Skip to main content
Top
Published in: Clinical and Translational Medicine 1/2018

Open Access 01-12-2018 | Research

The ratio of ADSCs to HSC-progenitors in adipose tissue derived SVF may provide the key to predict the outcome of stem-cell therapy

Authors: Mehmet Okyay Kilinc, Antonio Santidrian, Ivelina Minev, Robert Toth, Dobrin Draganov, Duong Nguyen, Elliot Lander, Mark Berman, Boris Minev, Aladar A. Szalay

Published in: Clinical and Translational Medicine | Issue 1/2018

Login to get access

Abstract

Background

Stromal vascular fraction (SVF) represents an attractive source of adult stem cells and progenitors, holding great promise for numerous cell therapy approaches. In 2017, it was reported that 1524 patients received autologous SVF following the enzymatic digestion of liposuction fat. The treatment was safe and effective and patients showed significant clinical improvement. In a collaborative study, we analyzed SVF obtained from 58 patients having degenerative, inflammatory, autoimmune diseases, and advanced stage cancer.

Results

Flow analysis showed that freshly isolated SVF was very heterogeneous and harbored four major subsets specific to adipose tissue; CD34high CD45 CD31 CD146 adipose-derived stromal/stem cells (ADSCs), CD34low CD45+ CD206+CD31 CD146 hematopoietic stem cell-progenitors (HSC-progenitors), CD34high CD45 CD31+CD146+ adipose tissue-endothelial cells and CD45CD34CD31CD146+ pericytes. Culturing and expanding of SVF revealed a homogenous population lacking hematopoietic lineage markers CD45 and CD34, but were positive for CD90, CD73, CD105, and CD44. Flow cytometry sorting of viable individual subpopulations revealed that ADSCs had the capacity to grow in adherent culture. The identity of the expanded cells as mesenchymal stem cells (MSCs) was further confirmed based on their differentiation into adipogenic and osteogenic lineages. To identify the potential factors, which may determine the beneficial outcome of treatment, we followed 44 patients post-SVF treatment. The gender, age, clinical condition, certain SVF-dose and route of injection, did not play a role on the clinical outcome. Interestingly, SVF yield seemed to be affected by patient’s characteristic to various extents. Furthermore, the therapy with adipose-derived and expanded-mesenchymal stem cells (ADE-MSCs) on a limited number of patients, did not suggest increased efficacies compared to SVF treatment. Therefore, we tested the hypothesis that a certain combination, rather than individual subset of cells may play a role in determining the treatment efficacy and found that the combination of ADSCs to HSC-progenitor cells can be correlated with overall treatment efficacy.

Conclusions

We found that a 2:1 ratio of ADSCs to HSC-progenitors seems to be the key for a successful cell therapy. These findings open the way to future rational design of new treatment regimens for individuals by adjusting the cell ratio before the treatment.
Literature
1.
go back to reference Bajek A, Gurtowska N, Olkowska J, Kazmierski L, Maj M, Drewa T (2016) Adipose-derived stem cells as a tool in cell-based therapies. Arch Immunol Ther Exp 64:443–454CrossRef Bajek A, Gurtowska N, Olkowska J, Kazmierski L, Maj M, Drewa T (2016) Adipose-derived stem cells as a tool in cell-based therapies. Arch Immunol Ther Exp 64:443–454CrossRef
2.
go back to reference Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J (2012) Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 21:2724–2752CrossRefPubMed Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J (2012) Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 21:2724–2752CrossRefPubMed
3.
go back to reference Yanez R, Lamana ML, Garcıa-Castro J et al (2006) Adipose tissue- derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells 24:2582–2591CrossRefPubMed Yanez R, Lamana ML, Garcıa-Castro J et al (2006) Adipose tissue- derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells 24:2582–2591CrossRefPubMed
4.
7.
go back to reference Kokai LE, Marra K, Rubin JP (2014) Adipose stem cells: biology and clinical applications for tissue repair and regeneration. Transl Res 163:399–408CrossRefPubMed Kokai LE, Marra K, Rubin JP (2014) Adipose stem cells: biology and clinical applications for tissue repair and regeneration. Transl Res 163:399–408CrossRefPubMed
9.
go back to reference Barba M, Cicione C, Bernardini C, Michetti F, Lattanzi W (2013) Adipose-derived mesenchymal cells for bone regeneration: state of the art. Hindawi Publishing Corporation BioMed Research International, New York, p 11 Barba M, Cicione C, Bernardini C, Michetti F, Lattanzi W (2013) Adipose-derived mesenchymal cells for bone regeneration: state of the art. Hindawi Publishing Corporation BioMed Research International, New York, p 11
10.
go back to reference Sándor GK, Numminen J, Wolff J, Thesleff T, Miettinen A, Tuovinen VJ et al (2014) Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med 3(4):530–540CrossRefPubMedPubMedCentral Sándor GK, Numminen J, Wolff J, Thesleff T, Miettinen A, Tuovinen VJ et al (2014) Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med 3(4):530–540CrossRefPubMedPubMedCentral
11.
go back to reference Perin EC, Sanz-Ruiz R, Sanchez PL, Lasso J, Perez-Cano R, Alonso-Farto JC et al (2014) Adipose- derived regenerative cells in patients with ischemic cardiomyopathy: the PRECISE trial. Am Heart J 168(1):88.e2–95.e2CrossRef Perin EC, Sanz-Ruiz R, Sanchez PL, Lasso J, Perez-Cano R, Alonso-Farto JC et al (2014) Adipose- derived regenerative cells in patients with ischemic cardiomyopathy: the PRECISE trial. Am Heart J 168(1):88.e2–95.e2CrossRef
13.
go back to reference Pandey AC, Gimble JM, Zhang S, Scruggs BA, Strong AL, Strong TA et al (2014) Comparison of human adult stem cells from adipose tissue and bone marrow in the treatment of experimental autoimmune encephalomyelitis. Stem Cell Res Ther 5(1):2–13CrossRefPubMedPubMedCentral Pandey AC, Gimble JM, Zhang S, Scruggs BA, Strong AL, Strong TA et al (2014) Comparison of human adult stem cells from adipose tissue and bone marrow in the treatment of experimental autoimmune encephalomyelitis. Stem Cell Res Ther 5(1):2–13CrossRefPubMedPubMedCentral
15.
go back to reference Yoshimura K, Shigeura T, Matsumoto D et al (2006) Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol 208:64–76CrossRefPubMed Yoshimura K, Shigeura T, Matsumoto D et al (2006) Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol 208:64–76CrossRefPubMed
16.
go back to reference Lin K, Matsubara Y, Masuda Y et al (2008) Characterization of adipose tissue-derived cells isolated with the Celution system. Cytotherapy 10(4):417–426CrossRefPubMed Lin K, Matsubara Y, Masuda Y et al (2008) Characterization of adipose tissue-derived cells isolated with the Celution system. Cytotherapy 10(4):417–426CrossRefPubMed
18.
go back to reference Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R et al (2008) A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102:77–85CrossRefPubMed Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R et al (2008) A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102:77–85CrossRefPubMed
19.
go back to reference Zimmerlin L, Donnenberg VS, Rubin JP, Donnenberg AD (2013) Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A 3:134–140CrossRef Zimmerlin L, Donnenberg VS, Rubin JP, Donnenberg AD (2013) Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A 3:134–140CrossRef
20.
go back to reference Szöke K, Beckstrøm KJ, Brinchmann JE (2012) Human adipose tissue as a source of cells with angiogenic potential. Cell Trans 21(1):235–250CrossRef Szöke K, Beckstrøm KJ, Brinchmann JE (2012) Human adipose tissue as a source of cells with angiogenic potential. Cell Trans 21(1):235–250CrossRef
21.
go back to reference Szöke K, Reinisch A, Østrup E, Reinholt FP, Brinchmann JE (2016) Autologous cell sources in therapeutic vasculogenesis: in vitro and in vivo comparison of endothelial colony-forming cells from peripheral blood and endothelial cells isolated from adipose tissue. Cytotherapy 18(2):242–252CrossRefPubMed Szöke K, Reinisch A, Østrup E, Reinholt FP, Brinchmann JE (2016) Autologous cell sources in therapeutic vasculogenesis: in vitro and in vivo comparison of endothelial colony-forming cells from peripheral blood and endothelial cells isolated from adipose tissue. Cytotherapy 18(2):242–252CrossRefPubMed
22.
go back to reference Bourin P, Bunnell BA, Casteilla L et al (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15(6):641–648CrossRefPubMedPubMedCentral Bourin P, Bunnell BA, Casteilla L et al (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15(6):641–648CrossRefPubMedPubMedCentral
23.
25.
go back to reference Zannettino AC, Paton S, Arthur A, Khor F, Itescu S, Gimble JM et al (2008) Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214(2):413–421CrossRefPubMed Zannettino AC, Paton S, Arthur A, Khor F, Itescu S, Gimble JM et al (2008) Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214(2):413–421CrossRefPubMed
26.
27.
go back to reference Casteilla L, Planat-Benard V, Laharrague P, Cousin B (2011) Adipose-derived stromal cells: their identity and uses in clinical trials, an update. World J Stem Cells 3:25–33CrossRefPubMedPubMedCentral Casteilla L, Planat-Benard V, Laharrague P, Cousin B (2011) Adipose-derived stromal cells: their identity and uses in clinical trials, an update. World J Stem Cells 3:25–33CrossRefPubMedPubMedCentral
28.
go back to reference Nguyen A, Guo J, Banyard DA, Fadavi D, Toranto JD, Wirth GA et al (2016) Stromal vascular fraction: a regenerative reality? Part 1: current concepts and review of the literature. J Plast Reconstr Aesthet Surg 69:170–179CrossRefPubMed Nguyen A, Guo J, Banyard DA, Fadavi D, Toranto JD, Wirth GA et al (2016) Stromal vascular fraction: a regenerative reality? Part 1: current concepts and review of the literature. J Plast Reconstr Aesthet Surg 69:170–179CrossRefPubMed
29.
go back to reference Zachar L, Bacenkova D, Rosocha J (2016) Activation, homing, and role of the mesenchymal stem cells in the inflammatory environment. J Inflamm Res 9:231–240CrossRefPubMedPubMedCentral Zachar L, Bacenkova D, Rosocha J (2016) Activation, homing, and role of the mesenchymal stem cells in the inflammatory environment. J Inflamm Res 9:231–240CrossRefPubMedPubMedCentral
31.
go back to reference Bernardo ME, Locatelli F, Fibbe WE (2009) Mesenchymal stromal cells: a novel treatment modality for tissue repair. Ann NY Acad Sci 1176:101–117CrossRefPubMed Bernardo ME, Locatelli F, Fibbe WE (2009) Mesenchymal stromal cells: a novel treatment modality for tissue repair. Ann NY Acad Sci 1176:101–117CrossRefPubMed
32.
go back to reference Nielsen FM, Riis SE, Andersen JI, Lesage R, Fink T, Pennisi CP et al (2016) Discrete adipose-derived stem cell subpopulations may display differential functionality after in vitro expansion despite convergence to a common phenotype distribution. Stem Cell Res Ther 7:177CrossRefPubMedPubMedCentral Nielsen FM, Riis SE, Andersen JI, Lesage R, Fink T, Pennisi CP et al (2016) Discrete adipose-derived stem cell subpopulations may display differential functionality after in vitro expansion despite convergence to a common phenotype distribution. Stem Cell Res Ther 7:177CrossRefPubMedPubMedCentral
34.
go back to reference Clevenger CV, Shankey TV (2001) Preparation of cells and reagents for flow cytometry. In: Coligan JE Jr, Kruisbeek AM Jr, Margulies DH, Shevach EM et al (eds) Current Protocols in Immunology. New York, John Wiley and Sons, p 5.3.1–5.2.24 Clevenger CV, Shankey TV (2001) Preparation of cells and reagents for flow cytometry. In: Coligan JE Jr, Kruisbeek AM Jr, Margulies DH, Shevach EM et al (eds) Current Protocols in Immunology. New York, John Wiley and Sons, p 5.3.1–5.2.24
35.
go back to reference Baer PC, Geiger H (2012) Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells Int Article ID: 812693 Baer PC, Geiger H (2012) Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells Int Article ID: 812693
36.
go back to reference Baer PC, Kuc S, Krause M, Kuc Z, Zielen S, Geiger H et al (2013) Comprehensive phenotypic characterization of human adipose-derived stromal/stem cells and their subsets by a high throughput technology. Stem Cells Dev 22:2CrossRef Baer PC, Kuc S, Krause M, Kuc Z, Zielen S, Geiger H et al (2013) Comprehensive phenotypic characterization of human adipose-derived stromal/stem cells and their subsets by a high throughput technology. Stem Cells Dev 22:2CrossRef
37.
go back to reference Lockhart RA, Aronowitz JA, Vilaboa SDA (2017) Use of freshly isolated human adipose stromal cells for clinical applications. Aesthetic Surg J 37(S3):S4–S8CrossRef Lockhart RA, Aronowitz JA, Vilaboa SDA (2017) Use of freshly isolated human adipose stromal cells for clinical applications. Aesthetic Surg J 37(S3):S4–S8CrossRef
38.
go back to reference Bajek A, Gurtowska N, Olkowska J, Maj M, Kazmierski L, Bodnar M et al (2017) Does the harvesting technique affect the properties of adipose-derived stem cells? The comparative biological characterization. J Cell Biochem 118:1097–1107CrossRefPubMed Bajek A, Gurtowska N, Olkowska J, Maj M, Kazmierski L, Bodnar M et al (2017) Does the harvesting technique affect the properties of adipose-derived stem cells? The comparative biological characterization. J Cell Biochem 118:1097–1107CrossRefPubMed
39.
go back to reference Eto H, Ishimine H, Kinoshita K, Watanabe-Susaki K, Kato H, Doi K et al (2013) Characterization of human adipose tissue-resident hematopoietic cell populations reveals a novel macrophage subpopulation with CD34 expression and mesenchymal multipotency. Stem Cells Dev 22:6CrossRef Eto H, Ishimine H, Kinoshita K, Watanabe-Susaki K, Kato H, Doi K et al (2013) Characterization of human adipose tissue-resident hematopoietic cell populations reveals a novel macrophage subpopulation with CD34 expression and mesenchymal multipotency. Stem Cells Dev 22:6CrossRef
40.
go back to reference Kuwana M, Okazaki Y, Kodama H, Izumi K, Yasuoka H, Ogawa Y et al (2003) Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J Leukoc Biol 74:833–845CrossRefPubMed Kuwana M, Okazaki Y, Kodama H, Izumi K, Yasuoka H, Ogawa Y et al (2003) Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J Leukoc Biol 74:833–845CrossRefPubMed
41.
go back to reference Navarro A, Marín S, Riol N, Carbonell-Uberos F, Miñana MD (2014) Human adipose tissue-resident monocytes exhibit an endothelial-like phenotype and display angiogenic properties. Stem Cell Res Ther 5(2):50CrossRefPubMedPubMedCentral Navarro A, Marín S, Riol N, Carbonell-Uberos F, Miñana MD (2014) Human adipose tissue-resident monocytes exhibit an endothelial-like phenotype and display angiogenic properties. Stem Cell Res Ther 5(2):50CrossRefPubMedPubMedCentral
42.
go back to reference Harmelen VV, Skurk T, Rohrig K, Lee YM, Halbleib M, Aprath-Husmann I et al (2003) Effect of BMI and age on adipose tissue cellularity and differentiation capacity in women. Int J Obes Relat Metab Disord 27:889–895CrossRefPubMed Harmelen VV, Skurk T, Rohrig K, Lee YM, Halbleib M, Aprath-Husmann I et al (2003) Effect of BMI and age on adipose tissue cellularity and differentiation capacity in women. Int J Obes Relat Metab Disord 27:889–895CrossRefPubMed
43.
go back to reference Buschmann J, Gao S, Harter L et al (2013) Yield and proliferation rate of adipose-derived stromal cells as a function of age, body mass index and harvest site-increasing the yield by use of adherent and supernatant fractions. Cytotherapy 15(9):1098–1105CrossRefPubMed Buschmann J, Gao S, Harter L et al (2013) Yield and proliferation rate of adipose-derived stromal cells as a function of age, body mass index and harvest site-increasing the yield by use of adherent and supernatant fractions. Cytotherapy 15(9):1098–1105CrossRefPubMed
44.
go back to reference Dos-Anjos Vilaboa S, Navarro-Palou M, Llull R (2014) Age influence on stromal vascular fraction cell yield obtained from human lipoaspirates. Cytotherapy 16(8):1092–1097CrossRefPubMed Dos-Anjos Vilaboa S, Navarro-Palou M, Llull R (2014) Age influence on stromal vascular fraction cell yield obtained from human lipoaspirates. Cytotherapy 16(8):1092–1097CrossRefPubMed
45.
go back to reference Choudhery MS, Badowski M, Muise A, Pierce J, Harris DT (2014) Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J Transl Med 12:8CrossRefPubMedPubMedCentral Choudhery MS, Badowski M, Muise A, Pierce J, Harris DT (2014) Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J Transl Med 12:8CrossRefPubMedPubMedCentral
46.
go back to reference Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O et al (2008) Dynamics of fat cell turn- over in humans. Nature 453:783e7CrossRef Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O et al (2008) Dynamics of fat cell turn- over in humans. Nature 453:783e7CrossRef
47.
go back to reference Maumus M, Peyrafitte JA, D’Angelo R, Fournier-Wirth C, Bouloumie A, Casteilla L et al (2011) Native human adipose stromal cells: localization, morphology and phenotype. Int J Obes (Lond) 35(9):1141–1153CrossRef Maumus M, Peyrafitte JA, D’Angelo R, Fournier-Wirth C, Bouloumie A, Casteilla L et al (2011) Native human adipose stromal cells: localization, morphology and phenotype. Int J Obes (Lond) 35(9):1141–1153CrossRef
48.
go back to reference Ferraro GA, De Francesco F, Nicoletti G et al (2013) Human adipose CD34(+) CD90(+) stem cells and collagen scaffold constructs grafted in vivo fabricate loose connective and adipose tissues. J Cell Biochem 114:1039–1049CrossRefPubMed Ferraro GA, De Francesco F, Nicoletti G et al (2013) Human adipose CD34(+) CD90(+) stem cells and collagen scaffold constructs grafted in vivo fabricate loose connective and adipose tissues. J Cell Biochem 114:1039–1049CrossRefPubMed
49.
go back to reference Hélène B, Mehdi N, Gordana R, Karlien P, Rafael VP, Pierre P et al (2015) Isolation and characterization of human mesenchymal stromal cell subpopulations: comparison of bone marrow and adipose tissue. Stem Cells Dev 24(18):2142–2157CrossRef Hélène B, Mehdi N, Gordana R, Karlien P, Rafael VP, Pierre P et al (2015) Isolation and characterization of human mesenchymal stromal cell subpopulations: comparison of bone marrow and adipose tissue. Stem Cells Dev 24(18):2142–2157CrossRef
50.
go back to reference Kim EJ, Seo SG, Shin HS, Lee DJ, Kim JH, Lee DY (2017) Platelet-derived growth factor receptor-positive pericytic cells of white adipose tissue from critical limb ischemia patients display mesenchymal stem cell-like properties. Clin Orthop Surg 9(2):239–248CrossRefPubMedPubMedCentral Kim EJ, Seo SG, Shin HS, Lee DJ, Kim JH, Lee DY (2017) Platelet-derived growth factor receptor-positive pericytic cells of white adipose tissue from critical limb ischemia patients display mesenchymal stem cell-like properties. Clin Orthop Surg 9(2):239–248CrossRefPubMedPubMedCentral
51.
go back to reference Park TS, Gavina M, Chen CW, Sun B, Teng PN, Huard J et al (2011) Placental perivascular cells for human muscle regeneration. Stem Cells Dev 20(3):451–463CrossRefPubMed Park TS, Gavina M, Chen CW, Sun B, Teng PN, Huard J et al (2011) Placental perivascular cells for human muscle regeneration. Stem Cells Dev 20(3):451–463CrossRefPubMed
52.
go back to reference Hardy WR, Moldovan NI, Moldovan L, Livak KJ, Datta K, Goswami C et al (2017) Transcriptional networks in single perivascular cells sorted from human adipose tissue reveal a hierarchy of mesenchymal stem cells. Stem Cells 35:1273–1289CrossRefPubMed Hardy WR, Moldovan NI, Moldovan L, Livak KJ, Datta K, Goswami C et al (2017) Transcriptional networks in single perivascular cells sorted from human adipose tissue reveal a hierarchy of mesenchymal stem cells. Stem Cells 35:1273–1289CrossRefPubMed
Metadata
Title
The ratio of ADSCs to HSC-progenitors in adipose tissue derived SVF may provide the key to predict the outcome of stem-cell therapy
Authors
Mehmet Okyay Kilinc
Antonio Santidrian
Ivelina Minev
Robert Toth
Dobrin Draganov
Duong Nguyen
Elliot Lander
Mark Berman
Boris Minev
Aladar A. Szalay
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2018
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/s40169-018-0183-8

Other articles of this Issue 1/2018

Clinical and Translational Medicine 1/2018 Go to the issue