Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2024

Open Access 01-12-2024 | Research

The proteome of the blood–brain barrier in rat and mouse: highly specific identification of proteins on the luminal surface of brain microvessels by in vivo glycocapture

Authors: Tammy-Lynn Tremblay, Wael Alata, Jacqueline Slinn, Ewa Baumann, Christie E. Delaney, Maria Moreno, Arsalan S. Haqqani, Danica B. Stanimirovic, Jennifer J. Hill

Published in: Fluids and Barriers of the CNS | Issue 1/2024

Login to get access

Abstract

Background

The active transport of molecules into the brain from blood is regulated by receptors, transporters, and other cell surface proteins that are present on the luminal surface of endothelial cells at the blood–brain barrier (BBB). However, proteomic profiling of proteins present on the luminal endothelial cell surface of the BBB has proven challenging due to difficulty in labelling these proteins in a way that allows efficient purification of these relatively low abundance cell surface proteins.

Methods

Here we describe a novel perfusion-based labelling workflow: in vivo glycocapture. This workflow relies on the oxidation of glycans present on the luminal vessel surface via perfusion of a mild oxidizing agent, followed by subsequent isolation of glycoproteins by covalent linkage of their oxidized glycans to hydrazide beads. Mass spectrometry-based identification of the isolated proteins enables high-confidence identification of endothelial cell surface proteins in rats and mice.

Results

Using the developed workflow, 347 proteins were identified from the BBB in rat and 224 proteins in mouse, for a total of 395 proteins in both species combined. These proteins included many proteins with transporter activity (73 proteins), cell adhesion proteins (47 proteins), and transmembrane signal receptors (31 proteins). To identify proteins that are enriched in vessels relative to the entire brain, we established a vessel-enrichment score and showed that proteins with a high vessel-enrichment score are involved in vascular development functions, binding to integrins, and cell adhesion. Using publicly-available single-cell RNAseq data, we show that the proteins identified by in vivo glycocapture were more likely to be detected by scRNAseq in endothelial cells than in any other cell type. Furthermore, nearly 50% of the genes encoding cell-surface proteins that were detected by scRNAseq in endothelial cells were also identified by in vivo glycocapture.

Conclusions

The proteins identified by in vivo glycocapture in this work represent the most complete and specific profiling of proteins on the luminal BBB surface to date. The identified proteins reflect possible targets for the development of antibodies to improve the crossing of therapeutic proteins into the brain and will contribute to our further understanding of BBB transport mechanisms.
Appendix
Available only for authorised users
Literature
1.
go back to reference McConnell HL, Mishra A. Cells of the blood-brain barrier: an overview of the neurovascular unit in health and disease. Methods Mol Biol. 2022;2492:3–24.PubMedPubMedCentralCrossRef McConnell HL, Mishra A. Cells of the blood-brain barrier: an overview of the neurovascular unit in health and disease. Methods Mol Biol. 2022;2492:3–24.PubMedPubMedCentralCrossRef
3.
4.
go back to reference Pardridge WM. The isolated brain microvessel: a versatile experimental model of the blood-brain barrier. Front Physiol. 2020;11(May):1–27. Pardridge WM. The isolated brain microvessel: a versatile experimental model of the blood-brain barrier. Front Physiol. 2020;11(May):1–27.
5.
7.
go back to reference Haqqani AS, Delaney CE, Brunette E, Baumann E, Farrington GK, Sisk W, et al. Endosomal trafficking regulates receptor-mediated transcytosis of antibodies across the blood brain barrier. J Cereb Blood Flow Metab. 2018;38(4):727–40.PubMedCrossRef Haqqani AS, Delaney CE, Brunette E, Baumann E, Farrington GK, Sisk W, et al. Endosomal trafficking regulates receptor-mediated transcytosis of antibodies across the blood brain barrier. J Cereb Blood Flow Metab. 2018;38(4):727–40.PubMedCrossRef
8.
go back to reference Pardridge WM. Blood-brain barrier and delivery of protein and gene therapeutics to brain. Front Aging Neurosci. 2020;11(January):1–27. Pardridge WM. Blood-brain barrier and delivery of protein and gene therapeutics to brain. Front Aging Neurosci. 2020;11(January):1–27.
9.
go back to reference Pulgar VM. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front Neurosci. 2019;13(JAN):1–9. Pulgar VM. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front Neurosci. 2019;13(JAN):1–9.
10.
go back to reference Pardridge WM. Receptor-mediated drug delivery of bispecific therapeutic antibodies through the blood-brain barrier. Front Drug Deliv. 2023;3(July):1–26. Pardridge WM. Receptor-mediated drug delivery of bispecific therapeutic antibodies through the blood-brain barrier. Front Drug Deliv. 2023;3(July):1–26.
12.
go back to reference Chun HB, Scott M, Niessen S, Hoover H, Baird A, Yates J, et al. The proteome of mouse brain microvessel membranes and basal lamina. J Cereb Blood Flow Metab. 2011;31(12):2267–81.PubMedPubMedCentralCrossRef Chun HB, Scott M, Niessen S, Hoover H, Baird A, Yates J, et al. The proteome of mouse brain microvessel membranes and basal lamina. J Cereb Blood Flow Metab. 2011;31(12):2267–81.PubMedPubMedCentralCrossRef
13.
go back to reference Al Feteisi H, Al-Majdoub ZM, Achour B, Couto N, Rostami-Hodjegan A, Barber J. Identification and quantification of blood–brain barrier transporters in isolated rat brain microvessels. J Neurochem. 2018;146(6):670–85.PubMedCrossRef Al Feteisi H, Al-Majdoub ZM, Achour B, Couto N, Rostami-Hodjegan A, Barber J. Identification and quantification of blood–brain barrier transporters in isolated rat brain microvessels. J Neurochem. 2018;146(6):670–85.PubMedCrossRef
14.
go back to reference Campeau A, Mills RH, Blanchette M, Bajc K, Malfavon M, Munji RN, et al. Multidimensional proteome profiling of blood-brain barrier perturbation by group B streptococcus. mSystems. 2020;5(4):e00368-20.PubMedPubMedCentralCrossRef Campeau A, Mills RH, Blanchette M, Bajc K, Malfavon M, Munji RN, et al. Multidimensional proteome profiling of blood-brain barrier perturbation by group B streptococcus. mSystems. 2020;5(4):e00368-20.PubMedPubMedCentralCrossRef
15.
go back to reference Zajec M, Kros JM, Dekker-Nijholt DAT, Dekker LJ, Stingl C, Van Der Weiden M, et al. Identification of blood-brain barrier-associated proteins in the human brain. J Proteome Res. 2021;20(1):531–7.PubMedCrossRef Zajec M, Kros JM, Dekker-Nijholt DAT, Dekker LJ, Stingl C, Van Der Weiden M, et al. Identification of blood-brain barrier-associated proteins in the human brain. J Proteome Res. 2021;20(1):531–7.PubMedCrossRef
17.
go back to reference Simonian M, Shirasaki D, Lee VS, Bervini D, Grace M, Loo RRO, et al. Proteomics identification of radiation-induced changes of membrane proteins in the rat model of arteriovenous malformation in pursuit of targets for brain AVM molecular therapy. Clin Proteomics. 2018;15(1):1–8. https://doi.org/10.1186/s12014-018-9217-x.CrossRef Simonian M, Shirasaki D, Lee VS, Bervini D, Grace M, Loo RRO, et al. Proteomics identification of radiation-induced changes of membrane proteins in the rat model of arteriovenous malformation in pursuit of targets for brain AVM molecular therapy. Clin Proteomics. 2018;15(1):1–8. https://​doi.​org/​10.​1186/​s12014-018-9217-x.CrossRef
18.
go back to reference Toledo AG, Golden G, Campos AR, Cuello H, Sorrentino J, Lewis N, et al. Proteomic atlas of organ vasculopathies triggered by Staphylococcus aureus sepsis. Nat Commun. 2019;1(10):4656.ADSCrossRef Toledo AG, Golden G, Campos AR, Cuello H, Sorrentino J, Lewis N, et al. Proteomic atlas of organ vasculopathies triggered by Staphylococcus aureus sepsis. Nat Commun. 2019;1(10):4656.ADSCrossRef
19.
go back to reference Jin J, Fang F, Gao W, Chen H, Wen J, Wen X, et al. The structure and function of the glycocalyx and its connection with blood-brain barrier. Front Cell Neurosci. 2021;15(October):1–9. Jin J, Fang F, Gao W, Chen H, Wen J, Wen X, et al. The structure and function of the glycocalyx and its connection with blood-brain barrier. Front Cell Neurosci. 2021;15(October):1–9.
21.
go back to reference Bausch-Fluck D, Hofmann A, Bock T, Frei AP, Cerciello F, Jacobs A, et al. A mass spectrometric-derived cell surface protein atlas. PLoS ONE. 2015;10(4):1–22.CrossRef Bausch-Fluck D, Hofmann A, Bock T, Frei AP, Cerciello F, Jacobs A, et al. A mass spectrometric-derived cell surface protein atlas. PLoS ONE. 2015;10(4):1–22.CrossRef
22.
go back to reference Wollscheid B, Bausch-Fluck D, Henderson C, O’Brien R, Bibel M, Schiess R, et al. Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol. 2009;27(4):378–86.PubMedPubMedCentralCrossRef Wollscheid B, Bausch-Fluck D, Henderson C, O’Brien R, Bibel M, Schiess R, et al. Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol. 2009;27(4):378–86.PubMedPubMedCentralCrossRef
24.
go back to reference Alata W, Paris-Robidas S, Emond V, Bourasset F, Calon F. Brain uptake of a fluorescent vector targeting the transferrin receptor: a novel application of in situ brain perfusion. Mol Pharm. 2014;11(1):243–53.PubMedCrossRef Alata W, Paris-Robidas S, Emond V, Bourasset F, Calon F. Brain uptake of a fluorescent vector targeting the transferrin receptor: a novel application of in situ brain perfusion. Mol Pharm. 2014;11(1):243–53.PubMedCrossRef
25.
go back to reference Alata W, Yogi A, Brunette E, Delaney CE, van Faassen H, Hussack G, et al. Targeting insulin-like growth factor-1 receptor (IGF1R) for brain delivery of biologics. FASEB J. 2022;36(3):1–19.CrossRef Alata W, Yogi A, Brunette E, Delaney CE, van Faassen H, Hussack G, et al. Targeting insulin-like growth factor-1 receptor (IGF1R) for brain delivery of biologics. FASEB J. 2022;36(3):1–19.CrossRef
26.
go back to reference Zhang H, Li X-J, Martin DB, Aebersold R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol. 2003;21(6):660–6.PubMedCrossRef Zhang H, Li X-J, Martin DB, Aebersold R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol. 2003;21(6):660–6.PubMedCrossRef
28.
go back to reference Hill JJ, Tremblay TL, Fauteux F, Li J, Wang E, Aguilar-Mahecha A, et al. Glycoproteomic comparison of clinical triple-negative and luminal breast tumors. J Proteome Res. 2015;14(3):1376–88.PubMedCrossRef Hill JJ, Tremblay TL, Fauteux F, Li J, Wang E, Aguilar-Mahecha A, et al. Glycoproteomic comparison of clinical triple-negative and luminal breast tumors. J Proteome Res. 2015;14(3):1376–88.PubMedCrossRef
29.
go back to reference Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, Nesvizhskii AI. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat Methods. 2017;14(5):513–20.PubMedPubMedCentralCrossRef Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, Nesvizhskii AI. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat Methods. 2017;14(5):513–20.PubMedPubMedCentralCrossRef
30.
go back to reference Teo GC, Polasky DA, Yu F, Nesvizhskii AI. Fast deisotoping algorithm and its implementation in the MSFragger search engine. J Proteome Res. 2021;20(1):498–505.PubMedCrossRef Teo GC, Polasky DA, Yu F, Nesvizhskii AI. Fast deisotoping algorithm and its implementation in the MSFragger search engine. J Proteome Res. 2021;20(1):498–505.PubMedCrossRef
32.
go back to reference Koopmans F, van Nierop P, Andres-Alonso M, Byrnes A, Cijsouw T, Coba MP, et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron. 2019;103(2):217-234.e4.PubMedPubMedCentralCrossRef Koopmans F, van Nierop P, Andres-Alonso M, Byrnes A, Cijsouw T, Coba MP, et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron. 2019;103(2):217-234.e4.PubMedPubMedCentralCrossRef
33.
go back to reference Thomas PD, Ebert D, Muruganujan A, Mushayahama T, Albou LP, Mi H. PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci. 2022;31(1):8–22.PubMedCrossRef Thomas PD, Ebert D, Muruganujan A, Mushayahama T, Albou LP, Mi H. PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci. 2022;31(1):8–22.PubMedCrossRef
36.
go back to reference Betz AL, Firth JA, Goldstein GW. Polarity of the blood-brain barrier: distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res. 1980;192(1):17–28.PubMedCrossRef Betz AL, Firth JA, Goldstein GW. Polarity of the blood-brain barrier: distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res. 1980;192(1):17–28.PubMedCrossRef
37.
go back to reference Webster CI, Caram-Salas N, Haqqani AS, Thom G, Brown L, Rennie K, et al. Brain penetration, target engagement, and disposition of the blood-brain barrier-crossing bispecific antibody antagonist of metabotropic glutamate receptor type 1. FASEB J. 2016;30(5):1927–40.PubMedCrossRef Webster CI, Caram-Salas N, Haqqani AS, Thom G, Brown L, Rennie K, et al. Brain penetration, target engagement, and disposition of the blood-brain barrier-crossing bispecific antibody antagonist of metabotropic glutamate receptor type 1. FASEB J. 2016;30(5):1927–40.PubMedCrossRef
38.
go back to reference Zhang W, Liu QY, Haqqani AS, Leclerc S, Liu Z, Fauteux F, et al. Differential expression of receptors mediating receptor-mediated transcytosis (RMT) in brain microvessels, brain parenchyma and peripheral tissues of the mouse and the human. Fluids Barriers CNS. 2020;17(1):1–17. https://doi.org/10.1186/s12987-020-00209-0.CrossRef Zhang W, Liu QY, Haqqani AS, Leclerc S, Liu Z, Fauteux F, et al. Differential expression of receptors mediating receptor-mediated transcytosis (RMT) in brain microvessels, brain parenchyma and peripheral tissues of the mouse and the human. Fluids Barriers CNS. 2020;17(1):1–17. https://​doi.​org/​10.​1186/​s12987-020-00209-0.CrossRef
39.
go back to reference Palagi PM, Walther D, Quadroni M, Catherinet S, Burgess J, Zimmermann-Ivol CG, et al. MSight: an image analysis software for liquid chromatography-mass spectrometry. Proteomics. 2005;5(9):2381–4.PubMedCrossRef Palagi PM, Walther D, Quadroni M, Catherinet S, Burgess J, Zimmermann-Ivol CG, et al. MSight: an image analysis software for liquid chromatography-mass spectrometry. Proteomics. 2005;5(9):2381–4.PubMedCrossRef
42.
go back to reference Boado RJ, Zhang Y, Zhang Y, Pardridge WM. Humanization of anti-human insulin receptor antibody for drug targeting across the human blood-brain barrier. Biotechnol Bioeng. 2007;96(2):381–91.PubMedCrossRef Boado RJ, Zhang Y, Zhang Y, Pardridge WM. Humanization of anti-human insulin receptor antibody for drug targeting across the human blood-brain barrier. Biotechnol Bioeng. 2007;96(2):381–91.PubMedCrossRef
43.
go back to reference Qian ZM, Li H, Sun H, Ho K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev. 2002;54(4):561–87.PubMedCrossRef Qian ZM, Li H, Sun H, Ho K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev. 2002;54(4):561–87.PubMedCrossRef
46.
go back to reference Demeule M, Currie JC, Bertrand Y, Ché C, Nguyen T, Régina A, et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector Angiopep-2. J Neurochem. 2008;106(4):1534–44.PubMedCrossRef Demeule M, Currie JC, Bertrand Y, Ché C, Nguyen T, Régina A, et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector Angiopep-2. J Neurochem. 2008;106(4):1534–44.PubMedCrossRef
47.
48.
go back to reference Pyzik M, Kozicky LK, Gandhi AK, Blumberg RS. The therapeutic age of the neonatal Fc receptor. Nat Rev Immunol. 2023;23(July):415–32.PubMedCrossRef Pyzik M, Kozicky LK, Gandhi AK, Blumberg RS. The therapeutic age of the neonatal Fc receptor. Nat Rev Immunol. 2023;23(July):415–32.PubMedCrossRef
51.
go back to reference He H, Guo J, Xu J, Wang J, Liu S, Xu B. Dynamic continuum of nanoscale peptide assemblies facilitates endocytosis and endosomal escape. Nano Lett. 2021;21(9):4078–85.ADSPubMedPubMedCentralCrossRef He H, Guo J, Xu J, Wang J, Liu S, Xu B. Dynamic continuum of nanoscale peptide assemblies facilitates endocytosis and endosomal escape. Nano Lett. 2021;21(9):4078–85.ADSPubMedPubMedCentralCrossRef
52.
go back to reference Tobys D, Kowalski LM, Cziudaj E, Müller S, Zentis P, Pach E, et al. Inhibition of clathrin-mediated endocytosis by knockdown of AP-2 leads to alterations in the plasma membrane proteome. Traffic. 2021;22(1–2):6–22.PubMedCrossRef Tobys D, Kowalski LM, Cziudaj E, Müller S, Zentis P, Pach E, et al. Inhibition of clathrin-mediated endocytosis by knockdown of AP-2 leads to alterations in the plasma membrane proteome. Traffic. 2021;22(1–2):6–22.PubMedCrossRef
56.
go back to reference Pardridge WM. Blood–brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody. Expert Opin Drug Deliv. 2014;12(2):207–22.PubMedCrossRef Pardridge WM. Blood–brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody. Expert Opin Drug Deliv. 2014;12(2):207–22.PubMedCrossRef
57.
go back to reference Haqqani AS. Prioritization of therapeutic targets of inflammation using proteomics, bioinformatics, and in silico cell-cell interactomics. Methods Mol Biol. 2019;2024:309–25.PubMedCrossRef Haqqani AS. Prioritization of therapeutic targets of inflammation using proteomics, bioinformatics, and in silico cell-cell interactomics. Methods Mol Biol. 2019;2024:309–25.PubMedCrossRef
58.
go back to reference Brooimans R, Van der Ark A, Tomita M, Van Es L, Daha M. CD59 expressed by human endothelial cells functions as a protective molecule against complement-mediated lysis. Eur J Immunol. 1992;22(3):791–7.PubMedCrossRef Brooimans R, Van der Ark A, Tomita M, Van Es L, Daha M. CD59 expressed by human endothelial cells functions as a protective molecule against complement-mediated lysis. Eur J Immunol. 1992;22(3):791–7.PubMedCrossRef
59.
go back to reference Ito S, Oishi M, Ogata S, Uemura T, Couraud PO, Masuda T, et al. Identification of cell-surface proteins endocytosed by human brain microvascular endothelial cells in vitro. Pharmaceutics. 2020;12(6):1–19.CrossRef Ito S, Oishi M, Ogata S, Uemura T, Couraud PO, Masuda T, et al. Identification of cell-surface proteins endocytosed by human brain microvascular endothelial cells in vitro. Pharmaceutics. 2020;12(6):1–19.CrossRef
60.
go back to reference Uhlén M, Björling E, Agaton C, Szigyarto CAK, Amini B, Andersen E, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics. 2005;4(12):1920–32.PubMedCrossRef Uhlén M, Björling E, Agaton C, Szigyarto CAK, Amini B, Andersen E, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics. 2005;4(12):1920–32.PubMedCrossRef
61.
go back to reference Zhang W, Bamji-Mirza M, Chang N, Haqqani AS, Stanimirovic DB. The expression and function of ABC transporters at the blood-brain barrier. In: Dorovini-Zis K, editor. The blood-brain barrier in health and disease Volume 1, morphology, biology and immune function. Boca Raton: CRC Press; 2015. p. 172–214. Zhang W, Bamji-Mirza M, Chang N, Haqqani AS, Stanimirovic DB. The expression and function of ABC transporters at the blood-brain barrier. In: Dorovini-Zis K, editor. The blood-brain barrier in health and disease Volume 1, morphology, biology and immune function. Boca Raton: CRC Press; 2015. p. 172–214.
62.
go back to reference Harris CL, Hanna SM, Mizuno M, Holt DS, Marchbank KJ, Morgan BP. Characterization of the mouse analogues of CD59 using novel monoclonal antibodies: tissue distribution and functional comparison. Immunology. 2003;109(1):117–26.PubMedPubMedCentralCrossRef Harris CL, Hanna SM, Mizuno M, Holt DS, Marchbank KJ, Morgan BP. Characterization of the mouse analogues of CD59 using novel monoclonal antibodies: tissue distribution and functional comparison. Immunology. 2003;109(1):117–26.PubMedPubMedCentralCrossRef
63.
go back to reference Urayama A, Grubb JH, Sly WS, Banks WA. Developmentally regulated mannose 6-phosphate receptor-mediated transport of a lysosomal enzyme across the blood-brain barrier. Proc Natl Acad Sci U S A. 2004;101(34):12658–63.ADSPubMedPubMedCentralCrossRef Urayama A, Grubb JH, Sly WS, Banks WA. Developmentally regulated mannose 6-phosphate receptor-mediated transport of a lysosomal enzyme across the blood-brain barrier. Proc Natl Acad Sci U S A. 2004;101(34):12658–63.ADSPubMedPubMedCentralCrossRef
65.
go back to reference Siupka P, Hersom MNS, Lykke-Hartmann K, Johnsen KB, Thomsen LB, Andresen TL, et al. Bidirectional apical–basal traffic of the cation-independent mannose-6-phosphate receptor in brain endothelial cells. J Cereb Blood Flow Metab. 2017;37(7):2598–613.PubMedPubMedCentralCrossRef Siupka P, Hersom MNS, Lykke-Hartmann K, Johnsen KB, Thomsen LB, Andresen TL, et al. Bidirectional apical–basal traffic of the cation-independent mannose-6-phosphate receptor in brain endothelial cells. J Cereb Blood Flow Metab. 2017;37(7):2598–613.PubMedPubMedCentralCrossRef
66.
go back to reference Shen M, Jiang YZ, Wei Y, Ell B, Sheng X, Esposito M, et al. Tinagl1 suppresses triple-negative breast cancer progression and metastasis by simultaneously inhibiting integrin/FAK and EGFR signaling. Cancer Cell. 2019;35(1):64-80.e7.PubMedCrossRef Shen M, Jiang YZ, Wei Y, Ell B, Sheng X, Esposito M, et al. Tinagl1 suppresses triple-negative breast cancer progression and metastasis by simultaneously inhibiting integrin/FAK and EGFR signaling. Cancer Cell. 2019;35(1):64-80.e7.PubMedCrossRef
67.
68.
go back to reference Cornford EM, Hyman S. Localization of brain endothelial luminal and abluminal transporters with immunogold electron microscopy. NeuroRx. 2005;2(1):27–43.PubMedPubMedCentralCrossRef Cornford EM, Hyman S. Localization of brain endothelial luminal and abluminal transporters with immunogold electron microscopy. NeuroRx. 2005;2(1):27–43.PubMedPubMedCentralCrossRef
70.
go back to reference Devraj K, Klinger ME, Myers RL, Mokashi A, Hawkins RA, Simpson IA. GLUT-1 glucose transporters in the blood-brain barrier: Differential phosphorylation. J Neurosci Res. 2011;89(12):1913–25.PubMedCrossRef Devraj K, Klinger ME, Myers RL, Mokashi A, Hawkins RA, Simpson IA. GLUT-1 glucose transporters in the blood-brain barrier: Differential phosphorylation. J Neurosci Res. 2011;89(12):1913–25.PubMedCrossRef
71.
go back to reference Hawkins RA, Viña JR, Mokashi A, Peterson DR, OKane R, Simpson IA, et al. Synergism between the two membranes of the blood-brain barrier: glucose and amino acid transport. Am J Neurosci Res. 2013;1(November 2017):1–25. Hawkins RA, Viña JR, Mokashi A, Peterson DR, OKane R, Simpson IA, et al. Synergism between the two membranes of the blood-brain barrier: glucose and amino acid transport. Am J Neurosci Res. 2013;1(November 2017):1–25.
72.
go back to reference Kubo Y, Ohtsuki S, Uchida Y, Terasaki T. Quantitative determination of luminal and abluminal membrane distributions of transporters in porcine brain capillaries by plasma membrane fractionation and quantitative targeted proteomics. J Pharm Sci. 2015;104(9):3060–8.PubMedCrossRef Kubo Y, Ohtsuki S, Uchida Y, Terasaki T. Quantitative determination of luminal and abluminal membrane distributions of transporters in porcine brain capillaries by plasma membrane fractionation and quantitative targeted proteomics. J Pharm Sci. 2015;104(9):3060–8.PubMedCrossRef
Metadata
Title
The proteome of the blood–brain barrier in rat and mouse: highly specific identification of proteins on the luminal surface of brain microvessels by in vivo glycocapture
Authors
Tammy-Lynn Tremblay
Wael Alata
Jacqueline Slinn
Ewa Baumann
Christie E. Delaney
Maria Moreno
Arsalan S. Haqqani
Danica B. Stanimirovic
Jennifer J. Hill
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2024
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-024-00523-x

Other articles of this Issue 1/2024

Fluids and Barriers of the CNS 1/2024 Go to the issue