Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2012

Open Access 01-12-2012 | Research

The proto-oncogene c-src is involved in primordial follicle activation through the PI3K, PKC and MAPK signaling pathways

Authors: Xiao-Yu Du, Jian Huang, Liang-Quan Xu, Dan-Feng Tang, Lei Wu, Li-Xia Zhang, Xiao-Ling Pan, Wei-Yun Chen, Li-Ping Zheng, Yue-Hui Zheng

Published in: Reproductive Biology and Endocrinology | Issue 1/2012

Login to get access

Abstract

Background

C-src is an evolutionarily conserved proto-oncogene that regulates cell proliferation, differentiation and apoptosis. In our previous studies, we have reported that another proto-oncogene, c-erbB 2 , plays an important role in primordial follicle activation and development. We also found that c-src was expressed in mammalian ovaries, but its functions in primordial follicle activation remain unclear. The objective of this study is to investigate the role and mechanism of c-src during the growth of primordial follicles.

Methods

Ovaries from 2-day-old rats were cultured in vitro for 8 days. Three c-src-targeting and one negative control siRNA were designed and used in the present study. PCR, Western blotting and primordial follicle development were assessed for the silencing efficiency of the lentivirus c-src siRNA and its effect on primordial follicle onset. The expression of c-src mRNA and protein in primordial follicle growth were examined using the PCR method and immunohistochemical staining. Furthermore, the MAPK inhibitor PD98059, the PKC inhibitor Calphostin and the PI3K inhibitor LY294002 were used to explore the possible signaling pathways of c-src in primordial folliculogenesis.

Results

The results showed that Src protein was distributed in the ooplasmic membrane and the granulosa cell membrane in the primordial follicles, and c-src expression level increased with the growth of primordial follicle. The c-src -targeting lentivirus siRNAs had a silencing effect on c-src mRNA and protein expression. Eight days after transfection of rat ovaries with c-src siRNA, the GFP fluorescence in frozen ovarian sections was clearly discernible under a fluorescence microscope, and its relative expression level was 5-fold higher than that in the control group. Furthermore, the c-src-targeting lentivirus siRNAs lowered its relative expression level 1.96 times. We also found that the development of cultured primordial follicles was completely arrested after c-src siRNA knockdown of c-src expression. Furthermore, our studies demonstrated that folliculogenesis onset was inhibited by Calphostin, PD98059 or LY294002 treatment,but none of them down-regulated c-src expression. In contrast, the expression levels of p-PKC, p-ERK1/2 and p-PI3K in the follicles were clearly decreased by c-src siRNA transfection. Correspondingly, both Calphostin and LY294002 treatment resulted in a decrease in the p-PKC level in follicles, but no change was observed in the PD98059 group. Finally, LY294002 treatment decreased the p-PI3K expression level in the follicles, but no changes were observed in the PD98059 and Calphostin groups.

Conclusions

C-src plays an important role in regulating primordial follicle activation and growth via the PI3K-PKC- ERK1/2 pathway.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference McNatty KP, Fidler AE, Juengel JL, Quirke LD, Smith PR, Heath DA, Lundy T, O'Connell A, Tisdall DJ: Growth and paracrine factors regulating follicular formation and cellular function. Mol Cell Endocrinol. 2000, 163: 11-20. 10.1016/S0303-7207(99)00235-X.CrossRefPubMed McNatty KP, Fidler AE, Juengel JL, Quirke LD, Smith PR, Heath DA, Lundy T, O'Connell A, Tisdall DJ: Growth and paracrine factors regulating follicular formation and cellular function. Mol Cell Endocrinol. 2000, 163: 11-20. 10.1016/S0303-7207(99)00235-X.CrossRefPubMed
3.
go back to reference Parrott JA, Skinner MK: Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology. 1999, 140: 4262-4271. 10.1210/en.140.9.4262.PubMed Parrott JA, Skinner MK: Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology. 1999, 140: 4262-4271. 10.1210/en.140.9.4262.PubMed
4.
go back to reference Wang C, Roy SK: Expression of growth differentiation factor 9 in the oocytes is essential for the development of primordial follicles in the hamster ovary. Endocrinology. 2006, 147: 1725-1734.CrossRefPubMed Wang C, Roy SK: Expression of growth differentiation factor 9 in the oocytes is essential for the development of primordial follicles in the hamster ovary. Endocrinology. 2006, 147: 1725-1734.CrossRefPubMed
5.
go back to reference Skinner MK: Regulation of primordial follicle assembly and development. Human Reprod. 2005, 11: 461-471. 10.1093/humupd/dmi020.CrossRef Skinner MK: Regulation of primordial follicle assembly and development. Human Reprod. 2005, 11: 461-471. 10.1093/humupd/dmi020.CrossRef
6.
go back to reference Kezele PR, Skinner MK: Regulation of ovarian primordial follicle assembly and development by estrogen and progesterone: endocrine model of follicle assembly. Endocrinology. 2003, 144: 3329-3337. 10.1210/en.2002-0131.CrossRefPubMed Kezele PR, Skinner MK: Regulation of ovarian primordial follicle assembly and development by estrogen and progesterone: endocrine model of follicle assembly. Endocrinology. 2003, 144: 3329-3337. 10.1210/en.2002-0131.CrossRefPubMed
7.
go back to reference Liu K, Rajareddy S, Liu L, Jagarlamudi K, Boman K, Selstam G, Reddy P: Control of mammalian oocyte growth and early follicular development by the oocyte PI3 kinase pathway: new roles for an old timer. Dev Biol. 2006, 299: 1-11. 10.1016/j.ydbio.2006.07.038.CrossRefPubMed Liu K, Rajareddy S, Liu L, Jagarlamudi K, Boman K, Selstam G, Reddy P: Control of mammalian oocyte growth and early follicular development by the oocyte PI3 kinase pathway: new roles for an old timer. Dev Biol. 2006, 299: 1-11. 10.1016/j.ydbio.2006.07.038.CrossRefPubMed
8.
go back to reference Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, Du C, Tang W, Hämäläinen T, Peng SL, Lan ZJ, Cooney AJ, Huhtaniemi I, Liu K: Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science. 2008, 319: 611-613. 10.1126/science.1152257.CrossRefPubMed Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, Du C, Tang W, Hämäläinen T, Peng SL, Lan ZJ, Cooney AJ, Huhtaniemi I, Liu K: Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science. 2008, 319: 611-613. 10.1126/science.1152257.CrossRefPubMed
9.
go back to reference Reddy P, Adhikari D, Zheng W, Liang S, Hämäläinen T, Tohonen V, Ogawa W, Noda T, Volarevic S, Huhtaniemi I, Liu K: PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles. Hum Mol Genet. 2009, 18: 2813-2824. 10.1093/hmg/ddp217.CrossRefPubMed Reddy P, Adhikari D, Zheng W, Liang S, Hämäläinen T, Tohonen V, Ogawa W, Noda T, Volarevic S, Huhtaniemi I, Liu K: PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles. Hum Mol Genet. 2009, 18: 2813-2824. 10.1093/hmg/ddp217.CrossRefPubMed
10.
go back to reference Reddy P, Zheng W, Liu K: Mechanisms maintaining the dormancy and survival of mammalian primordial follicles. Trends Endocrinol Metab. 2010, 21: 96-103. 10.1016/j.tem.2009.10.001.CrossRefPubMed Reddy P, Zheng W, Liu K: Mechanisms maintaining the dormancy and survival of mammalian primordial follicles. Trends Endocrinol Metab. 2010, 21: 96-103. 10.1016/j.tem.2009.10.001.CrossRefPubMed
11.
go back to reference Adhikari D, Zheng W, Shen Y, Gorre N, Hämäläinen T, Cooney AJ, Huhtaniemi I, Lan ZJ, Liu K: Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum Mol Genet. 2010, 19: 397-410. 10.1093/hmg/ddp483.PubMedCentralCrossRefPubMed Adhikari D, Zheng W, Shen Y, Gorre N, Hämäläinen T, Cooney AJ, Huhtaniemi I, Lan ZJ, Liu K: Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum Mol Genet. 2010, 19: 397-410. 10.1093/hmg/ddp483.PubMedCentralCrossRefPubMed
12.
go back to reference Li-Ping Z, Da-Lei Z, Jian H, Liang-Quan X, Ai-Xia X, Xiao-Yu D, Dan-Feng T, Yue-Hui Z: Proto-oncogene c-erbB2 initiates rat primordial follicle growth via PKC and MAPK pathways. Reprod Biol Endocrinol. 2010, 8: 66-74. 10.1186/1477-7827-8-66.PubMedCentralCrossRefPubMed Li-Ping Z, Da-Lei Z, Jian H, Liang-Quan X, Ai-Xia X, Xiao-Yu D, Dan-Feng T, Yue-Hui Z: Proto-oncogene c-erbB2 initiates rat primordial follicle growth via PKC and MAPK pathways. Reprod Biol Endocrinol. 2010, 8: 66-74. 10.1186/1477-7827-8-66.PubMedCentralCrossRefPubMed
13.
go back to reference Talmor-Cohen A, Tomashov-Matar R, Eliyahu E, Shapiro R, Shalgi R: Are Src family kinases involved in cell cycle resumption in rat eggs?. Reproduction. 2004, 127: 455-463. 10.1530/rep.1.00104.CrossRefPubMed Talmor-Cohen A, Tomashov-Matar R, Eliyahu E, Shapiro R, Shalgi R: Are Src family kinases involved in cell cycle resumption in rat eggs?. Reproduction. 2004, 127: 455-463. 10.1530/rep.1.00104.CrossRefPubMed
14.
go back to reference Roby KF, Son DS, Taylor CC, Montgomery-Rice V, Kirchoff J, Tang S, Terranova PF: Alterations in reproductive function in SRC tyrosine kinase knockout mice. Endocrine. 2005, 26: 169-176. 10.1385/ENDO:26:2:169.CrossRefPubMed Roby KF, Son DS, Taylor CC, Montgomery-Rice V, Kirchoff J, Tang S, Terranova PF: Alterations in reproductive function in SRC tyrosine kinase knockout mice. Endocrine. 2005, 26: 169-176. 10.1385/ENDO:26:2:169.CrossRefPubMed
15.
go back to reference Luria A, Tennenbaum T, Sun QY, Rubinstein S, Breitbart H: Differential localization of conventional protein kinase C isoforms during mouse oocyte development. Biol Reprod. 2000, 62: 1564-1570. 10.1095/biolreprod62.6.1564.CrossRefPubMed Luria A, Tennenbaum T, Sun QY, Rubinstein S, Breitbart H: Differential localization of conventional protein kinase C isoforms during mouse oocyte development. Biol Reprod. 2000, 62: 1564-1570. 10.1095/biolreprod62.6.1564.CrossRefPubMed
16.
go back to reference Lu Q, Smith GD, Chen DY, Yang Z, Han ZM, Schatten H, Sun QY: Phosphorylation of mitogen-activated protein kinase is regulated by protein kinase C, cyclic 3',5'-adenosine monophosphate, and protein phosphatase modulators during meiosis resumption in rat oocytes. Biol Reprod. 2001, 64: 1444-1450. 10.1095/biolreprod64.5.1444.CrossRefPubMed Lu Q, Smith GD, Chen DY, Yang Z, Han ZM, Schatten H, Sun QY: Phosphorylation of mitogen-activated protein kinase is regulated by protein kinase C, cyclic 3',5'-adenosine monophosphate, and protein phosphatase modulators during meiosis resumption in rat oocytes. Biol Reprod. 2001, 64: 1444-1450. 10.1095/biolreprod64.5.1444.CrossRefPubMed
17.
go back to reference Meng XQ, Zheng KG, Li YL: Role of Src family kinases in oocytes meiosis maturity and fertilization of mice and rats. J Reprod Contracept. 2007, 27: 61-64. Meng XQ, Zheng KG, Li YL: Role of Src family kinases in oocytes meiosis maturity and fertilization of mice and rats. J Reprod Contracept. 2007, 27: 61-64.
18.
go back to reference Jin X, Han CS, Zhang XS, Yuan JX, Hu ZY, Liu YX: Signal transduction of stem cell factor in promoting early follicle development. Mol Cell Endocrinol. 2005, 229: 3-10. 10.1016/j.mce.2004.10.006.CrossRefPubMed Jin X, Han CS, Zhang XS, Yuan JX, Hu ZY, Liu YX: Signal transduction of stem cell factor in promoting early follicle development. Mol Cell Endocrinol. 2005, 229: 3-10. 10.1016/j.mce.2004.10.006.CrossRefPubMed
19.
go back to reference Serafica MD, Goto T, Trounson AO: Transcripts from a human primordial follicle cDNA library. Hum Reprod. 2005, 20: 2074-2091. 10.1093/humrep/dei030.CrossRefPubMed Serafica MD, Goto T, Trounson AO: Transcripts from a human primordial follicle cDNA library. Hum Reprod. 2005, 20: 2074-2091. 10.1093/humrep/dei030.CrossRefPubMed
20.
go back to reference Faerge I, Terry B, Kalous J, Wahl P, Lessl M, Ottesen JL, Hyttel P, Grøndahl C: Resumption of meiosis induced by meiosis-activating sterol has a different signal transduction pathway than spontaneous resumption of meiosis in denuded mouse oocytes cultured in vitro. Biol Reprod. 2001, 65: 1751-1758. 10.1095/biolreprod65.6.1751.CrossRefPubMed Faerge I, Terry B, Kalous J, Wahl P, Lessl M, Ottesen JL, Hyttel P, Grøndahl C: Resumption of meiosis induced by meiosis-activating sterol has a different signal transduction pathway than spontaneous resumption of meiosis in denuded mouse oocytes cultured in vitro. Biol Reprod. 2001, 65: 1751-1758. 10.1095/biolreprod65.6.1751.CrossRefPubMed
21.
go back to reference Talmor-Cohen A, Eliyahu E, Shalgi R: Signalling in mammalian egg activation: role of protein kinases. Mol Cell Endocrinol. 2002, 187: 145-149. 10.1016/S0303-7207(01)00691-8.CrossRefPubMed Talmor-Cohen A, Eliyahu E, Shalgi R: Signalling in mammalian egg activation: role of protein kinases. Mol Cell Endocrinol. 2002, 187: 145-149. 10.1016/S0303-7207(01)00691-8.CrossRefPubMed
22.
go back to reference Fan HY, Tong C, Li MY, Lian L, Chen DY, Schatten H, Sun QY: Translocation of the classic protein kinase C isoforms in porcine oocytes: implications of protein kinase C involvement in the regulation of nuclear activity and cortical granule exocytosis. Exp Cell Res. 2002, 277: 183-191. 10.1006/excr.2002.5547.CrossRefPubMed Fan HY, Tong C, Li MY, Lian L, Chen DY, Schatten H, Sun QY: Translocation of the classic protein kinase C isoforms in porcine oocytes: implications of protein kinase C involvement in the regulation of nuclear activity and cortical granule exocytosis. Exp Cell Res. 2002, 277: 183-191. 10.1006/excr.2002.5547.CrossRefPubMed
23.
go back to reference Thamilselvan V, Craig DH, Basson MD: FAK association with multiple signal proteins mediates pressure-induced colon cancer cell adhesion via a Src-dependent PI3K/Akt pathway. FASEB J. 2007, 21: 1730-1741. 10.1096/fj.06-6545com.CrossRefPubMed Thamilselvan V, Craig DH, Basson MD: FAK association with multiple signal proteins mediates pressure-induced colon cancer cell adhesion via a Src-dependent PI3K/Akt pathway. FASEB J. 2007, 21: 1730-1741. 10.1096/fj.06-6545com.CrossRefPubMed
24.
25.
go back to reference Haefner B, Baxter R, Fincham VJ, Downes CP, Frame MC: Cooperation of Src homology domains in the regulated binding of phosphatidylinositol 3-kinase. A role for the Src homology 2 domain. J Biol Chem. 1995, 270: 7937-7943. 10.1074/jbc.270.14.7937.CrossRefPubMed Haefner B, Baxter R, Fincham VJ, Downes CP, Frame MC: Cooperation of Src homology domains in the regulated binding of phosphatidylinositol 3-kinase. A role for the Src homology 2 domain. J Biol Chem. 1995, 270: 7937-7943. 10.1074/jbc.270.14.7937.CrossRefPubMed
26.
27.
go back to reference Taylor SJ, Shalloway D: An RNA-binding protein associated with Src through its SH2 and SH3 domains in mitosis. Nature. 1994, 368: 867-871. 10.1038/368867a0.CrossRefPubMed Taylor SJ, Shalloway D: An RNA-binding protein associated with Src through its SH2 and SH3 domains in mitosis. Nature. 1994, 368: 867-871. 10.1038/368867a0.CrossRefPubMed
28.
go back to reference Alexandropoulos K, Baltimore D: Coordinate activation of c-Src by SH3- and SH2-binding sites on a novel p130Cas-related protein, Sin. Genes Dev. 1996, 10: 1341-1355. 10.1101/gad.10.11.1341.CrossRefPubMed Alexandropoulos K, Baltimore D: Coordinate activation of c-Src by SH3- and SH2-binding sites on a novel p130Cas-related protein, Sin. Genes Dev. 1996, 10: 1341-1355. 10.1101/gad.10.11.1341.CrossRefPubMed
29.
go back to reference Burnham MR, Bruce-Staskal PJ, Harte MT, Weidow CL, Ma A, Weed SA, Bouton AH: Regulation of c-Src activity and function by the adapter protein CAS. Mol Cell Biol. 2000, 20: 5865-5878. 10.1128/MCB.20.16.5865-5878.2000.PubMedCentralCrossRefPubMed Burnham MR, Bruce-Staskal PJ, Harte MT, Weidow CL, Ma A, Weed SA, Bouton AH: Regulation of c-Src activity and function by the adapter protein CAS. Mol Cell Biol. 2000, 20: 5865-5878. 10.1128/MCB.20.16.5865-5878.2000.PubMedCentralCrossRefPubMed
30.
go back to reference Sato K, Iwasaki T, Hirahara S, Nishihira Y, Fukami Y: Molecular dissection of egg fertilization signaling with the aid of tyrosine kinase-specific inhibitor and activator strategies. Biochim Biophys Acta. 2004, 1697: 103-121. 10.1016/j.bbapap.2003.11.017.CrossRefPubMed Sato K, Iwasaki T, Hirahara S, Nishihira Y, Fukami Y: Molecular dissection of egg fertilization signaling with the aid of tyrosine kinase-specific inhibitor and activator strategies. Biochim Biophys Acta. 2004, 1697: 103-121. 10.1016/j.bbapap.2003.11.017.CrossRefPubMed
31.
go back to reference Zheng KG, Meng XQ, Yang Y, Yu YS, Liu DC, Li YL: Requirements of Src family kinase during meiotic maturation in mouse oocyte. Mol Reprod Dev. 2007, 74: 126-131.CrossRef Zheng KG, Meng XQ, Yang Y, Yu YS, Liu DC, Li YL: Requirements of Src family kinase during meiotic maturation in mouse oocyte. Mol Reprod Dev. 2007, 74: 126-131.CrossRef
32.
go back to reference Kidder GM, Mhawi AA: Gap junctions and ovarian folliculogenesis. Reproduction. 2002, 123: 613-620. 10.1530/rep.0.1230613.CrossRefPubMed Kidder GM, Mhawi AA: Gap junctions and ovarian folliculogenesis. Reproduction. 2002, 123: 613-620. 10.1530/rep.0.1230613.CrossRefPubMed
33.
go back to reference Roby KF, Son DS, Taylor CC, Montgomery-Rice V, Kirchoff J, Tang S, Terranova PF: Alterations in reproductive function in SRC tyrosine kinase knockout mice. Endocrine. 2005, 26: 169-176. 10.1385/ENDO:26:2:169.CrossRefPubMed Roby KF, Son DS, Taylor CC, Montgomery-Rice V, Kirchoff J, Tang S, Terranova PF: Alterations in reproductive function in SRC tyrosine kinase knockout mice. Endocrine. 2005, 26: 169-176. 10.1385/ENDO:26:2:169.CrossRefPubMed
34.
go back to reference Sun QY, Lu Q, Breitbart H, Chen DY: cAMP inhibits MAP kinase activation and reinitiation of meiosis, but exerts no effects after germinal vesicle breakdown (GVBD) in mouse oocytes. Reprod Fertil Dev. 1999, 11: 81-86. 10.1071/RD99038.CrossRefPubMed Sun QY, Lu Q, Breitbart H, Chen DY: cAMP inhibits MAP kinase activation and reinitiation of meiosis, but exerts no effects after germinal vesicle breakdown (GVBD) in mouse oocytes. Reprod Fertil Dev. 1999, 11: 81-86. 10.1071/RD99038.CrossRefPubMed
Metadata
Title
The proto-oncogene c-src is involved in primordial follicle activation through the PI3K, PKC and MAPK signaling pathways
Authors
Xiao-Yu Du
Jian Huang
Liang-Quan Xu
Dan-Feng Tang
Lei Wu
Li-Xia Zhang
Xiao-Ling Pan
Wei-Yun Chen
Li-Ping Zheng
Yue-Hui Zheng
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2012
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/1477-7827-10-58

Other articles of this Issue 1/2012

Reproductive Biology and Endocrinology 1/2012 Go to the issue