Skip to main content
Top
Published in: Cancer Cell International 1/2015

Open Access 01-12-2015 | Review

The role of death-associated protein 3 in apoptosis, anoikis and human cancer

Authors: Umar Wazir, Mona MAW Orakzai, Zubair S Khanzada, Wen G Jiang, Anup K Sharma, Abdul Kasem, Kefah Mokbel

Published in: Cancer Cell International | Issue 1/2015

Login to get access

Abstract

Death-associated protein 3 (DAP3) is a molecule with a significant role in the control of both apoptosis and anoikis. Apoptosis is the predominant type of programmed cell death (PCD) which may occur in response to irreparable damage to DNA, or in response to induction by inflammatory cells. Anoikis is subset of apoptosis which occurs in epithelial cells in response to detachment from the surrounding matrix. Both apoptosis and anoikis are of interest in the context of carcinogenesis. In this review, we shall discuss apoptosis and anoikis, and the recent literature regarding the role of DAP3 in both these pathways.
Literature
2.
3.
go back to reference GlÜCksmann A. Cell deaths in normal vertebrate ontogeny. Biol Rev. 1951;26(1):59–86. doi:10.1111/j.1469-185X.1951.tb00774.x.CrossRefPubMed GlÜCksmann A. Cell deaths in normal vertebrate ontogeny. Biol Rev. 1951;26(1):59–86. doi:10.1111/j.1469-185X.1951.tb00774.x.CrossRefPubMed
4.
go back to reference Kerr JF. Shrinkage necrosis: a distinct mode of cellular death. J Pathol. 1971;105(1):13–20. doi:10.1002/path.1711050103.CrossRefPubMed Kerr JF. Shrinkage necrosis: a distinct mode of cellular death. J Pathol. 1971;105(1):13–20. doi:10.1002/path.1711050103.CrossRefPubMed
5.
go back to reference Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57.CrossRefPubMedCentralPubMed Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57.CrossRefPubMedCentralPubMed
6.
go back to reference Formigli L, Papucci L, Tani A, Schiavone N, Tempestini A, Orlandini GE, et al. Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cell Physiol. 2000;182(1):41–9. doi:10.1002/(SICI)1097-4652(200001)182:1 < 41::AID-JCP5 > 3.0.CO;2-7.CrossRefPubMed Formigli L, Papucci L, Tani A, Schiavone N, Tempestini A, Orlandini GE, et al. Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cell Physiol. 2000;182(1):41–9. doi:10.1002/(SICI)1097-4652(200001)182:1 < 41::AID-JCP5 > 3.0.CO;2-7.CrossRefPubMed
7.
go back to reference Papucci L, Formigli L, Schiavone N, Tani A, Donnini M, Lapucci A, et al. Apoptosis shifts to necrosis via intermediate types of cell death by a mechanism depending on c-myc and bcl-2 expression. Cell Tissue Res. 2004;316(2):197–209.doi:10.1007/s00441-004-0872-z.CrossRefPubMed Papucci L, Formigli L, Schiavone N, Tani A, Donnini M, Lapucci A, et al. Apoptosis shifts to necrosis via intermediate types of cell death by a mechanism depending on c-myc and bcl-2 expression. Cell Tissue Res. 2004;316(2):197–209.doi:10.1007/s00441-004-0872-z.CrossRefPubMed
8.
go back to reference Leist M. Intracellular Adenosine Triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med. 1997;185(8):1481–6. doi:10.1084/jem.185.8.1481.CrossRefPubMedCentralPubMed Leist M. Intracellular Adenosine Triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med. 1997;185(8):1481–6. doi:10.1084/jem.185.8.1481.CrossRefPubMedCentralPubMed
9.
go back to reference Chang C, Simmons DT, Martin MA, Mora PT. Identification and partial characterization of new antigens from simian virus 40-transformed mouse cells. J Virol. 1979;31(2):463–71.PubMedCentralPubMed Chang C, Simmons DT, Martin MA, Mora PT. Identification and partial characterization of new antigens from simian virus 40-transformed mouse cells. J Virol. 1979;31(2):463–71.PubMedCentralPubMed
10.
go back to reference Kress M, May E, Cassingena R, May P. Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J Virol. 1979;31(2):472–83.PubMedCentralPubMed Kress M, May E, Cassingena R, May P. Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J Virol. 1979;31(2):472–83.PubMedCentralPubMed
11.
go back to reference May P, May E. Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene. 1999;18(53):7621–36. doi:10.1038/sj.onc.1203285.CrossRefPubMed May P, May E. Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene. 1999;18(53):7621–36. doi:10.1038/sj.onc.1203285.CrossRefPubMed
12.
go back to reference Maltzman W, Czyzyk L. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol. 1984;4(9):1689–94.PubMedCentralPubMed Maltzman W, Czyzyk L. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol. 1984;4(9):1689–94.PubMedCentralPubMed
13.
go back to reference DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A. 1979;76(5):2420–4.CrossRefPubMedCentralPubMed DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A. 1979;76(5):2420–4.CrossRefPubMedCentralPubMed
14.
go back to reference Basu A, Haldar S. The relationship between BcI2, Bax and p53: consequences for cell cycle progression and cell death. Mol Hum Reprod. 1998;4(12):1099–109.CrossRefPubMed Basu A, Haldar S. The relationship between BcI2, Bax and p53: consequences for cell cycle progression and cell death. Mol Hum Reprod. 1998;4(12):1099–109.CrossRefPubMed
16.
go back to reference Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol. 1994;124(4):619–26.CrossRefPubMed Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol. 1994;124(4):619–26.CrossRefPubMed
17.
go back to reference Sakamoto S, Kyprianou N. Targeting anoikis resistance in prostate cancer metastasis. Mol Aspects Med. 2010;31(2):205–14. doi:10.1016/j.mam.2010.02.001.CrossRefPubMedCentralPubMed Sakamoto S, Kyprianou N. Targeting anoikis resistance in prostate cancer metastasis. Mol Aspects Med. 2010;31(2):205–14. doi:10.1016/j.mam.2010.02.001.CrossRefPubMedCentralPubMed
18.
go back to reference Krammer PH, Arnold R, Lavrik IN. Life and death in peripheral T cells. Nat Rev Immunol. 2007;7(7):532–42. doi:10.1038/nri2115.CrossRefPubMed Krammer PH, Arnold R, Lavrik IN. Life and death in peripheral T cells. Nat Rev Immunol. 2007;7(7):532–42. doi:10.1038/nri2115.CrossRefPubMed
19.
go back to reference Screaton RA, Kiessling S, Sansom OJ, Millar CB, Maddison K, Bird A, et al. Fas-associated death domain protein interacts with methyl-CpG binding domain protein 4: a potential link between genome surveillance and apoptosis. Proc Natl Acad Sci U S A. 2003;100(9):5211–6. doi:10.1073/pnas.0431215100.CrossRefPubMedCentralPubMed Screaton RA, Kiessling S, Sansom OJ, Millar CB, Maddison K, Bird A, et al. Fas-associated death domain protein interacts with methyl-CpG binding domain protein 4: a potential link between genome surveillance and apoptosis. Proc Natl Acad Sci U S A. 2003;100(9):5211–6. doi:10.1073/pnas.0431215100.CrossRefPubMedCentralPubMed
20.
go back to reference Aoudjit F, Vuori K. Matrix attachment regulates Fas-induced apoptosis in endothelial cells: a role for c-flip and implications for anoikis. J Cell Biol. 2001;152(3):633–43.CrossRefPubMedCentralPubMed Aoudjit F, Vuori K. Matrix attachment regulates Fas-induced apoptosis in endothelial cells: a role for c-flip and implications for anoikis. J Cell Biol. 2001;152(3):633–43.CrossRefPubMedCentralPubMed
21.
go back to reference Sprick MR, Rieser E, Stahl H, Grosse-Wilde A, Weigand MA, Walczak H. Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. EMBO J. 2002;21(17):4520–30.CrossRefPubMedCentralPubMed Sprick MR, Rieser E, Stahl H, Grosse-Wilde A, Weigand MA, Walczak H. Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. EMBO J. 2002;21(17):4520–30.CrossRefPubMedCentralPubMed
22.
go back to reference Kischkel FC, Lawrence DA, Tinel A, LeBlanc H, Virmani A, Schow P, et al. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem. 2001;276(49):46639–46. doi:10.1074/jbc.M105102200.CrossRefPubMed Kischkel FC, Lawrence DA, Tinel A, LeBlanc H, Virmani A, Schow P, et al. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem. 2001;276(49):46639–46. doi:10.1074/jbc.M105102200.CrossRefPubMed
23.
go back to reference Hsu H, Shu HB, Pan MG, Goeddel DV. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell. 1996;84(2):299–308.CrossRefPubMed Hsu H, Shu HB, Pan MG, Goeddel DV. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell. 1996;84(2):299–308.CrossRefPubMed
24.
go back to reference Kissil JL, Kimchi A. Assignment of death associated protein 3 (DAP3) to human chromosome 1q21 by in situ hybridization. Cytogenet Cell Genet. 1997;77(3–4):252.CrossRefPubMed Kissil JL, Kimchi A. Assignment of death associated protein 3 (DAP3) to human chromosome 1q21 by in situ hybridization. Cytogenet Cell Genet. 1997;77(3–4):252.CrossRefPubMed
25.
go back to reference Miyazaki T, Shen M, Fujikura D, Tosa N, Kim HR, Kon S, et al. Functional role of death-associated protein 3 (DAP3) in anoikis. J Biol Chem. 2004;279(43):44667–72. doi:10.1074/jbc.M408101200.CrossRefPubMed Miyazaki T, Shen M, Fujikura D, Tosa N, Kim HR, Kon S, et al. Functional role of death-associated protein 3 (DAP3) in anoikis. J Biol Chem. 2004;279(43):44667–72. doi:10.1074/jbc.M408101200.CrossRefPubMed
26.
go back to reference Harada T, Iwai A, Miyazaki T. Identification of DELE, a novel DAP3-binding protein which is crucial for death receptor-mediated apoptosis induction. Apoptosis. 2010;15(10):1247–55. doi:10.1007/s10495-010-0519-3.CrossRefPubMed Harada T, Iwai A, Miyazaki T. Identification of DELE, a novel DAP3-binding protein which is crucial for death receptor-mediated apoptosis induction. Apoptosis. 2010;15(10):1247–55. doi:10.1007/s10495-010-0519-3.CrossRefPubMed
27.
go back to reference Takeda S, Iwai A, Nakashima M, Fujikura D, Chiba S, Li HM, et al. LKB1 is crucial for TRAIL-mediated apoptosis induction in osteosarcoma. Anticancer Res. 2007;27(2):761–8.PubMed Takeda S, Iwai A, Nakashima M, Fujikura D, Chiba S, Li HM, et al. LKB1 is crucial for TRAIL-mediated apoptosis induction in osteosarcoma. Anticancer Res. 2007;27(2):761–8.PubMed
28.
go back to reference Duivenvoorden WC, Beatty LK, Lhotak S, Hill B, Mak I, Paulin G, et al. Underexpression of tumour suppressor LKB1 in clear cell renal cell carcinoma is common and confers growth advantage in vitro and in vivo. Br J Cancer. 2013;108(2):327–33. doi:10.1038/bjc.2012.574.CrossRefPubMedCentralPubMed Duivenvoorden WC, Beatty LK, Lhotak S, Hill B, Mak I, Paulin G, et al. Underexpression of tumour suppressor LKB1 in clear cell renal cell carcinoma is common and confers growth advantage in vitro and in vivo. Br J Cancer. 2013;108(2):327–33. doi:10.1038/bjc.2012.574.CrossRefPubMedCentralPubMed
29.
go back to reference Tripathi DN, Chowdhury R, Trudel LJ, Tee AR, Slack RS, Walker CL, et al. Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1. Proc Natl Acad Sci U S A. 2013;110(32):E2950–7. doi:10.1073/pnas.1307736110.CrossRefPubMedCentralPubMed Tripathi DN, Chowdhury R, Trudel LJ, Tee AR, Slack RS, Walker CL, et al. Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1. Proc Natl Acad Sci U S A. 2013;110(32):E2950–7. doi:10.1073/pnas.1307736110.CrossRefPubMedCentralPubMed
30.
go back to reference Cleary ML, Smith SD, Sklar J. Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell. 1986;47(1):19–28.CrossRefPubMed Cleary ML, Smith SD, Sklar J. Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell. 1986;47(1):19–28.CrossRefPubMed
31.
go back to reference Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 1993;74(4):609–19.CrossRefPubMed Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 1993;74(4):609–19.CrossRefPubMed
32.
go back to reference Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2002;2(3):183–92.CrossRefPubMed Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2002;2(3):183–92.CrossRefPubMed
33.
go back to reference Shamas-Din A, Kale J, Leber B, Andrews DW. Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb Perspect Biol. 2013;5(4):a008714. doi:10.1101/cshperspect.a008714.CrossRefPubMedCentralPubMed Shamas-Din A, Kale J, Leber B, Andrews DW. Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb Perspect Biol. 2013;5(4):a008714. doi:10.1101/cshperspect.a008714.CrossRefPubMedCentralPubMed
34.
go back to reference Hikisz P, Kilianska ZM. PUMA, a critical mediator of cell death–one decade on from its discovery. Cell Mol Biol Lett. 2012;17(4):646–69. doi:10.2478/s11658-012-0032-5.CrossRefPubMed Hikisz P, Kilianska ZM. PUMA, a critical mediator of cell death–one decade on from its discovery. Cell Mol Biol Lett. 2012;17(4):646–69. doi:10.2478/s11658-012-0032-5.CrossRefPubMed
35.
go back to reference Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995;80(2):293–9.CrossRefPubMed Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995;80(2):293–9.CrossRefPubMed
36.
go back to reference Zou H. An APAF-1 Cytochrome c Multimeric complex is a functional Apoptosome that activates Procaspase-9. J Biol Chem. 1999;274(17):11549–56. doi:10.1074/jbc.274.17.11549.CrossRefPubMed Zou H. An APAF-1 Cytochrome c Multimeric complex is a functional Apoptosome that activates Procaspase-9. J Biol Chem. 1999;274(17):11549–56. doi:10.1074/jbc.274.17.11549.CrossRefPubMed
37.
go back to reference Pop C, Timmer J, Sperandio S, Salvesen GS. The apoptosome activates caspase-9 by dimerization. Mol Cell. 2006;22(2):269–75. doi:10.1016/j.molcel.2006.03.009.CrossRefPubMed Pop C, Timmer J, Sperandio S, Salvesen GS. The apoptosome activates caspase-9 by dimerization. Mol Cell. 2006;22(2):269–75. doi:10.1016/j.molcel.2006.03.009.CrossRefPubMed
38.
go back to reference Jiang X, Wang X. Cytochrome C-mediated apoptosis. Annu Rev Biochem. 2004;73:87–106. doi:10.1146/annurev.biochem.73.011303.073706.CrossRefPubMed Jiang X, Wang X. Cytochrome C-mediated apoptosis. Annu Rev Biochem. 2004;73:87–106. doi:10.1146/annurev.biochem.73.011303.073706.CrossRefPubMed
39.
go back to reference Zhou LL, Zhou LY, Luo KQ, Chang DC. Smac/DIABLO and cytochrome c are released from mitochondria through a similar mechanism during UV-induced apoptosis. Apoptosis. 2005;10(2):289–99. doi:10.1007/s10495-005-0803-9.CrossRefPubMed Zhou LL, Zhou LY, Luo KQ, Chang DC. Smac/DIABLO and cytochrome c are released from mitochondria through a similar mechanism during UV-induced apoptosis. Apoptosis. 2005;10(2):289–99. doi:10.1007/s10495-005-0803-9.CrossRefPubMed
40.
go back to reference Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X, et al. Structural basis of IAP recognition by Smac/DIABLO. Nature. 2000;408(6815):1008–12. doi:10.1038/35050012.CrossRefPubMed Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X, et al. Structural basis of IAP recognition by Smac/DIABLO. Nature. 2000;408(6815):1008–12. doi:10.1038/35050012.CrossRefPubMed
41.
go back to reference Yu J, Wang P, Ming L, Wood MA, Zhang L. SMAC/Diablo mediates the proapoptotic function of PUMA by regulating PUMA-induced mitochondrial events. Oncogene. 2007;26(29):4189–98. doi:10.1038/sj.onc.1210196.CrossRefPubMed Yu J, Wang P, Ming L, Wood MA, Zhang L. SMAC/Diablo mediates the proapoptotic function of PUMA by regulating PUMA-induced mitochondrial events. Oncogene. 2007;26(29):4189–98. doi:10.1038/sj.onc.1210196.CrossRefPubMed
42.
go back to reference Flanagan L, Sebastia J, Tuffy LP, Spring A, Lichawska A, Devocelle M, et al. XIAP impairs Smac release from the mitochondria during apoptosis. Cell Death Dis. 2010;1:e49. doi:10.1038/cddis.2010.26.CrossRefPubMedCentralPubMed Flanagan L, Sebastia J, Tuffy LP, Spring A, Lichawska A, Devocelle M, et al. XIAP impairs Smac release from the mitochondria during apoptosis. Cell Death Dis. 2010;1:e49. doi:10.1038/cddis.2010.26.CrossRefPubMedCentralPubMed
43.
go back to reference Yang QH, Church-Hajduk R, Ren J, Newton ML, Du C. Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev. 2003;17(12):1487–96. doi:10.1101/gad.1097903.CrossRefPubMedCentralPubMed Yang QH, Church-Hajduk R, Ren J, Newton ML, Du C. Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev. 2003;17(12):1487–96. doi:10.1101/gad.1097903.CrossRefPubMedCentralPubMed
44.
go back to reference Vande Walle L, Van Damme P, Lamkanfi M, Saelens X, Vandekerckhove J, Gevaert K, et al. Proteome-wide Identification of HtrA2/Omi substrates. J Proteome Res. 2007;6(3):1006–15. doi:10.1021/pr060510d.CrossRefPubMed Vande Walle L, Van Damme P, Lamkanfi M, Saelens X, Vandekerckhove J, Gevaert K, et al. Proteome-wide Identification of HtrA2/Omi substrates. J Proteome Res. 2007;6(3):1006–15. doi:10.1021/pr060510d.CrossRefPubMed
45.
go back to reference Ye H, Cande C, Stephanou NC, Jiang S, Gurbuxani S, Larochette N, et al. DNA binding is required for the apoptogenic action of apoptosis inducing factor. Nat Struct Biol. 2002;9(9):680–4. doi:10.1038/nsb836.CrossRefPubMed Ye H, Cande C, Stephanou NC, Jiang S, Gurbuxani S, Larochette N, et al. DNA binding is required for the apoptogenic action of apoptosis inducing factor. Nat Struct Biol. 2002;9(9):680–4. doi:10.1038/nsb836.CrossRefPubMed
46.
go back to reference Stambolsky P, Weisz L, Shats I, Klein Y, Goldfinger N, Oren M, et al. Regulation of AIF expression by p53. Cell Death Differ. 2006;13(12):2140–9. doi:10.1038/sj.cdd.4401965.CrossRefPubMed Stambolsky P, Weisz L, Shats I, Klein Y, Goldfinger N, Oren M, et al. Regulation of AIF expression by p53. Cell Death Differ. 2006;13(12):2140–9. doi:10.1038/sj.cdd.4401965.CrossRefPubMed
47.
go back to reference Varecha M, Potesilova M, Matula P, Kozubek M. Endonuclease G interacts with histone H2B and DNA topoisomerase II alpha during apoptosis. Mol Cell Biochem. 2012;363(1–2):301–7. doi:10.1007/s11010-011-1182-x.CrossRefPubMed Varecha M, Potesilova M, Matula P, Kozubek M. Endonuclease G interacts with histone H2B and DNA topoisomerase II alpha during apoptosis. Mol Cell Biochem. 2012;363(1–2):301–7. doi:10.1007/s11010-011-1182-x.CrossRefPubMed
48.
go back to reference Suzuki T, Terasaki M, Takemoto-Hori C, Hanada T, Ueda T, Wada A, et al. Proteomic analysis of the mammalian mitochondrial ribosome. Identification of protein components in the 28 S small subunit. J Biol Chem. 2001;276(35):33181–95. doi:10.1074/jbc.M103236200.CrossRefPubMed Suzuki T, Terasaki M, Takemoto-Hori C, Hanada T, Ueda T, Wada A, et al. Proteomic analysis of the mammalian mitochondrial ribosome. Identification of protein components in the 28 S small subunit. J Biol Chem. 2001;276(35):33181–95. doi:10.1074/jbc.M103236200.CrossRefPubMed
49.
go back to reference Kim HR, Chae HJ, Thomas M, Miyazaki T, Monosov A, Monosov E, et al. Mammalian dap3 is an essential gene required for mitochondrial homeostasis in vivo and contributing to the extrinsic pathway for apoptosis. FASEB J. 2007;21(1):188–96. doi:10.1096/fj.06-6283com.CrossRefPubMed Kim HR, Chae HJ, Thomas M, Miyazaki T, Monosov A, Monosov E, et al. Mammalian dap3 is an essential gene required for mitochondrial homeostasis in vivo and contributing to the extrinsic pathway for apoptosis. FASEB J. 2007;21(1):188–96. doi:10.1096/fj.06-6283com.CrossRefPubMed
50.
go back to reference Tinel A, Tschopp J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science. 2004;304(5672):843–6. doi:10.1126/science.1095432.CrossRefPubMed Tinel A, Tschopp J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science. 2004;304(5672):843–6. doi:10.1126/science.1095432.CrossRefPubMed
52.
go back to reference Pennarun B, Meijer A, de Vries EG, Kleibeuker JH, Kruyt F, de Jong S. Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer. Biochim Biophys Acta. 2010;1805(2):123–40. doi:10.1016/j.bbcan.2009.11.004.PubMed Pennarun B, Meijer A, de Vries EG, Kleibeuker JH, Kruyt F, de Jong S. Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer. Biochim Biophys Acta. 2010;1805(2):123–40. doi:10.1016/j.bbcan.2009.11.004.PubMed
53.
go back to reference Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998;17(6):1675–87. doi:10.1093/emboj/17.6.1675.CrossRefPubMedCentralPubMed Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998;17(6):1675–87. doi:10.1093/emboj/17.6.1675.CrossRefPubMedCentralPubMed
54.
go back to reference Kantari C, Walczak H. Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochim Biophys Acta. 2011;1813(4):558–63. doi:10.1016/j.bbamcr.2011.01.026.CrossRefPubMed Kantari C, Walczak H. Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochim Biophys Acta. 2011;1813(4):558–63. doi:10.1016/j.bbamcr.2011.01.026.CrossRefPubMed
55.
go back to reference Kaufmann T, Strasser A, Jost PJ. Fas death receptor signalling: roles of Bid and XIAP. Cell Death Differ. 2012;19(1):42–50. doi:10.1038/cdd.2011.121.CrossRefPubMedCentralPubMed Kaufmann T, Strasser A, Jost PJ. Fas death receptor signalling: roles of Bid and XIAP. Cell Death Differ. 2012;19(1):42–50. doi:10.1038/cdd.2011.121.CrossRefPubMedCentralPubMed
56.
go back to reference Walsh JG, Cullen SP, Sheridan C, Luthi AU, Gerner C, Martin SJ. Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci U S A. 2008;105(35):12815–9. doi:10.1073/pnas.0707715105.CrossRefPubMedCentralPubMed Walsh JG, Cullen SP, Sheridan C, Luthi AU, Gerner C, Martin SJ. Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci U S A. 2008;105(35):12815–9. doi:10.1073/pnas.0707715105.CrossRefPubMedCentralPubMed
57.
go back to reference Sakahira H, Enari M, Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature. 1998;391(6662):96–9. doi:10.1038/34214.CrossRefPubMed Sakahira H, Enari M, Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature. 1998;391(6662):96–9. doi:10.1038/34214.CrossRefPubMed
58.
go back to reference Tsuruta T, Oh-Hashi K, Ueno Y, Kitade Y, Kiuchi K, Hirata Y. RNAi knockdown of caspase-activated DNase inhibits rotenone-induced DNA fragmentation in HeLa cells. Neurochem Int. 2007;50(4):601–6. doi:10.1016/j.neuint.2006.12.002.CrossRefPubMed Tsuruta T, Oh-Hashi K, Ueno Y, Kitade Y, Kiuchi K, Hirata Y. RNAi knockdown of caspase-activated DNase inhibits rotenone-induced DNA fragmentation in HeLa cells. Neurochem Int. 2007;50(4):601–6. doi:10.1016/j.neuint.2006.12.002.CrossRefPubMed
59.
go back to reference Denault JB, Eckelman BP, Shin H, Pop C, Salvesen GS. Caspase 3 attenuates XIAP (X-linked inhibitor of apoptosis protein)-mediated inhibition of caspase 9. Biochem J. 2007;405(1):11–9. doi:10.1042/BJ20070288.PubMedCentralPubMed Denault JB, Eckelman BP, Shin H, Pop C, Salvesen GS. Caspase 3 attenuates XIAP (X-linked inhibitor of apoptosis protein)-mediated inhibition of caspase 9. Biochem J. 2007;405(1):11–9. doi:10.1042/BJ20070288.PubMedCentralPubMed
60.
go back to reference Boccellino M, Giuberti G, Quagliuolo L, Marra M, D’Alessandro AM, Fujita H, et al. Apoptosis induced by interferon-alpha and antagonized by EGF is regulated by caspase-3-mediated cleavage of gelsolin in human epidermoid cancer cells. J Cell Physiol. 2004;201(1):71–83. doi:10.1002/jcp.20058.CrossRefPubMed Boccellino M, Giuberti G, Quagliuolo L, Marra M, D’Alessandro AM, Fujita H, et al. Apoptosis induced by interferon-alpha and antagonized by EGF is regulated by caspase-3-mediated cleavage of gelsolin in human epidermoid cancer cells. J Cell Physiol. 2004;201(1):71–83. doi:10.1002/jcp.20058.CrossRefPubMed
61.
go back to reference Bratton DL, Fadok VA, Richter DA, Kailey JM, Guthrie LA, Henson PM. Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J Biol Chem. 1997;272(42):26159–65.CrossRefPubMed Bratton DL, Fadok VA, Richter DA, Kailey JM, Guthrie LA, Henson PM. Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J Biol Chem. 1997;272(42):26159–65.CrossRefPubMed
62.
go back to reference Mandal D, Mazumder A, Das P, Kundu M, Basu J. Fas-, caspase 8-, and caspase 3-dependent signaling regulates the activity of the aminophospholipid translocase and phosphatidylserine externalization in human erythrocytes. J Biol Chem. 2005;280(47):39460–7. doi:10.1074/jbc.M506928200.CrossRefPubMed Mandal D, Mazumder A, Das P, Kundu M, Basu J. Fas-, caspase 8-, and caspase 3-dependent signaling regulates the activity of the aminophospholipid translocase and phosphatidylserine externalization in human erythrocytes. J Biol Chem. 2005;280(47):39460–7. doi:10.1074/jbc.M506928200.CrossRefPubMed
63.
go back to reference Mintzer R, Ramaswamy S, Shah K, Hannoush RN, Pozniak CD, Cohen F, et al. A whole cell assay to measure caspase-6 activity by detecting cleavage of lamin A/C. PLoS One. 2012;7(1):e30376. doi:10.1371/journal.pone.0030376.CrossRefPubMedCentralPubMed Mintzer R, Ramaswamy S, Shah K, Hannoush RN, Pozniak CD, Cohen F, et al. A whole cell assay to measure caspase-6 activity by detecting cleavage of lamin A/C. PLoS One. 2012;7(1):e30376. doi:10.1371/journal.pone.0030376.CrossRefPubMedCentralPubMed
64.
65.
go back to reference Martinon F, Tschopp J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ. 2007;14(1):10–22. doi:10.1038/sj.cdd.4402038.CrossRefPubMed Martinon F, Tschopp J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ. 2007;14(1):10–22. doi:10.1038/sj.cdd.4402038.CrossRefPubMed
66.
go back to reference Vigano E, Mortellaro A. Caspase-11: the driving factor for noncanonical inflammasomes. Eur J Immunol. 2013;43(9):2240–5. doi:10.1002/eji.201343800.CrossRefPubMed Vigano E, Mortellaro A. Caspase-11: the driving factor for noncanonical inflammasomes. Eur J Immunol. 2013;43(9):2240–5. doi:10.1002/eji.201343800.CrossRefPubMed
67.
go back to reference Nickles D, Falschlehner C, Metzig M, Boutros M. A genome-wide RNA interference screen identifies caspase 4 as a factor required for tumor necrosis factor alpha signaling. Mol Cell Biol. 2012;32(17):3372–81. doi:10.1128/MCB. 06739-11.CrossRefPubMedCentralPubMed Nickles D, Falschlehner C, Metzig M, Boutros M. A genome-wide RNA interference screen identifies caspase 4 as a factor required for tumor necrosis factor alpha signaling. Mol Cell Biol. 2012;32(17):3372–81. doi:10.1128/MCB. 06739-11.CrossRefPubMedCentralPubMed
68.
go back to reference Sollberger G, Strittmatter GE, Kistowska M, French LE, Beer HD. Caspase-4 is required for activation of inflammasomes. J Immunol. 2012;188(4):1992–2000. doi:10.4049/jimmunol.1101620.CrossRefPubMed Sollberger G, Strittmatter GE, Kistowska M, French LE, Beer HD. Caspase-4 is required for activation of inflammasomes. J Immunol. 2012;188(4):1992–2000. doi:10.4049/jimmunol.1101620.CrossRefPubMed
69.
go back to reference Yamamuro A, Kishino T, Ohshima Y, Yoshioka Y, Kimura T, Kasai A, et al. Caspase-4 directly activates caspase-9 in endoplasmic reticulum stress-induced apoptosis in SH-SY5Y cells. J Pharmacol Sci. 2011;115(2):239–43.CrossRefPubMed Yamamuro A, Kishino T, Ohshima Y, Yoshioka Y, Kimura T, Kasai A, et al. Caspase-4 directly activates caspase-9 in endoplasmic reticulum stress-induced apoptosis in SH-SY5Y cells. J Pharmacol Sci. 2011;115(2):239–43.CrossRefPubMed
70.
go back to reference Li C, Wei J, Li Y, He X, Zhou Q, Yan J, et al. Transmembrane Protein 214 (TMEM214) mediates endoplasmic reticulum stress-induced caspase 4 enzyme activation and apoptosis. J Biol Chem. 2013;288(24):17908–17. doi:10.1074/jbc.M113.458836.CrossRefPubMedCentralPubMed Li C, Wei J, Li Y, He X, Zhou Q, Yan J, et al. Transmembrane Protein 214 (TMEM214) mediates endoplasmic reticulum stress-induced caspase 4 enzyme activation and apoptosis. J Biol Chem. 2013;288(24):17908–17. doi:10.1074/jbc.M113.458836.CrossRefPubMedCentralPubMed
71.
go back to reference Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y, et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol. 2004;165(3):347–56. doi:10.1083/jcb.200310015.CrossRefPubMedCentralPubMed Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y, et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol. 2004;165(3):347–56. doi:10.1083/jcb.200310015.CrossRefPubMedCentralPubMed
72.
go back to reference Peters PJ, Borst J, Oorschot V, Fukuda M, Krahenbuhl O, Tschopp J, et al. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J Exp Med. 1991;173(5):1099–109.CrossRefPubMed Peters PJ, Borst J, Oorschot V, Fukuda M, Krahenbuhl O, Tschopp J, et al. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J Exp Med. 1991;173(5):1099–109.CrossRefPubMed
73.
go back to reference Fan Z, Beresford PJ, Oh DY, Zhang D, Lieberman J. Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell. 2003;112(5):659–72.CrossRefPubMed Fan Z, Beresford PJ, Oh DY, Zhang D, Lieberman J. Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell. 2003;112(5):659–72.CrossRefPubMed
75.
go back to reference Trapani JA. Granzymes, cytotoxic granules and cell death: the early work of Dr. Jurg Tschopp. Cell Death Differ. 2012;19(1):21–7. doi:10.1038/cdd.2011.156.CrossRefPubMedCentralPubMed Trapani JA. Granzymes, cytotoxic granules and cell death: the early work of Dr. Jurg Tschopp. Cell Death Differ. 2012;19(1):21–7. doi:10.1038/cdd.2011.156.CrossRefPubMedCentralPubMed
76.
go back to reference Chiarugi P, Giannoni E. Anoikis: a necessary death program for anchorage-dependent cells. Biochem Pharmacol. 2008;76(11):1352–64. doi:10.1016/j.bcp.2008.07.023.CrossRefPubMed Chiarugi P, Giannoni E. Anoikis: a necessary death program for anchorage-dependent cells. Biochem Pharmacol. 2008;76(11):1352–64. doi:10.1016/j.bcp.2008.07.023.CrossRefPubMed
78.
go back to reference Ilic D, Almeida EA, Schlaepfer DD, Dazin P, Aizawa S, Damsky CH. Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis. J Cell Biol. 1998;143(2):547–60.CrossRefPubMedCentralPubMed Ilic D, Almeida EA, Schlaepfer DD, Dazin P, Aizawa S, Damsky CH. Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis. J Cell Biol. 1998;143(2):547–60.CrossRefPubMedCentralPubMed
79.
go back to reference Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science. 1997;276(5317):1425–8.CrossRefPubMed Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science. 1997;276(5317):1425–8.CrossRefPubMed
80.
go back to reference Ley R, Balmanno K, Hadfield K, Weston C, Cook SJ. Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. J Biol Chem. 2003;278(21):18811–6. doi:10.1074/jbc.M301010200.CrossRefPubMed Ley R, Balmanno K, Hadfield K, Weston C, Cook SJ. Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. J Biol Chem. 2003;278(21):18811–6. doi:10.1074/jbc.M301010200.CrossRefPubMed
81.
go back to reference Le Gall M, Chambard JC, Breittmayer JP, Grall D, Pouyssegur J, Van Obberghen-Schilling E. The p42/p44 MAP kinase pathway prevents apoptosis induced by anchorage and serum removal. Mol Biol Cell. 2000;11(3):1103–12.CrossRefPubMedCentralPubMed Le Gall M, Chambard JC, Breittmayer JP, Grall D, Pouyssegur J, Van Obberghen-Schilling E. The p42/p44 MAP kinase pathway prevents apoptosis induced by anchorage and serum removal. Mol Biol Cell. 2000;11(3):1103–12.CrossRefPubMedCentralPubMed
82.
go back to reference Puthalakath H, Villunger A, O’Reilly LA, Beaumont JG, Coultas L, Cheney RE, et al. Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science. 2001;293(5536):1829–32. doi:10.1126/science.1062257.CrossRefPubMed Puthalakath H, Villunger A, O’Reilly LA, Beaumont JG, Coultas L, Cheney RE, et al. Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science. 2001;293(5536):1829–32. doi:10.1126/science.1062257.CrossRefPubMed
83.
go back to reference Idogawa M, Adachi M, Minami T, Yasui H, Imai K. Overexpression of BAD preferentially augments anoikis. Int J Canc Suppl J Int Canc Suppl. 2003;107(2):215–23. doi:10.1002/ijc.11399.CrossRef Idogawa M, Adachi M, Minami T, Yasui H, Imai K. Overexpression of BAD preferentially augments anoikis. Int J Canc Suppl J Int Canc Suppl. 2003;107(2):215–23. doi:10.1002/ijc.11399.CrossRef
84.
go back to reference Reginato MJ, Mills KR, Paulus JK, Lynch DK, Sgroi DC, Debnath J, et al. Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat Cell Biol. 2003;5(8):733–40. doi:10.1038/ncb1026.CrossRefPubMed Reginato MJ, Mills KR, Paulus JK, Lynch DK, Sgroi DC, Debnath J, et al. Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat Cell Biol. 2003;5(8):733–40. doi:10.1038/ncb1026.CrossRefPubMed
85.
go back to reference Frisch SM. Evidence for a function of death-receptor-related, death-domain-containing proteins in anoikis. Curr Biol. 1999;9(18):1047–9.CrossRefPubMed Frisch SM. Evidence for a function of death-receptor-related, death-domain-containing proteins in anoikis. Curr Biol. 1999;9(18):1047–9.CrossRefPubMed
86.
go back to reference Grossmann J, Walther K, Artinger M, Kiessling S, Scholmerich J. Apoptotic signaling during initiation of detachment-induced apoptosis (“anoikis”) of primary human intestinal epithelial cells. Cell Growth Differ. 2001;12(3):147–55.PubMed Grossmann J, Walther K, Artinger M, Kiessling S, Scholmerich J. Apoptotic signaling during initiation of detachment-induced apoptosis (“anoikis”) of primary human intestinal epithelial cells. Cell Growth Differ. 2001;12(3):147–55.PubMed
87.
go back to reference Walker TN, Cimakasky LM, Coleman EM, Madison MN, Hildreth JE. Antibody against integrin lymphocyte function-associated antigen 1 inhibits HIV type 1 infection in primary cells through caspase-8-mediated apoptosis. AIDS Res Hum Retroviruses. 2013;29(2):371–83. doi:10.1089/AID.2011.0395.PubMedCentralPubMed Walker TN, Cimakasky LM, Coleman EM, Madison MN, Hildreth JE. Antibody against integrin lymphocyte function-associated antigen 1 inhibits HIV type 1 infection in primary cells through caspase-8-mediated apoptosis. AIDS Res Hum Retroviruses. 2013;29(2):371–83. doi:10.1089/AID.2011.0395.PubMedCentralPubMed
88.
go back to reference Fanucchi S, Veale RB. Delayed caspase-8 activation and enhanced integrin beta1-activated FAK underpins anoikis in oesophageal carcinoma cells harbouring mt p 53–R175H. Cell Biol Int. 2011;35(8):819–26. doi:10.1042/CBI20100894.CrossRefPubMed Fanucchi S, Veale RB. Delayed caspase-8 activation and enhanced integrin beta1-activated FAK underpins anoikis in oesophageal carcinoma cells harbouring mt p 53–R175H. Cell Biol Int. 2011;35(8):819–26. doi:10.1042/CBI20100894.CrossRefPubMed
89.
go back to reference Lauricella M, Ciraolo A, Carlisi D, Vento R, Tesoriere G. SAHA/TRAIL combination induces detachment and anoikis of MDA-MB231 and MCF-7 breast cancer cells. Biochimie. 2012;94(2):287–99. doi:10.1016/j.biochi.2011.06.031.CrossRefPubMed Lauricella M, Ciraolo A, Carlisi D, Vento R, Tesoriere G. SAHA/TRAIL combination induces detachment and anoikis of MDA-MB231 and MCF-7 breast cancer cells. Biochimie. 2012;94(2):287–99. doi:10.1016/j.biochi.2011.06.031.CrossRefPubMed
90.
go back to reference Estrugo D, Fischer A, Hess F, Scherthan H, Belka C, Cordes N. Ligand bound beta1 integrins inhibit procaspase-8 for mediating cell adhesion-mediated drug and radiation resistance in human leukemia cells. PLoS One. 2007;2(3):e269. doi:10.1371/journal.pone.0000269.CrossRefPubMedCentralPubMed Estrugo D, Fischer A, Hess F, Scherthan H, Belka C, Cordes N. Ligand bound beta1 integrins inhibit procaspase-8 for mediating cell adhesion-mediated drug and radiation resistance in human leukemia cells. PLoS One. 2007;2(3):e269. doi:10.1371/journal.pone.0000269.CrossRefPubMedCentralPubMed
91.
go back to reference Li HM, Fujikura D, Harada T, Uehara J, Kawai T, Akira S, et al. IPS-1 is crucial for DAP3-mediated anoikis induction by caspase-8 activation. Cell Death Differ. 2009;16(12):1615–21. doi:10.1038/cdd.2009.97.CrossRefPubMed Li HM, Fujikura D, Harada T, Uehara J, Kawai T, Akira S, et al. IPS-1 is crucial for DAP3-mediated anoikis induction by caspase-8 activation. Cell Death Differ. 2009;16(12):1615–21. doi:10.1038/cdd.2009.97.CrossRefPubMed
92.
go back to reference Mariani L, Beaudry C, McDonough WS, Hoelzinger DB, Kaczmarek E, Ponce F, et al. Death-associated protein 3 (Dap-3) is overexpressed in invasive glioblastoma cells in vivo and in glioma cell lines with induced motility phenotype in vitro. Clinical Canc Res. 2001;7(8):2480–9. Mariani L, Beaudry C, McDonough WS, Hoelzinger DB, Kaczmarek E, Ponce F, et al. Death-associated protein 3 (Dap-3) is overexpressed in invasive glioblastoma cells in vivo and in glioma cell lines with induced motility phenotype in vitro. Clinical Canc Res. 2001;7(8):2480–9.
93.
go back to reference Wazir U, Jiang WG, Sharma AK, Mokbel K. The mRNA expression of DAP3 in human breast cancer: correlation with clinicopathological parameters. Anticancer Res. 2012;32(2):671–4.PubMed Wazir U, Jiang WG, Sharma AK, Mokbel K. The mRNA expression of DAP3 in human breast cancer: correlation with clinicopathological parameters. Anticancer Res. 2012;32(2):671–4.PubMed
94.
go back to reference Wazir U, Sanders AJ, Wazir AM, Ye L, Jiang WG, Ster IC, et al. Effects of the knockdown of death-associated protein 3 expression on cell adhesion, growth and migration in breast cancer cells. Oncol Rep. 2015;33(5):2575–82. doi:10.3892/or.2015.3825.PubMed Wazir U, Sanders AJ, Wazir AM, Ye L, Jiang WG, Ster IC, et al. Effects of the knockdown of death-associated protein 3 expression on cell adhesion, growth and migration in breast cancer cells. Oncol Rep. 2015;33(5):2575–82. doi:10.3892/or.2015.3825.PubMed
Metadata
Title
The role of death-associated protein 3 in apoptosis, anoikis and human cancer
Authors
Umar Wazir
Mona MAW Orakzai
Zubair S Khanzada
Wen G Jiang
Anup K Sharma
Abdul Kasem
Kefah Mokbel
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2015
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-015-0187-z

Other articles of this Issue 1/2015

Cancer Cell International 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine