMedPubMedCentral
33.
go back to reference von Moltke LL, Greenblatt DJ, Giancarlo GM, Granda BW, Harmatz JS, Shader RI. Escitalopram (S-citalopram) and its metabolites in vitro: cytochromes mediating biotransformation, inhibitory effects, and comparison to R-citalopram. Drug Metab Dispos Biol Fate Chem. 2001;29(8):1102–9. von Moltke LL, Greenblatt DJ, Giancarlo GM, Granda BW, Harmatz JS, Shader RI. Escitalopram (S-citalopram) and its metabolites in vitro: cytochromes mediating biotransformation, inhibitory effects, and comparison to R-citalopram. Drug Metab Dispos Biol Fate Chem. 2001;29(8):1102–9.
34.
go back to reference Reese MJ, Wurm RM, Muir KT, Generaux GT, St John-Williams L, McConn DJ. An in vitro mechanistic study to elucidate the desipramine/bupropion clinical drug–drug interaction. Drug Metab Dispos Biol Fate Chem. 2008;36(7):1198–201. doi:10.1124/dmd.107.020198.CrossRefPubMed Reese MJ, Wurm RM, Muir KT, Generaux GT, St John-Williams L, McConn DJ. An in vitro mechanistic study to elucidate the desipramine/bupropion clinical drug–drug interaction. Drug Metab Dispos Biol Fate Chem. 2008;36(7):1198–201. doi:10.​1124/​dmd.​107.​020198.CrossRefPubMed
35.
go back to reference Dodds Ashley ES. Pharmacology of azole antifungal agents. In: Ghannoum MA, Perfect J, editors. Antifungal therapy. New York: Informa Healthcare; 2010. p. 199–218. Dodds Ashley ES. Pharmacology of azole antifungal agents. In: Ghannoum MA, Perfect J, editors. Antifungal therapy. New York: Informa Healthcare; 2010. p. 199–218.
38.
go back to reference Hohmann N, Kocheise F, Carls A, Burhenne J, Weiss J, Haefeli WE, et al. Dose-dependent bioavailability and cyp3a inhibition contribute to non-linear pharmacokinetics of voriconazole. Clin Pharmacokinet. 2016;55(12):1535–45. doi:10.1007/s40262-016-0416-1.CrossRefPubMed Hohmann N, Kocheise F, Carls A, Burhenne J, Weiss J, Haefeli WE, et al. Dose-dependent bioavailability and cyp3a inhibition contribute to non-linear pharmacokinetics of voriconazole. Clin Pharmacokinet. 2016;55(12):1535–45. doi:10.​1007/​s40262-016-0416-1.CrossRefPubMed
39.
go back to reference Giri P, Naidu S, Patel N, Patel H, Srinivas NR. Evaluation of in vitro cytochrome P450 inhibition and in vitro fate of structurally diverse N-oxide metabolites: case studies with clozapine, levofloxacin, roflumilast, voriconazole and zopiclone. Eur J Drug Metab Pharmacokinet. 2016;. doi:10.1007/s13318-016-0385-7. Giri P, Naidu S, Patel N, Patel H, Srinivas NR. Evaluation of in vitro cytochrome P450 inhibition and in vitro fate of structurally diverse N-oxide metabolites: case studies with clozapine, levofloxacin, roflumilast, voriconazole and zopiclone. Eur J Drug Metab Pharmacokinet. 2016;. doi:10.​1007/​s13318-016-0385-7.
41.
go back to reference Yu H, Tweedie D. A perspective on the contribution of metabolites to drug–drug interaction potential: the need to consider both circulating levels and inhibition potency. Drug Metab Dispos Biol Fate Chem. 2013;41(3):536–40. doi:10.1124/dmd.112.048892.CrossRefPubMed Yu H, Tweedie D. A perspective on the contribution of metabolites to drug–drug interaction potential: the need to consider both circulating levels and inhibition potency. Drug Metab Dispos Biol Fate Chem. 2013;41(3):536–40. doi:10.​1124/​dmd.​112.​048892.CrossRefPubMed
42.
go back to reference Jacobsen W, Kuhn B, Soldner A, Kirchner G, Sewing KF, Kollman PA, et al. Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab Dispos Biol Fate Chem. 2000;28(11):1369–78.PubMed Jacobsen W, Kuhn B, Soldner A, Kirchner G, Sewing KF, Kollman PA, et al. Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab Dispos Biol Fate Chem. 2000;28(11):1369–78.PubMed
43.
go back to reference Orr ST, Ripp SL, Ballard TE, Henderson JL, Scott DO, Obach RS, et al. Mechanism-based inactivation (MBI) of cytochrome P450 enzymes: structure-activity relationships and discovery strategies to mitigate drug–drug interaction risks. J Med Chem. 2012;55(11):4896–933. doi:10.1021/jm300065h.CrossRefPubMed Orr ST, Ripp SL, Ballard TE, Henderson JL, Scott DO, Obach RS, et al. Mechanism-based inactivation (MBI) of cytochrome P450 enzymes: structure-activity relationships and discovery strategies to mitigate drug–drug interaction risks. J Med Chem. 2012;55(11):4896–933. doi:10.​1021/​jm300065h.CrossRefPubMed
44.
go back to reference Obach RS, Kalgutkar AS, Dalvie DK. In vitro methods for evaluation of drug metabolism: identification of active and inactive metabolites and the enzymes that generate them. In: Iverson SL, Smith DA, editors. Metabolite safety in drug development. Wiley-Blackwell: Hoboken; 2016. p. 106–10. Obach RS, Kalgutkar AS, Dalvie DK. In vitro methods for evaluation of drug metabolism: identification of active and inactive metabolites and the enzymes that generate them. In: Iverson SL, Smith DA, editors. Metabolite safety in drug development. Wiley-Blackwell: Hoboken; 2016. p. 106–10.
47.
go back to reference Andrade CH, Silva DC, Braga RC. In silico prediction of drug metabolism by P450. Curr Drug Metab. 2014;15(5):514–25.CrossRefPubMed Andrade CH, Silva DC, Braga RC. In silico prediction of drug metabolism by P450. Curr Drug Metab. 2014;15(5):514–25.CrossRefPubMed
49.
go back to reference Kirchmair J, Goller AH, Lang D, Kunze J, Testa B, Wilson ID, et al. Predicting drug metabolism: experiment and/or computation? Nat Rev Drug Discov. 2015;14(6):387–404. doi:10.1038/nrd4581.CrossRefPubMed Kirchmair J, Goller AH, Lang D, Kunze J, Testa B, Wilson ID, et al. Predicting drug metabolism: experiment and/or computation? Nat Rev Drug Discov. 2015;14(6):387–404. doi:10.​1038/​nrd4581.CrossRefPubMed
Metadata
Title
The Role of Drug Metabolites in the Inhibition of Cytochrome P450 Enzymes
Authors
Momir Mikov
Maja Đanić
Nebojša Pavlović
Bojan Stanimirov
Svetlana Goločorbin-Kon
Karmen Stankov
Hani Al-Salami
Publication date
01-12-2017
Publisher
Springer International Publishing
Published in
European Journal of Drug Metabolism and Pharmacokinetics / Issue 6/2017
Print ISSN: 0378-7966
Electronic ISSN: 2107-0180
DOI
https://doi.org/10.1007/s13318-017-0417-y

Other articles of this Issue 6/2017

European Journal of Drug Metabolism and Pharmacokinetics 6/2017 Go to the issue