Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 2/2020

01-04-2020 | Research Article

The reproducibility of measurements using a standardization phantom for the evaluation of fractional anisotropy (FA) derived from diffusion tensor imaging (DTI)

Authors: Mitsuhiro Kimura, Hidetake Yabuuchi, Ryoji Matsumoto, Koji Kobayashi, Yasuo Yamashita, Kazuya Nagatomo, Ryoji Mikayama, Takeshi Kamitani, Koji Sagiyama, Yuzo Yamasaki

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 2/2020

Login to get access

Abstract

Objectives

It is necessary to standardize the examination procedure and diagnostic criteria of diffusion tensor imaging (DTI). Thus, the purpose of this study was to examine the reproducibility of measurements using a standardization phantom composed of different fibre materials with different fibre densities (FDs) for the evaluation of fractional anisotropy (FA) derived from DTI.

Materials and methods

Two types of fibre materials wrapped in heat-shrinkable tubes were used as fibre phantoms. We designed fibre phantoms with three different FDs of each fibre material. The standardization phantom was examined using DTI protocol six times a day, and each examination session was repeated once a month for 7 consecutive months. Fibre tracking was performed by setting regions of interest in the FA map, and FA was measured in each fibre phantom. Coefficients of variation (CVs) were used to evaluate the inter-examination reproducibility of FA values. Furthermore, Bland–Altman plots were used to evaluate the intra-operator reproducibility of FA measurements.

Results

All CVs for each fibre phantom were within 2% throughout the 7-month study of repeated DTI sessions. The high intra-operator reproducibility of the FA measurement was confirmed.

Discussion

High reproducibility of measurements using a standardization phantom for the evaluation of FA was achieved.
Literature
1.
go back to reference Basser PJ, Mattiello J, Le Bihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267CrossRef Basser PJ, Mattiello J, Le Bihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267CrossRef
2.
go back to reference Basser PJ (1995) Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 8:333–344CrossRef Basser PJ (1995) Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 8:333–344CrossRef
3.
go back to reference Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Chiro GD (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648CrossRef Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Chiro GD (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648CrossRef
4.
go back to reference Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906CrossRef Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906CrossRef
5.
go back to reference Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR Biomed 15:456–467CrossRef Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR Biomed 15:456–467CrossRef
6.
go back to reference Werring DJ, Clark CA, Barker GJ, Thompson AJ, Miller DH (1999) Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 52:1626–1632CrossRef Werring DJ, Clark CA, Barker GJ, Thompson AJ, Miller DH (1999) Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 52:1626–1632CrossRef
7.
go back to reference Dong Q, Welsh RC, Chenevert TL et al (2004) Clinical applications of diffusion tensor imaging. J Magn Reson Imaging 19:6–18CrossRef Dong Q, Welsh RC, Chenevert TL et al (2004) Clinical applications of diffusion tensor imaging. J Magn Reson Imaging 19:6–18CrossRef
8.
go back to reference Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34:51–61CrossRef Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34:51–61CrossRef
9.
go back to reference Poonawalla AH, Zhou XJ (2004) Analytical error propagation in diffusion anisotropy calculations. J Magn Reson Imaging 19:489–498CrossRef Poonawalla AH, Zhou XJ (2004) Analytical error propagation in diffusion anisotropy calculations. J Magn Reson Imaging 19:489–498CrossRef
10.
go back to reference Ni H, Kavcic V, Zhu T, Ekholm S, Zhong J (2006) Effects of number of diffusion gradient directions on derived diffusion tensor imaging indices in human brain. Am J Neuroradiol 27:1776–1781PubMed Ni H, Kavcic V, Zhu T, Ekholm S, Zhong J (2006) Effects of number of diffusion gradient directions on derived diffusion tensor imaging indices in human brain. Am J Neuroradiol 27:1776–1781PubMed
11.
go back to reference Kim SJ, Choi CG, Kim JK et al (2015) Effects of MR parameter changes on the quantification of diffusion anisotropy and apparent diffusion coefficient in diffusion tensor imaging: evaluation using a diffusional anisotropic phantom. Korean J Radiol 16:297–303CrossRef Kim SJ, Choi CG, Kim JK et al (2015) Effects of MR parameter changes on the quantification of diffusion anisotropy and apparent diffusion coefficient in diffusion tensor imaging: evaluation using a diffusional anisotropic phantom. Korean J Radiol 16:297–303CrossRef
12.
go back to reference Reischauer C, Staempfli P, Jaermann T, Boesiger P (2009) Construction of a temperature-controlled diffusion phantom for quality control of diffusion measurements. J Magn Reson Imaging 29:692–698CrossRef Reischauer C, Staempfli P, Jaermann T, Boesiger P (2009) Construction of a temperature-controlled diffusion phantom for quality control of diffusion measurements. J Magn Reson Imaging 29:692–698CrossRef
13.
go back to reference Boujraf S, Luypaert R, Eisendrath H, Osteaux M (2001) Echo planar magnetic resonance imaging of anisotropic diffusion in asparagus stems. Magn Reson Mater Phy 13:82–90CrossRef Boujraf S, Luypaert R, Eisendrath H, Osteaux M (2001) Echo planar magnetic resonance imaging of anisotropic diffusion in asparagus stems. Magn Reson Mater Phy 13:82–90CrossRef
14.
go back to reference Yanasak N, Allison J (2006) Use of capillaries in the construction of an MRI phantom for the assessment of diffusion tensor imaging: demonstration of performance. Magn Reson Imaging 24:1349–1361CrossRef Yanasak N, Allison J (2006) Use of capillaries in the construction of an MRI phantom for the assessment of diffusion tensor imaging: demonstration of performance. Magn Reson Imaging 24:1349–1361CrossRef
15.
go back to reference Farrher E, Kaffanke J, Celik AA, Stocker T, Grinberg F, Shah NJ (2012) Novel multisection design of anisotropic diffusion phantoms. Magn Reson Imaging 30:518–526CrossRef Farrher E, Kaffanke J, Celik AA, Stocker T, Grinberg F, Shah NJ (2012) Novel multisection design of anisotropic diffusion phantoms. Magn Reson Imaging 30:518–526CrossRef
16.
go back to reference Pullens P, Roebroeck A, Goebel R (2010) Ground truth hardware phantoms for validation of diffusion-weighted MRI applications. J Magn Reson Imaging 32:482–488CrossRef Pullens P, Roebroeck A, Goebel R (2010) Ground truth hardware phantoms for validation of diffusion-weighted MRI applications. J Magn Reson Imaging 32:482–488CrossRef
17.
go back to reference Fillard P, Descoteaux M, Goh A et al (2011) Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. NeuroImage 56:220–234CrossRef Fillard P, Descoteaux M, Goh A et al (2011) Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. NeuroImage 56:220–234CrossRef
18.
go back to reference Watanabe M, Aoki S, Masutani Y et al (2006) Flexible ex vivo phantoms for validation of diffusion tensor tractography on a clinical scanner. Radiat Med 24:605–609CrossRef Watanabe M, Aoki S, Masutani Y et al (2006) Flexible ex vivo phantoms for validation of diffusion tensor tractography on a clinical scanner. Radiat Med 24:605–609CrossRef
19.
go back to reference Fieremans E, De Deene Y, Delputte S et al (2008) Simulation and experimental verification of the diffusion in an anisotropic fiber phantom. J Magn Reson 190:189–199CrossRef Fieremans E, De Deene Y, Delputte S et al (2008) Simulation and experimental verification of the diffusion in an anisotropic fiber phantom. J Magn Reson 190:189–199CrossRef
20.
go back to reference Trudeau JD, Dixon WT, Hawkins J (1995) The effect of inhomogeneous sample susceptability on measured diffusion anisotropy using NMR imaging. J Magn Reson 108:22–30CrossRef Trudeau JD, Dixon WT, Hawkins J (1995) The effect of inhomogeneous sample susceptability on measured diffusion anisotropy using NMR imaging. J Magn Reson 108:22–30CrossRef
21.
go back to reference Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRef Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRef
22.
go back to reference Tofts PS, Lloyd D, Clark CA et al (2000) Test liquids for quantitative MRI measurements of self-diffusion coefficient in vivo. Magn Reson Med 43:368–374CrossRef Tofts PS, Lloyd D, Clark CA et al (2000) Test liquids for quantitative MRI measurements of self-diffusion coefficient in vivo. Magn Reson Med 43:368–374CrossRef
Metadata
Title
The reproducibility of measurements using a standardization phantom for the evaluation of fractional anisotropy (FA) derived from diffusion tensor imaging (DTI)
Authors
Mitsuhiro Kimura
Hidetake Yabuuchi
Ryoji Matsumoto
Koji Kobayashi
Yasuo Yamashita
Kazuya Nagatomo
Ryoji Mikayama
Takeshi Kamitani
Koji Sagiyama
Yuzo Yamasaki
Publication date
01-04-2020
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 2/2020
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-019-00776-w

Other articles of this Issue 2/2020

Magnetic Resonance Materials in Physics, Biology and Medicine 2/2020 Go to the issue