Skip to main content
Top
Published in: Current Neurology and Neuroscience Reports 7/2015

01-07-2015 | Neuroimaging (DJ Brooks, Section Editor)

The Relationship Between Atrophy and Hypometabolism: Is It Regionally Dependent in Dementias?

Authors: María C. Rodriguez-Oroz, Belen Gago, Pedro Clavero, Manuel Delgado-Alvarado, David Garcia-Garcia, Haritz Jimenez-Urbieta

Published in: Current Neurology and Neuroscience Reports | Issue 7/2015

Login to get access

Abstract

Neuronal failure leading to dementia in neurodegenerative diseases is evidenced in vivo by functional and structural changes in the brain such as reductions of glucose consumption and volume of grey matter. The earliest phase of cognitive decline and presymptomatic stages of these diseases are heralded by specific patterns of hypometabolism, even in the absence of atrophy, which are currently considered as diagnostic biomarkers. Atrophy is less consistently found as an initial marker of these diseases and is invariably present in moderate to severe stages with a disease-related topography. The relationship between these two markers is not uniform, but in the two diseases in which they have been directly compared, Alzheimer’s and Parkinson’s disease, altered hypometabolism precedes and exceeds atrophy in most regions. This suggests a two-step degenerative process. In contrast to these findings, the hippocampus skips this pattern and is more structurally than functionally affected, thereby suggesting a different pathological mechanism in this particular area. More studies are needed to disentangle the mechanisms underlying both markers and their relationship in neurodegenerative diseases.
Literature
2.
go back to reference Korf ES, Wahlund LO, Visser PJ, Scheltens P. Medial temporal lobe atrophy on MRI predicts dementia in patients with mild cognitive impairment. Neurology. 2004;63(1):94–100.CrossRefPubMed Korf ES, Wahlund LO, Visser PJ, Scheltens P. Medial temporal lobe atrophy on MRI predicts dementia in patients with mild cognitive impairment. Neurology. 2004;63(1):94–100.CrossRefPubMed
3.•
go back to reference Boutet C, Chupin M, Lehericy S, Marrakchi-Kacem L, Epelbaum S, Poupon C, et al. Detection of volume loss in hippocampal layers in Alzheimer’s disease using 7 T MRI: a feasibility study. NeuroImage Clinl. 2014;5:341–8. doi:10.1016/j.nicl.2014.07.011. Boutet et al. were able to detect atrophy in distinct hippocampal layers in AD patients using a 7T MRI-based segmentation. This is a promising new technique for AD research and future investigations in that direction are worthwhile.CrossRef Boutet C, Chupin M, Lehericy S, Marrakchi-Kacem L, Epelbaum S, Poupon C, et al. Detection of volume loss in hippocampal layers in Alzheimer’s disease using 7 T MRI: a feasibility study. NeuroImage Clinl. 2014;5:341–8. doi:10.​1016/​j.​nicl.​2014.​07.​011. Boutet et al. were able to detect atrophy in distinct hippocampal layers in AD patients using a 7T MRI-based segmentation. This is a promising new technique for AD research and future investigations in that direction are worthwhile.CrossRef
5.
go back to reference Killiany RJ, Hyman BT, Gomez-Isla T, Moss MB, Kikinis R, Jolesz F, et al. MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology. 2002;58(8):1188–96.CrossRefPubMed Killiany RJ, Hyman BT, Gomez-Isla T, Moss MB, Kikinis R, Jolesz F, et al. MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology. 2002;58(8):1188–96.CrossRefPubMed
11.
go back to reference Whitwell JL, Przybelski SA, Weigand SD, Knopman DS, Boeve BF, Petersen RC, et al. 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer’s disease. Brain J Neurol. 2007;130(Pt 7):1777–86. doi:10.1093/brain/awm112.CrossRef Whitwell JL, Przybelski SA, Weigand SD, Knopman DS, Boeve BF, Petersen RC, et al. 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer’s disease. Brain J Neurol. 2007;130(Pt 7):1777–86. doi:10.​1093/​brain/​awm112.CrossRef
13.
go back to reference Leow AD, Yanovsky I, Parikshak N, Hua X, Lee S, Toga AW, et al. Alzheimer’s disease neuroimaging initiative: a one-year follow up study using tensor-based morphometry correlating degenerative rates, biomarkers and cognition. Neuroimage. 2009;45(3):645–55.CrossRefPubMedCentralPubMed Leow AD, Yanovsky I, Parikshak N, Hua X, Lee S, Toga AW, et al. Alzheimer’s disease neuroimaging initiative: a one-year follow up study using tensor-based morphometry correlating degenerative rates, biomarkers and cognition. Neuroimage. 2009;45(3):645–55.CrossRefPubMedCentralPubMed
14.
go back to reference Chupin M, Gerardin E, Cuingnet R, Boutet C, Lemieux L, Lehericy S, et al. Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus. 2009;19(6):579–87. doi:10.1002/hipo.20626.CrossRefPubMedCentralPubMed Chupin M, Gerardin E, Cuingnet R, Boutet C, Lemieux L, Lehericy S, et al. Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus. 2009;19(6):579–87. doi:10.​1002/​hipo.​20626.CrossRefPubMedCentralPubMed
17.
19.•
go back to reference Eskildsen SF, Coupe P, Garcia-Lorenzo D, Fonov V, Pruessner JC, Collins DL, et al. Prediction of Alzheimer’s disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning. Neuroimage. 2013;65:511–21. doi:10.1016/j.neuroimage.2012.09.058. Eskildsen et al. used patterns of characteristic cortical thinning in disease stages of progressive MCI compared to MCI patients who remained stable for 3 years. This approach demonstrated promising results for the prediction of patients with prodromal AD progressing to probable AD.CrossRefPubMedCentralPubMed Eskildsen SF, Coupe P, Garcia-Lorenzo D, Fonov V, Pruessner JC, Collins DL, et al. Prediction of Alzheimer’s disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning. Neuroimage. 2013;65:511–21. doi:10.​1016/​j.​neuroimage.​2012.​09.​058. Eskildsen et al. used patterns of characteristic cortical thinning in disease stages of progressive MCI compared to MCI patients who remained stable for 3 years. This approach demonstrated promising results for the prediction of patients with prodromal AD progressing to probable AD.CrossRefPubMedCentralPubMed
22.
go back to reference Chetelat G, Desgranges B, de la Sayette V, Viader F, Eustache F, Baron JC. Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology. 2003;60(8):1374–7.CrossRefPubMed Chetelat G, Desgranges B, de la Sayette V, Viader F, Eustache F, Baron JC. Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology. 2003;60(8):1374–7.CrossRefPubMed
23.
24.
go back to reference Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA. 2001;286(17):2120–7.CrossRefPubMed Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA. 2001;286(17):2120–7.CrossRefPubMed
25.
go back to reference Mosconi L, Perani D, Sorbi S, Herholz K, Nacmias B, Holthoff V, et al. MCI conversion to dementia and the APOE genotype: a prediction study with FDG-PET. Neurology. 2004;63(12):2332–40.CrossRefPubMed Mosconi L, Perani D, Sorbi S, Herholz K, Nacmias B, Holthoff V, et al. MCI conversion to dementia and the APOE genotype: a prediction study with FDG-PET. Neurology. 2004;63(12):2332–40.CrossRefPubMed
26.
go back to reference Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer's Demen J Alzheimer's Assoc. 2011;7(3):270–9. doi:10.1016/j.jalz.2011.03.008.CrossRef Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer's Demen J Alzheimer's Assoc. 2011;7(3):270–9. doi:10.​1016/​j.​jalz.​2011.​03.​008.CrossRef
28.
go back to reference de Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H, et al. Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/positron-emission tomography (FDG/PET). Proc Natl Acad Sci U S A. 2001;98(19):10966–71. doi:10.1073/pnas.191044198.CrossRefPubMedCentralPubMed de Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H, et al. Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/positron-emission tomography (FDG/PET). Proc Natl Acad Sci U S A. 2001;98(19):10966–71. doi:10.​1073/​pnas.​191044198.CrossRefPubMedCentralPubMed
29.
31.
go back to reference Prestia A, Caroli A, Wade SK, van der Flier WM, Ossenkoppele R, Van Berckel B, et al. Prediction of AD dementia by biomarkers following the NIA-AA and IWG diagnostic criteria in MCI patients from three European memory clinics. Alzheimer's Demen J Alzheimer’s Assoc. 2015. doi:10.1016/j.jalz.2014.12.001. Prestia A, Caroli A, Wade SK, van der Flier WM, Ossenkoppele R, Van Berckel B, et al. Prediction of AD dementia by biomarkers following the NIA-AA and IWG diagnostic criteria in MCI patients from three European memory clinics. Alzheimer's Demen J Alzheimer’s Assoc. 2015. doi:10.​1016/​j.​jalz.​2014.​12.​001.
32.••
go back to reference Kljajevic V, Grothe MJ, Ewers M, Teipel S. Alzheimer’s disease neuroimaging I. Distinct pattern of hypometabolism and atrophy in preclinical and predementia Alzheimer’s disease. Neurobiol Aging. 2014;35(9):1973–81. doi:10.1016/j.neurobiolaging.2014.04.006. Kljajevic et al. described a temporal ordering of neuronal injury markers in sporadic AD, according to which hypometabolism generally precedes atrophy, although with partly differing regional manifestations.CrossRefPubMed Kljajevic V, Grothe MJ, Ewers M, Teipel S. Alzheimer’s disease neuroimaging I. Distinct pattern of hypometabolism and atrophy in preclinical and predementia Alzheimer’s disease. Neurobiol Aging. 2014;35(9):1973–81. doi:10.​1016/​j.​neurobiolaging.​2014.​04.​006. Kljajevic et al. described a temporal ordering of neuronal injury markers in sporadic AD, according to which hypometabolism generally precedes atrophy, although with partly differing regional manifestations.CrossRefPubMed
33.
go back to reference Dukart J, Kherif F, Mueller K, Adaszewski S, Schroeter ML, Frackowiak RS, et al. Generative FDG-PET and MRI model of aging and disease progression in Alzheimer’s disease. PLoS Comp Biol. 2013;9(4):e1002987. doi:10.1371/journal.pcbi.1002987. Dukart J, Kherif F, Mueller K, Adaszewski S, Schroeter ML, Frackowiak RS, et al. Generative FDG-PET and MRI model of aging and disease progression in Alzheimer’s disease. PLoS Comp Biol. 2013;9(4):e1002987. doi:10.​1371/​journal.​pcbi.​1002987.
35.
go back to reference Chetelat G, Desgranges B, Landeau B, Mezenge F, Poline JB, de la Sayette V, et al. Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer’s disease. Brain J Neurol. 2008;131(Pt 1):60–71. doi:10.1093/brain/awm288. Chetelat G, Desgranges B, Landeau B, Mezenge F, Poline JB, de la Sayette V, et al. Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer’s disease. Brain J Neurol. 2008;131(Pt 1):60–71. doi:10.​1093/​brain/​awm288.
36.
go back to reference Apostolova LG, Zarow C, Biado K, Hurtz S, Boccardi M, Somme J, et al. Relationship between hippocampal atrophy and neuropathology markers: a 7T MRI validation study of the EADC-ADNI harmonized hippocampal segmentation protocol. Alzheimer’s Demen J Alzheimer’s Assoc. 2015. doi:10.1016/j.jalz.2015.01.001. Apostolova LG, Zarow C, Biado K, Hurtz S, Boccardi M, Somme J, et al. Relationship between hippocampal atrophy and neuropathology markers: a 7T MRI validation study of the EADC-ADNI harmonized hippocampal segmentation protocol. Alzheimer’s Demen J Alzheimer’s Assoc. 2015. doi:10.​1016/​j.​jalz.​2015.​01.​001.
38.
go back to reference Gasca-Salas C, Estanga A, Clavero P, Aguilar-Palacio I, Gonzalez-Redondo R, Obeso JA, et al. Longitudinal assessment of the pattern of cognitive decline in non-demented patients with advanced Parkinson’s disease. J Parkinson’s Dis. 2014. doi:10.3233/JPD-140398. Gasca-Salas C, Estanga A, Clavero P, Aguilar-Palacio I, Gonzalez-Redondo R, Obeso JA, et al. Longitudinal assessment of the pattern of cognitive decline in non-demented patients with advanced Parkinson’s disease. J Parkinson’s Dis. 2014. doi:10.​3233/​JPD-140398.
39.••
go back to reference Duncan GW, Firbank MJ, O’Brien JT, Burn DJ. Magnetic resonance imaging: a biomarker for cognitive impairment in Parkinson’s disease? Movement Disord Offic J Movement Disord Soc. 2013. doi:10.1002/mds.25352. Duncan et al. summarized studies that have used MRI to evaluate cognitive impairment in PD. They highlighted the advantages and disadvantages of the different techniques as potential biomarkers and guide future directions of research. Duncan GW, Firbank MJ, O’Brien JT, Burn DJ. Magnetic resonance imaging: a biomarker for cognitive impairment in Parkinson’s disease? Movement Disord Offic J Movement Disord Soc. 2013. doi:10.​1002/​mds.​25352. Duncan et al. summarized studies that have used MRI to evaluate cognitive impairment in PD. They highlighted the advantages and disadvantages of the different techniques as potential biomarkers and guide future directions of research.
41.
go back to reference Garcia-Garcia D, Clavero P, Gasca Salas C, Lamet I, Arbizu J, Gonzalez-Redondo R, et al. Posterior parietooccipital hypometabolism may differentiate mild cognitive impairment from dementia in Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2012;39(11):1767–77. doi:10.1007/s00259-012-2198-5.CrossRefPubMed Garcia-Garcia D, Clavero P, Gasca Salas C, Lamet I, Arbizu J, Gonzalez-Redondo R, et al. Posterior parietooccipital hypometabolism may differentiate mild cognitive impairment from dementia in Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2012;39(11):1767–77. doi:10.​1007/​s00259-012-2198-5.CrossRefPubMed
43.
go back to reference Hosokai Y, Nishio Y, Hirayama K, Takeda A, Ishioka T, Sawada Y, et al. Distinct patterns of regional cerebral glucose metabolism in Parkinson’s disease with and without mild cognitive impairment. Movement Disord Offic J Movement Disord Soc. 2009;24(6):854–62. doi:10.1002/mds.22444.CrossRef Hosokai Y, Nishio Y, Hirayama K, Takeda A, Ishioka T, Sawada Y, et al. Distinct patterns of regional cerebral glucose metabolism in Parkinson’s disease with and without mild cognitive impairment. Movement Disord Offic J Movement Disord Soc. 2009;24(6):854–62. doi:10.​1002/​mds.​22444.CrossRef
44.
go back to reference Pereira JB, Ibarretxe-Bilbao N, Marti MJ, Compta Y, Junque C, Bargallo N, et al. Assessment of cortical degeneration in patients with Parkinson’s disease by voxel-based morphometry, cortical folding, and cortical thickness. Hum Brain Mapp. 2012;33(11):2521–34. doi:10.1002/hbm.21378.CrossRefPubMed Pereira JB, Ibarretxe-Bilbao N, Marti MJ, Compta Y, Junque C, Bargallo N, et al. Assessment of cortical degeneration in patients with Parkinson’s disease by voxel-based morphometry, cortical folding, and cortical thickness. Hum Brain Mapp. 2012;33(11):2521–34. doi:10.​1002/​hbm.​21378.CrossRefPubMed
45.
go back to reference Pagonabarraga J, Corcuera-Solano I, Vives-Gilabert Y, Llebaria G, Garcia-Sanchez C, Pascual-Sedano B, et al. Pattern of regional cortical thinning associated with cognitive deterioration in Parkinson’s disease. PloS one. 2013;8(1):e54980. doi:10.1371/journal.pone.0054980. Pagonabarraga J, Corcuera-Solano I, Vives-Gilabert Y, Llebaria G, Garcia-Sanchez C, Pascual-Sedano B, et al. Pattern of regional cortical thinning associated with cognitive deterioration in Parkinson’s disease. PloS one. 2013;8(1):e54980. doi:10.​1371/​journal.​pone.​0054980.
46.
go back to reference Camicioli R, Moore MM, Kinney A, Corbridge E, Glassberg K, Kaye JA. Parkinson’s disease is associated with hippocampal atrophy. Movement Disord Offic J Movement Disord Soc. 2003;18(7):784–90. doi:10.1002/mds.10444.CrossRef Camicioli R, Moore MM, Kinney A, Corbridge E, Glassberg K, Kaye JA. Parkinson’s disease is associated with hippocampal atrophy. Movement Disord Offic J Movement Disord Soc. 2003;18(7):784–90. doi:10.​1002/​mds.​10444.CrossRef
47.
go back to reference Agosta F, Canu E, Stefanova E, Sarro L, Tomic A, Spica V, et al. Mild cognitive impairment in Parkinson’s disease is associated with a distributed pattern of brain white matter damage. Hum Brain Mapp. 2013. doi:10.1002/hbm.22302. Agosta F, Canu E, Stefanova E, Sarro L, Tomic A, Spica V, et al. Mild cognitive impairment in Parkinson’s disease is associated with a distributed pattern of brain white matter damage. Hum Brain Mapp. 2013. doi:10.​1002/​hbm.​22302.
48.
go back to reference Song SK, Lee JE, Park HJ, Sohn YH, Lee JD, Lee PH. The pattern of cortical atrophy in patients with Parkinson’s disease according to cognitive status. Movement Disord Offic J Movement Disord Soc. 2011;26(2):289–96. doi:10.1002/mds.23477.CrossRef Song SK, Lee JE, Park HJ, Sohn YH, Lee JD, Lee PH. The pattern of cortical atrophy in patients with Parkinson’s disease according to cognitive status. Movement Disord Offic J Movement Disord Soc. 2011;26(2):289–96. doi:10.​1002/​mds.​23477.CrossRef
51.
go back to reference Lee JE, Cho KH, Song SK, Kim HJ, Lee HS, Sohn YH, et al. Exploratory analysis of neuropsychological and neuroanatomical correlates of progressive mild cognitive impairment in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2014;85(1):7–16. doi:10.1136/jnnp-2013-305062.CrossRefPubMed Lee JE, Cho KH, Song SK, Kim HJ, Lee HS, Sohn YH, et al. Exploratory analysis of neuropsychological and neuroanatomical correlates of progressive mild cognitive impairment in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2014;85(1):7–16. doi:10.​1136/​jnnp-2013-305062.CrossRefPubMed
52.
go back to reference Goldman JG, Stebbins GT, Bernard B, Stoub TR, Goetz CG, de Toledo-Morrell L. Entorhinal cortex atrophy differentiates Parkinson’s disease patients with and without dementia. Movement Disord Offic J Movement Disord Soc. 2012;27(6):727–34. doi:10.1002/mds.24938.CrossRef Goldman JG, Stebbins GT, Bernard B, Stoub TR, Goetz CG, de Toledo-Morrell L. Entorhinal cortex atrophy differentiates Parkinson’s disease patients with and without dementia. Movement Disord Offic J Movement Disord Soc. 2012;27(6):727–34. doi:10.​1002/​mds.​24938.CrossRef
53.
go back to reference Yong SW, Yoon JK, An YS, Lee PH. A comparison of cerebral glucose metabolism in Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies. Eur J Neurol Offic J Eur Fed Neurol Soc. 2007;14(12):1357–62. doi:10.1111/j.1468-1331.2007.01977.x. Yong SW, Yoon JK, An YS, Lee PH. A comparison of cerebral glucose metabolism in Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies. Eur J Neurol Offic J Eur Fed Neurol Soc. 2007;14(12):1357–62. doi:10.​1111/​j.​1468-1331.​2007.​01977.​x.
54.
55.
go back to reference Bohnen NI, Koeppe RA, Minoshima S, Giordani B, Albin RL, Frey KA, et al. Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med Offic Pub Soc Nucl Med. 2011;52(6):848–55. doi:10.2967/jnumed.111.089946. Bohnen NI, Koeppe RA, Minoshima S, Giordani B, Albin RL, Frey KA, et al. Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med Offic Pub Soc Nucl Med. 2011;52(6):848–55. doi:10.​2967/​jnumed.​111.​089946.
57.••
go back to reference Gonzalez-Redondo R, Garcia-Garcia D, Clavero P, Gasca-Salas C, Garcia-Eulate R, Zubieta JL, et al. Grey matter hypometabolism and atrophy in Parkinson’s disease with cognitive impairment: a two-step process. Brain J Neurol. 2014;137(Pt 8):2356–67. doi:10.1093/brain/awu159. Gonzalez-Redondo et al. studied cerebral metabolism with FDG PET and grey matter volume with MRI in three groups of PD patients: cognitively normal, PD-MCI and PDD patients. The results showed a pattern of hypometabolism preceding atrophy in most of the affected brain areas, suggesting that there is a gradient of severity in cortical changes associated with the development of cognitive impairment in PD. Gonzalez-Redondo R, Garcia-Garcia D, Clavero P, Gasca-Salas C, Garcia-Eulate R, Zubieta JL, et al. Grey matter hypometabolism and atrophy in Parkinson’s disease with cognitive impairment: a two-step process. Brain J Neurol. 2014;137(Pt 8):2356–67. doi:10.​1093/​brain/​awu159. Gonzalez-Redondo et al. studied cerebral metabolism with FDG PET and grey matter volume with MRI in three groups of PD patients: cognitively normal, PD-MCI and PDD patients. The results showed a pattern of hypometabolism preceding atrophy in most of the affected brain areas, suggesting that there is a gradient of severity in cortical changes associated with the development of cognitive impairment in PD.
59.•
go back to reference Warr L, Walker Z. Identification of biomarkers in Lewy-body disorders. Q J Nucl Med Mol Imaging. 2012;56(1):39–54. Warr and Walker provided an extensive review of specific biomarkers to distinguish DLB from other dementias. They included a review of the most important findings from studies using structural and functional imaging techniques. Warr L, Walker Z. Identification of biomarkers in Lewy-body disorders. Q J Nucl Med Mol Imaging. 2012;56(1):39–54. Warr and Walker provided an extensive review of specific biomarkers to distinguish DLB from other dementias. They included a review of the most important findings from studies using structural and functional imaging techniques.
60.
go back to reference Delli Pizzi S, Franciotti R, Tartaro A, Caulo M, Thomas A, Onofrj M, et al. Structural alteration of the dorsal visual network in DLB patients with visual hallucinations: a cortical thickness MRI study. PloS one. 2014;9(1):e86624. doi:10.1371/journal.pone.0086624. Delli Pizzi S, Franciotti R, Tartaro A, Caulo M, Thomas A, Onofrj M, et al. Structural alteration of the dorsal visual network in DLB patients with visual hallucinations: a cortical thickness MRI study. PloS one. 2014;9(1):e86624. doi:10.​1371/​journal.​pone.​0086624.
61.
go back to reference Ishii K, Soma T, Kono AK, Sofue K, Miyamoto N, Yoshikawa T, et al. Comparison of regional brain volume and glucose metabolism between patients with mild dementia with Lewy bodies and those with mild Alzheimer’s disease. J Nucl Med Offic Pub Soc Nucl Med. 2007;48(5):704–11. doi:10.2967/jnumed.106.035691. Ishii K, Soma T, Kono AK, Sofue K, Miyamoto N, Yoshikawa T, et al. Comparison of regional brain volume and glucose metabolism between patients with mild dementia with Lewy bodies and those with mild Alzheimer’s disease. J Nucl Med Offic Pub Soc Nucl Med. 2007;48(5):704–11. doi:10.​2967/​jnumed.​106.​035691.
62.
go back to reference Burton EJ, McKeith IG, Burn DJ, Williams ED, O’Brien JT. Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. Brain J Neurol. 2004;127(Pt 4):791–800. doi:10.1093/brain/awh088.CrossRef Burton EJ, McKeith IG, Burn DJ, Williams ED, O’Brien JT. Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. Brain J Neurol. 2004;127(Pt 4):791–800. doi:10.​1093/​brain/​awh088.CrossRef
64.
go back to reference Barber R, Ballard C, McKeith IG, Gholkar A, O’Brien JT. MRI volumetric study of dementia with Lewy bodies: a comparison with AD and vascular dementia. Neurology. 2000;54(6):1304–9.CrossRefPubMed Barber R, Ballard C, McKeith IG, Gholkar A, O’Brien JT. MRI volumetric study of dementia with Lewy bodies: a comparison with AD and vascular dementia. Neurology. 2000;54(6):1304–9.CrossRefPubMed
65.
66.
go back to reference Rodriguez MJ, Potter E, Shen Q, Barker W, Greig-Custo M, Agron J, et al. Cognitive and structural magnetic resonance imaging features of Lewy body dementia and Alzheimer’s disease. Alzheimer’s Demen J Alzheimer’s Assoc. 2012;8(3):211–8. doi:10.1016/j.jalz.2011.04.008.CrossRef Rodriguez MJ, Potter E, Shen Q, Barker W, Greig-Custo M, Agron J, et al. Cognitive and structural magnetic resonance imaging features of Lewy body dementia and Alzheimer’s disease. Alzheimer’s Demen J Alzheimer’s Assoc. 2012;8(3):211–8. doi:10.​1016/​j.​jalz.​2011.​04.​008.CrossRef
68.
go back to reference Teune LK, Bartels AL, de Jong BM, Willemsen AT, Eshuis SA, de Vries JJ, et al. Typical cerebral metabolic patterns in neurodegenerative brain diseases. Movement Disord Offic J Movement Disord Soc. 2010;25(14):2395–404. doi:10.1002/mds.23291.CrossRef Teune LK, Bartels AL, de Jong BM, Willemsen AT, Eshuis SA, de Vries JJ, et al. Typical cerebral metabolic patterns in neurodegenerative brain diseases. Movement Disord Offic J Movement Disord Soc. 2010;25(14):2395–404. doi:10.​1002/​mds.​23291.CrossRef
69.
go back to reference Fujishiro H, Iseki E, Kasanuki K, Murayama N, Ota K, Suzuki M, et al. Glucose hypometabolism in primary visual cortex is commonly associated with clinical features of dementia with Lewy bodies regardless of cognitive conditions. Int J Geriatr Psychiatry. 2012;27(11):1138–46. doi:10.1002/gps.2836.CrossRefPubMed Fujishiro H, Iseki E, Kasanuki K, Murayama N, Ota K, Suzuki M, et al. Glucose hypometabolism in primary visual cortex is commonly associated with clinical features of dementia with Lewy bodies regardless of cognitive conditions. Int J Geriatr Psychiatry. 2012;27(11):1138–46. doi:10.​1002/​gps.​2836.CrossRefPubMed
70.
go back to reference Perneczky R, Haussermann P, Diehl-Schmid J, Boecker H, Forstl H, Drzezga A, et al. Metabolic correlates of brain reserve in dementia with Lewy bodies: an FDG PET study. Dement Geriatr Cogn Disord. 2007;23(6):416–22. doi:10.1159/000101956.CrossRefPubMed Perneczky R, Haussermann P, Diehl-Schmid J, Boecker H, Forstl H, Drzezga A, et al. Metabolic correlates of brain reserve in dementia with Lewy bodies: an FDG PET study. Dement Geriatr Cogn Disord. 2007;23(6):416–22. doi:10.​1159/​000101956.CrossRefPubMed
72.
go back to reference Fujishiro H, Iseki E, Kasanuki K, Chiba Y, Ota K, Murayama N, et al. A follow up study of non-demented patients with primary visual cortical hypometabolism: prodromal dementia with Lewy bodies. J Neurol Sci. 2013;334(1–2):48–54. doi:10.1016/j.jns.2013.07.013.CrossRefPubMed Fujishiro H, Iseki E, Kasanuki K, Chiba Y, Ota K, Murayama N, et al. A follow up study of non-demented patients with primary visual cortical hypometabolism: prodromal dementia with Lewy bodies. J Neurol Sci. 2013;334(1–2):48–54. doi:10.​1016/​j.​jns.​2013.​07.​013.CrossRefPubMed
73.
go back to reference Kasanuki K, Iseki E, Fujishiro H, Yamamoto R, Higashi S, Minegishi M, et al. Neuropathological investigation of the hypometabolic regions on positron emission tomography with [18F] fluorodeoxyglucose in patients with dementia with Lewy bodies. J Neurol Sci. 2012;314(1–2):111–9. doi:10.1016/j.jns.2011.10.010.CrossRefPubMed Kasanuki K, Iseki E, Fujishiro H, Yamamoto R, Higashi S, Minegishi M, et al. Neuropathological investigation of the hypometabolic regions on positron emission tomography with [18F] fluorodeoxyglucose in patients with dementia with Lewy bodies. J Neurol Sci. 2012;314(1–2):111–9. doi:10.​1016/​j.​jns.​2011.​10.​010.CrossRefPubMed
75.
go back to reference Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51(6):1546–54.CrossRefPubMed Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51(6):1546–54.CrossRefPubMed
76.
go back to reference Kipps CM, Hodges JR, Fryer TD, Nestor PJ. Combined magnetic resonance imaging and positron emission tomography brain imaging in behavioural variant frontotemporal degeneration: refining the clinical phenotype. Brain J Neurol. 2009;132(Pt 9):2566–78. doi:10.1093/brain/awp077.CrossRef Kipps CM, Hodges JR, Fryer TD, Nestor PJ. Combined magnetic resonance imaging and positron emission tomography brain imaging in behavioural variant frontotemporal degeneration: refining the clinical phenotype. Brain J Neurol. 2009;132(Pt 9):2566–78. doi:10.​1093/​brain/​awp077.CrossRef
77.
go back to reference Powers JP, Massimo L, McMillan CT, Yushkevich PA, Zhang H, Gee JC, et al. White matter disease contributes to apathy and disinhibition in behavioral variant frontotemporal dementia. Cognit Behav Neurol Offic J Soc Behav Cognit Neurol. 2014;27(4):206–14. doi:10.1097/WNN.0000000000000044.CrossRef Powers JP, Massimo L, McMillan CT, Yushkevich PA, Zhang H, Gee JC, et al. White matter disease contributes to apathy and disinhibition in behavioral variant frontotemporal dementia. Cognit Behav Neurol Offic J Soc Behav Cognit Neurol. 2014;27(4):206–14. doi:10.​1097/​WNN.​0000000000000044​.CrossRef
78.
go back to reference Kipps CM, Davies RR, Mitchell J, Kril JJ, Halliday GM, Hodges JR. Clinical significance of lobar atrophy in frontotemporal dementia: application of an MRI visual rating scale. Dement Geriatr Cogn Disord. 2007;23(5):334–42. doi:10.1159/000100973.CrossRefPubMed Kipps CM, Davies RR, Mitchell J, Kril JJ, Halliday GM, Hodges JR. Clinical significance of lobar atrophy in frontotemporal dementia: application of an MRI visual rating scale. Dement Geriatr Cogn Disord. 2007;23(5):334–42. doi:10.​1159/​000100973.CrossRefPubMed
79.
go back to reference Galton CJ, Patterson K, Graham K, Lambon-Ralph MA, Williams G, Antoun N, et al. Differing patterns of temporal atrophy in Alzheimer’s disease and semantic dementia. Neurology. 2001;57(2):216–25.CrossRefPubMed Galton CJ, Patterson K, Graham K, Lambon-Ralph MA, Williams G, Antoun N, et al. Differing patterns of temporal atrophy in Alzheimer’s disease and semantic dementia. Neurology. 2001;57(2):216–25.CrossRefPubMed
80.
go back to reference Chan D, Fox N, Rossor M. Differing patterns of temporal atrophy in Alzheimer’s disease and semantic dementia. Neurology. 2002;58(5):838.CrossRefPubMed Chan D, Fox N, Rossor M. Differing patterns of temporal atrophy in Alzheimer’s disease and semantic dementia. Neurology. 2002;58(5):838.CrossRefPubMed
83.
go back to reference Moller C, Dieleman N, van der Flier WM, Versteeg A, Pijnenburg Y, Scheltens P, et al. More atrophy of deep gray matter structures in frontotemporal dementia compared to Alzheimer’s disease. J Alzheimer’s Dis JAD. 2015;44(2):635–47. doi:10.3233/JAD-141230. Moller C, Dieleman N, van der Flier WM, Versteeg A, Pijnenburg Y, Scheltens P, et al. More atrophy of deep gray matter structures in frontotemporal dementia compared to Alzheimer’s disease. J Alzheimer’s Dis JAD. 2015;44(2):635–47. doi:10.​3233/​JAD-141230.
84.
go back to reference Salmon E, Garraux G, Delbeuck X, Collette F, Kalbe E, Zuendorf G, et al. Predominant ventromedial frontopolar metabolic impairment in frontotemporal dementia. Neuroimage. 2003;20(1):435–40.CrossRefPubMed Salmon E, Garraux G, Delbeuck X, Collette F, Kalbe E, Zuendorf G, et al. Predominant ventromedial frontopolar metabolic impairment in frontotemporal dementia. Neuroimage. 2003;20(1):435–40.CrossRefPubMed
86.
go back to reference Garraux G, Salmon E, Degueldre C, Lemaire C, Laureys S, Franck G. Comparison of impaired subcortico-frontal metabolic networks in normal aging, subcortico-frontal dementia, and cortical frontal dementia. Neuroimage. 1999;10(2):149–62. doi:10.1006/nimg.1999.0463.CrossRefPubMed Garraux G, Salmon E, Degueldre C, Lemaire C, Laureys S, Franck G. Comparison of impaired subcortico-frontal metabolic networks in normal aging, subcortico-frontal dementia, and cortical frontal dementia. Neuroimage. 1999;10(2):149–62. doi:10.​1006/​nimg.​1999.​0463.CrossRefPubMed
87.
go back to reference Hoffmann M. Frontal network syndrome testing: clinical tests and positron emission tomography brain imaging help distinguish the 3 most common dementia subtypes. Am J Alzheimers Dis Other Demen. 2013;28(5):477–84. doi:10.1177/1533317513488920.CrossRefPubMed Hoffmann M. Frontal network syndrome testing: clinical tests and positron emission tomography brain imaging help distinguish the 3 most common dementia subtypes. Am J Alzheimers Dis Other Demen. 2013;28(5):477–84. doi:10.​1177/​1533317513488920​.CrossRefPubMed
88.
go back to reference Grimmer T, Diehl J, Drzezga A, Forstl H, Kurz A. Region-specific decline of cerebral glucose metabolism in patients with frontotemporal dementia: a prospective 18F-FDG-PET study. Dement Geriatr Cogn Disord. 2004;18(1):32–6. doi:10.1159/000077732.CrossRefPubMed Grimmer T, Diehl J, Drzezga A, Forstl H, Kurz A. Region-specific decline of cerebral glucose metabolism in patients with frontotemporal dementia: a prospective 18F-FDG-PET study. Dement Geriatr Cogn Disord. 2004;18(1):32–6. doi:10.​1159/​000077732.CrossRefPubMed
91.
go back to reference Frisch S, Dukart J, Vogt B, Horstmann A, Becker G, Villringer A, et al. Dissociating memory networks in early Alzheimer’s disease and frontotemporal lobar degeneration—a combined study of hypometabolism and atrophy. PloS one. 2013;8(2):e55251. doi:10.1371/journal.pone.0055251. Frisch S, Dukart J, Vogt B, Horstmann A, Becker G, Villringer A, et al. Dissociating memory networks in early Alzheimer’s disease and frontotemporal lobar degeneration—a combined study of hypometabolism and atrophy. PloS one. 2013;8(2):e55251. doi:10.​1371/​journal.​pone.​0055251.
93.
go back to reference Tripathi M, Tripathi M, Damle N, Kushwaha S, Jaimini A, D’Souza MM, et al. Differential diagnosis of neurodegenerative dementias using metabolic phenotypes on F-18 FDG PET/CT. Neuroradiol J. 2014;27(1):13–21.CrossRefPubMed Tripathi M, Tripathi M, Damle N, Kushwaha S, Jaimini A, D’Souza MM, et al. Differential diagnosis of neurodegenerative dementias using metabolic phenotypes on F-18 FDG PET/CT. Neuroradiol J. 2014;27(1):13–21.CrossRefPubMed
94.•
go back to reference Kerklaan BJ, van Berckel BN, Herholz K, Dols A, van der Flier WM, Scheltens P, et al. The added value of 18-fluorodeoxyglucose-positron emission tomography in the diagnosis of the behavioral variant of frontotemporal dementia. Am J Alzheimers Dis Other Demen. 2014;29(7):607–13. doi:10.1177/1533317514524811. Kerklaan et al. studied the diagnostic value of FDG PET in bvFTD without structural neuroimaging changes after 2 years. They established that this technique had a sensitivity of 47 % and a specificity of 92 %.CrossRefPubMed Kerklaan BJ, van Berckel BN, Herholz K, Dols A, van der Flier WM, Scheltens P, et al. The added value of 18-fluorodeoxyglucose-positron emission tomography in the diagnosis of the behavioral variant of frontotemporal dementia. Am J Alzheimers Dis Other Demen. 2014;29(7):607–13. doi:10.​1177/​1533317514524811​. Kerklaan et al. studied the diagnostic value of FDG PET in bvFTD without structural neuroimaging changes after 2 years. They established that this technique had a sensitivity of 47 % and a specificity of 92 %.CrossRefPubMed
97.
go back to reference Rees EM, Scahill RI, Hobbs NZ. Longitudinal neuroimaging biomarkers in Huntington’s disease. J Huntington’s Dis. 2013;2(1):21–39. doi:10.3233/JHD-120030. Rees EM, Scahill RI, Hobbs NZ. Longitudinal neuroimaging biomarkers in Huntington’s disease. J Huntington’s Dis. 2013;2(1):21–39. doi:10.​3233/​JHD-120030.
98.
go back to reference Aylward EH, Sparks BF, Field KM, Yallapragada V, Shpritz BD, Rosenblatt A, et al. Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology. 2004;63(1):66–72.CrossRefPubMed Aylward EH, Sparks BF, Field KM, Yallapragada V, Shpritz BD, Rosenblatt A, et al. Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology. 2004;63(1):66–72.CrossRefPubMed
99.
go back to reference Tabrizi SJ, Scahill RI, Durr A, Roos RA, Leavitt BR, Jones R, et al. Biological and clinical changes in premanifest and early stage Huntington’s disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol. 2011;10(1):31–42. doi:10.1016/S1474-4422(10)70276-3.CrossRefPubMed Tabrizi SJ, Scahill RI, Durr A, Roos RA, Leavitt BR, Jones R, et al. Biological and clinical changes in premanifest and early stage Huntington’s disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol. 2011;10(1):31–42. doi:10.​1016/​S1474-4422(10)70276-3.CrossRefPubMed
100.••
go back to reference Tabrizi SJ, Reilmann R, Roos RA, Durr A, Leavitt B, Owen G, et al. Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol. 2012;11(1):42–53. doi:10.1016/S1474-4422(11)70263-0. Tabrizi et al. performed a longitudinal study (2 years) on premanifest gene carriers and patients with early HD, demonstrating a progressive atrophy (GM and whole-brain) associated with cognitive decline in both patient populations. Higher rates of brain atrophy and cognitive deterioration were exhibited by pre-HD subjects with progression.CrossRefPubMed Tabrizi SJ, Reilmann R, Roos RA, Durr A, Leavitt B, Owen G, et al. Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol. 2012;11(1):42–53. doi:10.​1016/​S1474-4422(11)70263-0. Tabrizi et al. performed a longitudinal study (2 years) on premanifest gene carriers and patients with early HD, demonstrating a progressive atrophy (GM and whole-brain) associated with cognitive decline in both patient populations. Higher rates of brain atrophy and cognitive deterioration were exhibited by pre-HD subjects with progression.CrossRefPubMed
102.
go back to reference Ciarmiello A, Cannella M, Lastoria S, Simonelli M, Frati L, Rubinsztein DC, et al. Brain white-matter volume loss and glucose hypometabolism precede the clinical symptoms of Huntington’s disease. J Nucl Med Offic Pub Soc Nucl Med. 2006;47(2):215–22. Ciarmiello A, Cannella M, Lastoria S, Simonelli M, Frati L, Rubinsztein DC, et al. Brain white-matter volume loss and glucose hypometabolism precede the clinical symptoms of Huntington’s disease. J Nucl Med Offic Pub Soc Nucl Med. 2006;47(2):215–22.
103.
go back to reference Feigin A, Leenders KL, Moeller JR, Missimer J, Kuenig G, Spetsieris P, et al. Metabolic network abnormalities in early Huntington’s disease: an [(18)F]FDG PET study. J Nucl Med Offic Pub Soc Nucl Med. 2001;42(11):1591–5. Feigin A, Leenders KL, Moeller JR, Missimer J, Kuenig G, Spetsieris P, et al. Metabolic network abnormalities in early Huntington’s disease: an [(18)F]FDG PET study. J Nucl Med Offic Pub Soc Nucl Med. 2001;42(11):1591–5.
104.
go back to reference Kuwert T, Lange HW, Langen KJ, Herzog H, Aulich A, Feinendegen LE. Cortical and subcortical glucose consumption measured by PET in patients with Huntington’s disease. Brain J Neurol. 1990;113(Pt 5):1405–23.CrossRef Kuwert T, Lange HW, Langen KJ, Herzog H, Aulich A, Feinendegen LE. Cortical and subcortical glucose consumption measured by PET in patients with Huntington’s disease. Brain J Neurol. 1990;113(Pt 5):1405–23.CrossRef
105.
go back to reference Feigin A, Tang C, Ma Y, Mattis P, Zgaljardic D, Guttman M, et al. Thalamic metabolism and symptom onset in preclinical Huntington’s disease. Brain J Neurol. 2007;130(Pt 11):2858–67. doi:10.1093/brain/awm217.CrossRef Feigin A, Tang C, Ma Y, Mattis P, Zgaljardic D, Guttman M, et al. Thalamic metabolism and symptom onset in preclinical Huntington’s disease. Brain J Neurol. 2007;130(Pt 11):2858–67. doi:10.​1093/​brain/​awm217.CrossRef
106.•
go back to reference Tang CC, Feigin A, Ma Y, Habeck C, Paulsen JS, Leenders KL, et al. Metabolic network as a progression biomarker of premanifest Huntington’s disease. J Clin Invest. 2013;123(9):4076–88. doi:10.1172/JCI69411. Tang et al. described a metabolic network characterized by progressive changes in striato-thalamic and cortical metabolic activity in a premanifest HD carrier cohort. This pattern of activity increased over 7 years and was not influenced by phenoconversion.CrossRefPubMedCentralPubMed Tang CC, Feigin A, Ma Y, Habeck C, Paulsen JS, Leenders KL, et al. Metabolic network as a progression biomarker of premanifest Huntington’s disease. J Clin Invest. 2013;123(9):4076–88. doi:10.​1172/​JCI69411. Tang et al. described a metabolic network characterized by progressive changes in striato-thalamic and cortical metabolic activity in a premanifest HD carrier cohort. This pattern of activity increased over 7 years and was not influenced by phenoconversion.CrossRefPubMedCentralPubMed
Metadata
Title
The Relationship Between Atrophy and Hypometabolism: Is It Regionally Dependent in Dementias?
Authors
María C. Rodriguez-Oroz
Belen Gago
Pedro Clavero
Manuel Delgado-Alvarado
David Garcia-Garcia
Haritz Jimenez-Urbieta
Publication date
01-07-2015
Publisher
Springer US
Published in
Current Neurology and Neuroscience Reports / Issue 7/2015
Print ISSN: 1528-4042
Electronic ISSN: 1534-6293
DOI
https://doi.org/10.1007/s11910-015-0562-0

Other articles of this Issue 7/2015

Current Neurology and Neuroscience Reports 7/2015 Go to the issue

Genetics (V Bonifati, Section Editor)

LRRK2 Pathways Leading to Neurodegeneration

Nerve and Muscle (LH Weimer, Section Editor)

Treatment of Chronic Inflammatory Demyelinating Polyneuropathy

Pediatric Neurology (P Pearl, Section Editor)

The Genetics of the Epilepsies