Skip to main content
Top
Published in: Drugs 9/2017

01-06-2017 | Leading Article

The Potential Role of Fosfomycin in Neonatal Sepsis Caused by Multidrug-Resistant Bacteria

Authors: Grace Li, Joseph F. Standing, Julia Bielicki, William Hope, John van den Anker, Paul T. Heath, Mike Sharland

Published in: Drugs | Issue 9/2017

Login to get access

Abstract

The broad-spectrum activity of fosfomycin, including against multidrug-resistant (MDR) strains, has led to renewed interest in its use in recent years. Neonatal sepsis remains a substantial cause of morbidity and mortality at a global level, with evidence that MDR bacteria play an increasing role. The evidence for use of fosfomycin in neonatal subjects is limited. We summarise current knowledge of the pharmacokinetics and clinical outcomes for the use of fosfomycin in neonatal sepsis and issues specific to neonatal physiology. While fosfomycin has a broad range of coverage, we evaluate the extent to which it may be effective against MDR bacteria in a neonatal setting, in light of recent evidence suggesting it to be most effective when administered in combination with other antibiotics. Given the urgency of clinical demand for treatment of MDR bacterial sepsis, we outline directions for further work, including the need for future clinical trials in this at-risk population.
Literature
2.
go back to reference Laxminarayan R, Matsoso P, Pant S, et al. Access to effective antimicrobials: a worldwide challenge. Lancet. 2016;387:168–75.CrossRefPubMed Laxminarayan R, Matsoso P, Pant S, et al. Access to effective antimicrobials: a worldwide challenge. Lancet. 2016;387:168–75.CrossRefPubMed
3.
go back to reference Seale AC, Head MG, Fitchett EJA, et al. Neonatal infection: a major burden with minimal funding. Lancet Glob Health. 2015;3(11):e669–80.CrossRefPubMed Seale AC, Head MG, Fitchett EJA, et al. Neonatal infection: a major burden with minimal funding. Lancet Glob Health. 2015;3(11):e669–80.CrossRefPubMed
4.
go back to reference Synnes A, Luu TM, Moddemann D, On behalf of the Canadian Neonatal Network and the Canadian Neonatal Follow-Up Network, et al. Determinants of developmental outcomes in a very preterm Canadian cohort. Arch Dis Child Fetal Neonatal Ed. 2017;102:F234–5. Synnes A, Luu TM, Moddemann D, On behalf of the Canadian Neonatal Network and the Canadian Neonatal Follow-Up Network, et al. Determinants of developmental outcomes in a very preterm Canadian cohort. Arch Dis Child Fetal Neonatal Ed. 2017;102:F234–5.
5.
go back to reference Dong Y, Speer CP. Late-onset neonatal sepsis: recent developments. Arch Dis Child Fetal Neonatal Ed. 2015;100:F257–63.CrossRefPubMed Dong Y, Speer CP. Late-onset neonatal sepsis: recent developments. Arch Dis Child Fetal Neonatal Ed. 2015;100:F257–63.CrossRefPubMed
6.
go back to reference Russell ARB, Kumar R. Early onset neonatal sepsis: diagnostic dilemmas and practical management. Arch Dis Child Fetal Neonatal Ed. 2015;100:F350–4.CrossRef Russell ARB, Kumar R. Early onset neonatal sepsis: diagnostic dilemmas and practical management. Arch Dis Child Fetal Neonatal Ed. 2015;100:F350–4.CrossRef
7.
go back to reference Stoll ABJ, Hansen NI, Watterberg KL, et al. Early onset neonatal sepsis : the burden of group B Streptococcal and E. coli disease continues. Pediatrics. 2011;127(5):817–26.CrossRefPubMedPubMedCentral Stoll ABJ, Hansen NI, Watterberg KL, et al. Early onset neonatal sepsis : the burden of group B Streptococcal and E. coli disease continues. Pediatrics. 2011;127(5):817–26.CrossRefPubMedPubMedCentral
8.
go back to reference Tsai M, Hsu J, Chu S, et al. Incidence, clinical characteristics and risk factors for adverse outcome in neonates with late-onset sepsis. Paediatr Infect Dis J. 2014;33(1):7–13.CrossRef Tsai M, Hsu J, Chu S, et al. Incidence, clinical characteristics and risk factors for adverse outcome in neonates with late-onset sepsis. Paediatr Infect Dis J. 2014;33(1):7–13.CrossRef
9.
go back to reference Tsai L, Chen Y, Tsou K. The impact of small-for-gestational-age on neonatal outcome among very-low-birth-weight infants. Pediatr Neonatol. 2015;56(2):101–7.CrossRefPubMed Tsai L, Chen Y, Tsou K. The impact of small-for-gestational-age on neonatal outcome among very-low-birth-weight infants. Pediatr Neonatol. 2015;56(2):101–7.CrossRefPubMed
10.
go back to reference Vergnano S, Menson E, Kennea N, et al. Neonatal infections in England: the NeonIN surveillance network. Arch Dis Child Fetal Neonatal Ed. 2011;96(1):F9–14.CrossRefPubMed Vergnano S, Menson E, Kennea N, et al. Neonatal infections in England: the NeonIN surveillance network. Arch Dis Child Fetal Neonatal Ed. 2011;96(1):F9–14.CrossRefPubMed
12.
go back to reference Lutsar I, Trafojer UMT, Heath PT, et al. Meropenem vs standard of care for treatment of late onset sepsis in children of less than 90 days of age: study protocol for a randomised controlled trial. Trials. 2011;12(1):215.CrossRefPubMedPubMedCentral Lutsar I, Trafojer UMT, Heath PT, et al. Meropenem vs standard of care for treatment of late onset sepsis in children of less than 90 days of age: study protocol for a randomised controlled trial. Trials. 2011;12(1):215.CrossRefPubMedPubMedCentral
13.
go back to reference Hornik CP, Herring AH, Benjamin DK, et al. Adverse events associated with meropenem versus imipenem/ cilastatin therapy in a large retrospective cohort of hospitalized infants. Pediatr Infect Dis J. 2013;32(7):748–53.CrossRefPubMedPubMedCentral Hornik CP, Herring AH, Benjamin DK, et al. Adverse events associated with meropenem versus imipenem/ cilastatin therapy in a large retrospective cohort of hospitalized infants. Pediatr Infect Dis J. 2013;32(7):748–53.CrossRefPubMedPubMedCentral
14.
go back to reference Cailes B, Vergnano S, Kortsalioudaki C, et al. The current and future roles of neonatal infection surveillance programmes in combating antimicrobial resistance. Early Hum Dev. 2015;91(11):613–8.CrossRefPubMed Cailes B, Vergnano S, Kortsalioudaki C, et al. The current and future roles of neonatal infection surveillance programmes in combating antimicrobial resistance. Early Hum Dev. 2015;91(11):613–8.CrossRefPubMed
15.
go back to reference Russell AB, Sharland M, Heath PT. Improving antibiotic prescribing in neonatal units: time to act. Arch Dis Child Fetal Neonatal Ed. 2012;97(2):F141–6.CrossRefPubMed Russell AB, Sharland M, Heath PT. Improving antibiotic prescribing in neonatal units: time to act. Arch Dis Child Fetal Neonatal Ed. 2012;97(2):F141–6.CrossRefPubMed
16.
go back to reference Simon A, Tenenbaum T. Surveillance of multidrug-resistant Gram-negative pathogens in high-risk neonates—does it make a difference? Pediatr Infect Dis J. 2013;32(4):407–9.CrossRefPubMed Simon A, Tenenbaum T. Surveillance of multidrug-resistant Gram-negative pathogens in high-risk neonates—does it make a difference? Pediatr Infect Dis J. 2013;32(4):407–9.CrossRefPubMed
17.
go back to reference Folgori L, Livadiotti S, Carletti M, et al. Epidemiology and clinical outcomes of multidrug-resistant, Gram-negative bloodstream infections in a European tertiary pediatric hospital during a 12-month period. Pediatr Infect Dis J. 2014;33(9):929–32.CrossRefPubMed Folgori L, Livadiotti S, Carletti M, et al. Epidemiology and clinical outcomes of multidrug-resistant, Gram-negative bloodstream infections in a European tertiary pediatric hospital during a 12-month period. Pediatr Infect Dis J. 2014;33(9):929–32.CrossRefPubMed
18.
go back to reference Bielicki JA, Lundin R, Sharland M, et al. Antibiotic resistance prevalence in routine bloodstream isolates from children’s hospitals varies substantially from adult surveillance data in Europe. Pediatr Infect Dis J. 2015;34(7):734–41.CrossRefPubMed Bielicki JA, Lundin R, Sharland M, et al. Antibiotic resistance prevalence in routine bloodstream isolates from children’s hospitals varies substantially from adult surveillance data in Europe. Pediatr Infect Dis J. 2015;34(7):734–41.CrossRefPubMed
19.
go back to reference Abdula N, Macharia J, Motsoaledi A, et al. National action for global gains in antimicrobial resistance. Lancet. 2016;387(10014):e3–5.CrossRefPubMed Abdula N, Macharia J, Motsoaledi A, et al. National action for global gains in antimicrobial resistance. Lancet. 2016;387(10014):e3–5.CrossRefPubMed
20.
go back to reference Downie L, Armiento R, Subhi R, et al. Community-acquired neonatal and infant sepsis in developing countries: efficacy of WHO’s currently recommended antibiotics—systematic review and meta-analysis. Arch Dis Child. 2013;98(2):146–54.CrossRefPubMed Downie L, Armiento R, Subhi R, et al. Community-acquired neonatal and infant sepsis in developing countries: efficacy of WHO’s currently recommended antibiotics—systematic review and meta-analysis. Arch Dis Child. 2013;98(2):146–54.CrossRefPubMed
21.
go back to reference Le Doare K, Bielicki J, Heath PT, et al. Systematic review of antibiotic resistance rates among Gram-negative bacteria in children with sepsis in resource-limited countries. J Pediatr Infect Dis Soc. 2015;4(1):11–20.CrossRef Le Doare K, Bielicki J, Heath PT, et al. Systematic review of antibiotic resistance rates among Gram-negative bacteria in children with sepsis in resource-limited countries. J Pediatr Infect Dis Soc. 2015;4(1):11–20.CrossRef
22.
go back to reference Investigators of the Delhi Neonatal Infection Study (DeNIS) collaboration. Characterisation and antimicrobial resistance of sepsis pathogens in neonates born in tertiary care centres in Delhi, India: a cohort study. Lancet Glob Health. 2016;4(10):e752–60.CrossRef Investigators of the Delhi Neonatal Infection Study (DeNIS) collaboration. Characterisation and antimicrobial resistance of sepsis pathogens in neonates born in tertiary care centres in Delhi, India: a cohort study. Lancet Glob Health. 2016;4(10):e752–60.CrossRef
23.
go back to reference Hendlin D, Stapley EO, Jackson M, et al. Phosphonomycin, a new antibiotic produced by strains of streptomyces. Science. 1969;166:122–3.CrossRefPubMed Hendlin D, Stapley EO, Jackson M, et al. Phosphonomycin, a new antibiotic produced by strains of streptomyces. Science. 1969;166:122–3.CrossRefPubMed
24.
go back to reference Castañeda-García A, Blázquez J, Rodríguez-Rojas A. Molecular mechanisms and clinical impact of acquired and intrinsic fosfomycin resistance. Antibiotics. 2013;16(2):217–36.CrossRef Castañeda-García A, Blázquez J, Rodríguez-Rojas A. Molecular mechanisms and clinical impact of acquired and intrinsic fosfomycin resistance. Antibiotics. 2013;16(2):217–36.CrossRef
25.
go back to reference Kahan FM, Kahan JS, Cassidy PJ, et al. The mechanism of action of fosfomycin (phosphonomycin). Ann N Y Acad Sci. 1974;235:364–86.CrossRefPubMed Kahan FM, Kahan JS, Cassidy PJ, et al. The mechanism of action of fosfomycin (phosphonomycin). Ann N Y Acad Sci. 1974;235:364–86.CrossRefPubMed
26.
go back to reference Takahata S, Ida T, Hiraishi T, et al. Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. Int J Antimicrob Agents. 2010;35(4):333–7.CrossRefPubMed Takahata S, Ida T, Hiraishi T, et al. Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. Int J Antimicrob Agents. 2010;35(4):333–7.CrossRefPubMed
27.
go back to reference Cao XL, Shen H, Xu YY, et al. High prevalence of fosfomycinresistancegene fosA3 in bla CTX-M-harbouring Escherichia coli from urine in a Chinese tertiary hospital during 2010–2014. Epidemiol Infect. 2016;12:1–7. Cao XL, Shen H, Xu YY, et al. High prevalence of fosfomycinresistancegene fosA3 in bla CTX-M-harbouring Escherichia coli from urine in a Chinese tertiary hospital during 2010–2014. Epidemiol Infect. 2016;12:1–7.
28.
go back to reference Engel H, Gutiérrez-Fernández J, Flückiger C, et al. Heteroresistance to fosfomycin is predominant in Streptococcus pneumoniae and depends on the murA1 gene. Antimicrob Agents Chemother. 2013;57(6):2801–8.CrossRefPubMedPubMedCentral Engel H, Gutiérrez-Fernández J, Flückiger C, et al. Heteroresistance to fosfomycin is predominant in Streptococcus pneumoniae and depends on the murA1 gene. Antimicrob Agents Chemother. 2013;57(6):2801–8.CrossRefPubMedPubMedCentral
29.
go back to reference Molina MA, Olay T, Quero J. Pharmacodynamic data on fosfomycin in underweight infants during the neonatal period. Chemotherapy. 1977;23:217–22.CrossRefPubMed Molina MA, Olay T, Quero J. Pharmacodynamic data on fosfomycin in underweight infants during the neonatal period. Chemotherapy. 1977;23:217–22.CrossRefPubMed
30.
go back to reference Guggenbichler JP, Kienel G. Fosfomycin, a new antibiotic drug. Pediatr Padol. 1978;13(4):429–36. Guggenbichler JP, Kienel G. Fosfomycin, a new antibiotic drug. Pediatr Padol. 1978;13(4):429–36.
31.
go back to reference Guibert M, Magny JF, Poudenx F, et al. Comparative pharmacokinetics of fosfomycin in the neonate: 2 modes of administration. Pathol Biol. 1987;35(5):750–2.PubMed Guibert M, Magny JF, Poudenx F, et al. Comparative pharmacokinetics of fosfomycin in the neonate: 2 modes of administration. Pathol Biol. 1987;35(5):750–2.PubMed
32.
go back to reference Suzuki S, Murayama Y, Sugiyama E, et al. Dose estimation for renal-excretion drugs in neonates and infants based on physiological development of renal function. Yakugaku Zasshi. 2009;129(7):829–42.CrossRefPubMed Suzuki S, Murayama Y, Sugiyama E, et al. Dose estimation for renal-excretion drugs in neonates and infants based on physiological development of renal function. Yakugaku Zasshi. 2009;129(7):829–42.CrossRefPubMed
33.
go back to reference Iwai N, Nakamura H, Miyazu M, et al. A study of the absorption and excretion of fosfomycin sodium in children [in Japanese]. Jpn J Antibiot. 1991;44(3):345–56. Iwai N, Nakamura H, Miyazu M, et al. A study of the absorption and excretion of fosfomycin sodium in children [in Japanese]. Jpn J Antibiot. 1991;44(3):345–56.
34.
go back to reference Rhodin MM, Anderson BJ, Peters AM, et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24(1):67–76.CrossRefPubMed Rhodin MM, Anderson BJ, Peters AM, et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24(1):67–76.CrossRefPubMed
35.
go back to reference Andrews JM, Baquero F, Beltran JM, et al. International collaborative study on standardization of bacterial sensitivity to fosfomycin. J Antimicrob Chemother. 1983;12(4):357–61.CrossRefPubMed Andrews JM, Baquero F, Beltran JM, et al. International collaborative study on standardization of bacterial sensitivity to fosfomycin. J Antimicrob Chemother. 1983;12(4):357–61.CrossRefPubMed
36.
go back to reference Pfausler B, Spiss H, Dittrich P, et al. Concentrations of fosfomycin in the cerebrospinal fluid of neurointensive care patients with ventriculostomy-associated ventriculitis. J Antimicrob Chemother. 2004;53(5):848–52.CrossRefPubMed Pfausler B, Spiss H, Dittrich P, et al. Concentrations of fosfomycin in the cerebrospinal fluid of neurointensive care patients with ventriculostomy-associated ventriculitis. J Antimicrob Chemother. 2004;53(5):848–52.CrossRefPubMed
37.
go back to reference Sauermann R, Karch R, Langenberger H, et al. Antibiotic abscess penetration: fosfomycin levels measured in pus and simulated concentration-time profiles. Antimicrob Agents Chemother. 2005;49(11):4448–54.CrossRefPubMedPubMedCentral Sauermann R, Karch R, Langenberger H, et al. Antibiotic abscess penetration: fosfomycin levels measured in pus and simulated concentration-time profiles. Antimicrob Agents Chemother. 2005;49(11):4448–54.CrossRefPubMedPubMedCentral
38.
go back to reference Mazzei T, Cassetta MI, Fallani S, et al. Pharmacokinetic and pharmacodynamic aspects of antimicrobial agents for the treatment of uncomplicated urinary tract infections. Int J Antimicrob Agents. 2006;28(Suppl 1):S35–41.CrossRefPubMed Mazzei T, Cassetta MI, Fallani S, et al. Pharmacokinetic and pharmacodynamic aspects of antimicrobial agents for the treatment of uncomplicated urinary tract infections. Int J Antimicrob Agents. 2006;28(Suppl 1):S35–41.CrossRefPubMed
39.
go back to reference Docobo-Pérez F, Drusano GL, Johnson A, et al. Pharmacodynamics of fosfomycin: insights into clinical use for antimicrobial resistance. Antimicrob Agents Chemother. 2015;59(9):5602–10.CrossRefPubMedPubMedCentral Docobo-Pérez F, Drusano GL, Johnson A, et al. Pharmacodynamics of fosfomycin: insights into clinical use for antimicrobial resistance. Antimicrob Agents Chemother. 2015;59(9):5602–10.CrossRefPubMedPubMedCentral
40.
go back to reference Bergan T. Degree of absorption, pharmacokinetics of fosfomycin trometamol and duration of urinary antibacterial activity. Infection. 1990;18:S65–9.CrossRefPubMed Bergan T. Degree of absorption, pharmacokinetics of fosfomycin trometamol and duration of urinary antibacterial activity. Infection. 1990;18:S65–9.CrossRefPubMed
41.
go back to reference Borgia M, Longo A, Lodola E. Relative bioavailability of fosfomycin and of trometamol after administration of single dose by oral route of fosfomycin trometamol in fasting conditions and after a meal. Int J Clin Pharmacol Ther Toxicol. 1989;27(8):411–7.PubMed Borgia M, Longo A, Lodola E. Relative bioavailability of fosfomycin and of trometamol after administration of single dose by oral route of fosfomycin trometamol in fasting conditions and after a meal. Int J Clin Pharmacol Ther Toxicol. 1989;27(8):411–7.PubMed
42.
go back to reference Cree M, Stacey S, Graham N, et al. Fosfomycin-investigation of a possible new route of administration of an old drug. A case study. J Cyst Fibros. 2007;6(3):244–6.CrossRefPubMed Cree M, Stacey S, Graham N, et al. Fosfomycin-investigation of a possible new route of administration of an old drug. A case study. J Cyst Fibros. 2007;6(3):244–6.CrossRefPubMed
43.
go back to reference Llorens J, Lobato A, Olay T. The passage of fosfomycin into the cerebrospinal fluid in children’s meningitis. Chemotherapy. 1977;23(S1):189–95.CrossRefPubMed Llorens J, Lobato A, Olay T. The passage of fosfomycin into the cerebrospinal fluid in children’s meningitis. Chemotherapy. 1977;23(S1):189–95.CrossRefPubMed
44.
go back to reference Traunmüller F, Popovic M, Konz KH, et al. A reappraisal of current dosing strategies for intravenous fosfomycin in children and neonates. Clin Pharmacokinet. 2011;50(8):493–503.CrossRefPubMed Traunmüller F, Popovic M, Konz KH, et al. A reappraisal of current dosing strategies for intravenous fosfomycin in children and neonates. Clin Pharmacokinet. 2011;50(8):493–503.CrossRefPubMed
45.
go back to reference De Cock RFW, Allegaert K, Schreuder MF, et al. Maturation of the glomerular filtration rate in neonates, as reflected by amikacin clearance. Clin Pharmacokinet. 2012;51(2):105–17.CrossRefPubMed De Cock RFW, Allegaert K, Schreuder MF, et al. Maturation of the glomerular filtration rate in neonates, as reflected by amikacin clearance. Clin Pharmacokinet. 2012;51(2):105–17.CrossRefPubMed
46.
go back to reference Iarikov D, Wassel R, Farley J, et al. Adverse events associated with fosfomycin use: review of the literature and analyses of the FDA adverse event reporting system database. Infect Dis Ther. 2015;4(4):433–58.CrossRefPubMedPubMedCentral Iarikov D, Wassel R, Farley J, et al. Adverse events associated with fosfomycin use: review of the literature and analyses of the FDA adverse event reporting system database. Infect Dis Ther. 2015;4(4):433–58.CrossRefPubMedPubMedCentral
47.
48.
49.
go back to reference Taylor CG, Mascarós E, Román J, et al. Enteropathogenic E. coli gastroenterocolitis in neonates treated with fosfomycin. Chemotherapy. 1977;23(1):310–4. Taylor CG, Mascarós E, Román J, et al. Enteropathogenic E. coli gastroenterocolitis in neonates treated with fosfomycin. Chemotherapy. 1977;23(1):310–4.
50.
go back to reference Rossignol S, Regnier C. Fosfomycin in severe infection in neonatology. Ann Pediatr. 1984;31(5):437–44. Rossignol S, Regnier C. Fosfomycin in severe infection in neonatology. Ann Pediatr. 1984;31(5):437–44.
51.
go back to reference Algubaisi S, Buhrer C, Thomale UW, et al. Favorable outcome in cerebral abscesses caused by Citrobacter koseri in a newborn infant. IDCases. 2015;2(1):22–4.CrossRefPubMed Algubaisi S, Buhrer C, Thomale UW, et al. Favorable outcome in cerebral abscesses caused by Citrobacter koseri in a newborn infant. IDCases. 2015;2(1):22–4.CrossRefPubMed
52.
go back to reference Guillois B, Guillemin MG, Thoma M, et al. Neonatal pleuropulmonary staphylococcal infection with multiple abscesses of the liver. Ann Pediatr. 1989;36(10):681–4. Guillois B, Guillemin MG, Thoma M, et al. Neonatal pleuropulmonary staphylococcal infection with multiple abscesses of the liver. Ann Pediatr. 1989;36(10):681–4.
53.
go back to reference Gouyon JB, François C, Semama D, et al. Nosocomial Staphylococcus epidermidis and Staphylococcus aureus septicemias in neonates. Ann Pediatr. 1990;37(1):21–5. Gouyon JB, François C, Semama D, et al. Nosocomial Staphylococcus epidermidis and Staphylococcus aureus septicemias in neonates. Ann Pediatr. 1990;37(1):21–5.
54.
go back to reference Hepping N, Simon A. Fosfomycin in paediatric cancer patients: a feasible alternative to glycopeptides? Int J Antimicrob Agents. 2009;33(4):389.CrossRefPubMed Hepping N, Simon A. Fosfomycin in paediatric cancer patients: a feasible alternative to glycopeptides? Int J Antimicrob Agents. 2009;33(4):389.CrossRefPubMed
55.
go back to reference Falagas ME, Giannopoulou KP, Kokolakis GN, et al. Fosfomycin: use beyond urinary tract and gastrointestinal infections. Clin Infect Dis. 2008;46(7):1069–77.CrossRefPubMed Falagas ME, Giannopoulou KP, Kokolakis GN, et al. Fosfomycin: use beyond urinary tract and gastrointestinal infections. Clin Infect Dis. 2008;46(7):1069–77.CrossRefPubMed
56.
go back to reference Michalopoulos AS, Livaditis IG, Gougoutas V. The revival of fosfomycin. Int J Infect Dis. 2011;15:e732–9.CrossRefPubMed Michalopoulos AS, Livaditis IG, Gougoutas V. The revival of fosfomycin. Int J Infect Dis. 2011;15:e732–9.CrossRefPubMed
57.
go back to reference Vardakas KZ, Legakis NJ, Triarides N, et al. Susceptibility of contemporary isolates to fosfomycin: a systematic review of the literature. Int J Antimicrob Agents. 2016;47(4):269–85.CrossRefPubMed Vardakas KZ, Legakis NJ, Triarides N, et al. Susceptibility of contemporary isolates to fosfomycin: a systematic review of the literature. Int J Antimicrob Agents. 2016;47(4):269–85.CrossRefPubMed
58.
go back to reference Yu X, Song X, Cai Y, et al. In vitro activity of two old antibiotics against clinical isolates of methicillin-resistant Staphylococcus aureus. J Antibiot. 2010;63(11):657–9.CrossRefPubMed Yu X, Song X, Cai Y, et al. In vitro activity of two old antibiotics against clinical isolates of methicillin-resistant Staphylococcus aureus. J Antibiot. 2010;63(11):657–9.CrossRefPubMed
59.
go back to reference Lu C, Liu C, Huang Y, et al. Antimicrobial susceptibilities of commonly encountered bacterial isolates to fosfomycin determined by agar dilution and disk diffusion methods. Antimicrob Agents Chemother. 2011;55(9):4295–301.CrossRefPubMedPubMedCentral Lu C, Liu C, Huang Y, et al. Antimicrobial susceptibilities of commonly encountered bacterial isolates to fosfomycin determined by agar dilution and disk diffusion methods. Antimicrob Agents Chemother. 2011;55(9):4295–301.CrossRefPubMedPubMedCentral
60.
61.
go back to reference Chiquet C, Maurin M, Altayrac J, et al. Correlation between clinical data and antibiotic resistance in coagulase-negative Staphylococcus species isolated from 68 patients with acute post-cataract endophthalmitis. Clin Microbiol Infect. 2015;21(6):592.e1–8. Chiquet C, Maurin M, Altayrac J, et al. Correlation between clinical data and antibiotic resistance in coagulase-negative Staphylococcus species isolated from 68 patients with acute post-cataract endophthalmitis. Clin Microbiol Infect. 2015;21(6):592.e1–8.
62.
go back to reference Falagas ME, Maraki S, Karageorgopoulos DE, et al. Antimicrobial susceptibility of Gram-positive non-urinary isolates to fosfomycin. Int J Antimicrob Agents. 2010;35(5):497–9.CrossRefPubMed Falagas ME, Maraki S, Karageorgopoulos DE, et al. Antimicrobial susceptibility of Gram-positive non-urinary isolates to fosfomycin. Int J Antimicrob Agents. 2010;35(5):497–9.CrossRefPubMed
63.
go back to reference González JJ, Andreu A, Grupo de Estudio de Infección Perinatal, Sociedad Espanola de Enfermedades Infecciosas y MicrobiologiaClinica. Susceptibility of vertically transmitted Group B streptococci to antimicrobial agents [in Spanish]. Enferm Infecc Microbiol Clin. 2004;22(5):286–91.CrossRefPubMed González JJ, Andreu A, Grupo de Estudio de Infección Perinatal, Sociedad Espanola de Enfermedades Infecciosas y MicrobiologiaClinica. Susceptibility of vertically transmitted Group B streptococci to antimicrobial agents [in Spanish]. Enferm Infecc Microbiol Clin. 2004;22(5):286–91.CrossRefPubMed
64.
go back to reference Matthews PC, Barrett LK, Warren S, et al. Oral fosfomycin for treatment of urinary tract infection: a retrospective cohort study. BMC Infect Dis. 2016;16(1):556.CrossRefPubMedPubMedCentral Matthews PC, Barrett LK, Warren S, et al. Oral fosfomycin for treatment of urinary tract infection: a retrospective cohort study. BMC Infect Dis. 2016;16(1):556.CrossRefPubMedPubMedCentral
65.
go back to reference Chen YT, Ahmad Murad K, Ng LS, et al. In vitro efficacy of six alternative antibiotics against multidrug resistant Escherichia coli and Klebsiella pneumoniae from urinary tract infections. Ann Acad Med Singapore. 2016;45(6):245–50.PubMed Chen YT, Ahmad Murad K, Ng LS, et al. In vitro efficacy of six alternative antibiotics against multidrug resistant Escherichia coli and Klebsiella pneumoniae from urinary tract infections. Ann Acad Med Singapore. 2016;45(6):245–50.PubMed
66.
go back to reference Ranjan A, Shaik S, Mondal A, et al. Molecular epidemiology and genome dynamics of New Delhi metallo-β-lactamase-producing extraintestinal pathogenic Escherichia coli strains from India. Antimicrob Agents Chemother. 2016;60(11):6795–805.CrossRefPubMedPubMedCentral Ranjan A, Shaik S, Mondal A, et al. Molecular epidemiology and genome dynamics of New Delhi metallo-β-lactamase-producing extraintestinal pathogenic Escherichia coli strains from India. Antimicrob Agents Chemother. 2016;60(11):6795–805.CrossRefPubMedPubMedCentral
67.
go back to reference Sahni RD, Balaji V, Varghese R, et al. Evaluation of fosfomycin activity against uropathogens in a fosfomycin-naive population in South India: a prospective study. Future Microbiol. 2013;8(5):67580.CrossRef Sahni RD, Balaji V, Varghese R, et al. Evaluation of fosfomycin activity against uropathogens in a fosfomycin-naive population in South India: a prospective study. Future Microbiol. 2013;8(5):67580.CrossRef
68.
go back to reference Cheng A, Liu C, Tsai H, et al. Bacteremia caused by Pantoea agglomerans at a medical center in Taiwan, 2000–2010. J Microbiol Immunol Infect. 2013;46(3):187–94.CrossRefPubMed Cheng A, Liu C, Tsai H, et al. Bacteremia caused by Pantoea agglomerans at a medical center in Taiwan, 2000–2010. J Microbiol Immunol Infect. 2013;46(3):187–94.CrossRefPubMed
69.
go back to reference Pogue JM, Marchaim D, Abreu-Lanfranco O, et al. Fosfomycinactivity versus carbapenem-resistant Enterobacteriaceae and vancomycin-resistant Enterococcus, Detroit, 2008–10. J Antibiot. 2013;66(10):625–7.CrossRefPubMed Pogue JM, Marchaim D, Abreu-Lanfranco O, et al. Fosfomycinactivity versus carbapenem-resistant Enterobacteriaceae and vancomycin-resistant Enterococcus, Detroit, 2008–10. J Antibiot. 2013;66(10):625–7.CrossRefPubMed
70.
go back to reference Vanscoy B, Mccauley J, Bhavnani SM, et al. Relationship between fosfomycin exposure and amplification of Escherichia coli subpopulations with reduced susceptibility in a hollow-fiber infection model. Antimicrob Agents Chemother. 2016;60(9):5141–5.CrossRefPubMedPubMedCentral Vanscoy B, Mccauley J, Bhavnani SM, et al. Relationship between fosfomycin exposure and amplification of Escherichia coli subpopulations with reduced susceptibility in a hollow-fiber infection model. Antimicrob Agents Chemother. 2016;60(9):5141–5.CrossRefPubMedPubMedCentral
71.
go back to reference Nilsson AI, Berg OG, Aspevall O, et al. Biological costs and mechanisms of fosfomycin resistance in Escherichia coli. Antimicrob Agents Chemother. 2003;47(9):2850–8.CrossRefPubMedPubMedCentral Nilsson AI, Berg OG, Aspevall O, et al. Biological costs and mechanisms of fosfomycin resistance in Escherichia coli. Antimicrob Agents Chemother. 2003;47(9):2850–8.CrossRefPubMedPubMedCentral
72.
go back to reference Karageorgopoulos DE, Wang R, Yu XH, et al. Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in gram-negative pathogens. J Antimicrob Chemother. 2012;67(2):255–68.CrossRefPubMed Karageorgopoulos DE, Wang R, Yu XH, et al. Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in gram-negative pathogens. J Antimicrob Chemother. 2012;67(2):255–68.CrossRefPubMed
73.
go back to reference Lara N, Cuevas O, Arroyo M, et al. Parallel increase in community use of fosfomycin and resistance to fosfomycin in extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli. J Antimicrob Chemother. 2010;65(11):2459–63.CrossRefPubMed Lara N, Cuevas O, Arroyo M, et al. Parallel increase in community use of fosfomycin and resistance to fosfomycin in extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli. J Antimicrob Chemother. 2010;65(11):2459–63.CrossRefPubMed
74.
go back to reference Rodríguez-Avial I, Pena I, Picazo JJ, et al. In vitro activity of the next-generation aminoglycoside plazomicin alone and in combination with colistin, meropenem, fosfomycin or tigecycline against carbapenemase-producing Enterobacteriaceae strains. Int J Antimicrob Agents. 2015;46(6):616–21.CrossRefPubMed Rodríguez-Avial I, Pena I, Picazo JJ, et al. In vitro activity of the next-generation aminoglycoside plazomicin alone and in combination with colistin, meropenem, fosfomycin or tigecycline against carbapenemase-producing Enterobacteriaceae strains. Int J Antimicrob Agents. 2015;46(6):616–21.CrossRefPubMed
75.
go back to reference Walsh CC, Landersdorfer CB, McIntosh MP, et al. Clinically relevant concentrations of fosfomycin combined with polymyxin B, tobramycin or ciprofloxacin enhance bacterial killing of Pseudomonas aeruginosa, but do not suppress the emergence of fosfomycin resistance. J Antimicrob Chemother. 2016;71(8):2218–29.CrossRefPubMed Walsh CC, Landersdorfer CB, McIntosh MP, et al. Clinically relevant concentrations of fosfomycin combined with polymyxin B, tobramycin or ciprofloxacin enhance bacterial killing of Pseudomonas aeruginosa, but do not suppress the emergence of fosfomycin resistance. J Antimicrob Chemother. 2016;71(8):2218–29.CrossRefPubMed
76.
go back to reference Sime FB, Johnson A, Whalley S, et al. Pharmacodynamics of aerosolized fosfomycin and amikacin against resistant clinical isolates of Pseudomonas aeruginosa and Klebsiella pneumoniae in a hollow-fiber infection model: experimental basis for combination therapy. Antimicrob Agents Chemother. 2016;61(1):pii: e01763–16. Sime FB, Johnson A, Whalley S, et al. Pharmacodynamics of aerosolized fosfomycin and amikacin against resistant clinical isolates of Pseudomonas aeruginosa and Klebsiella pneumoniae in a hollow-fiber infection model: experimental basis for combination therapy. Antimicrob Agents Chemother. 2016;61(1):pii: e01763–16.
77.
go back to reference De Man P, Verhoeven BA, Verbrugh HA, et al. An antibiotic policy to prevent emergence of resistant bacilli. Lancet. 2000;355(9208):973–8.CrossRefPubMed De Man P, Verhoeven BA, Verbrugh HA, et al. An antibiotic policy to prevent emergence of resistant bacilli. Lancet. 2000;355(9208):973–8.CrossRefPubMed
Metadata
Title
The Potential Role of Fosfomycin in Neonatal Sepsis Caused by Multidrug-Resistant Bacteria
Authors
Grace Li
Joseph F. Standing
Julia Bielicki
William Hope
John van den Anker
Paul T. Heath
Mike Sharland
Publication date
01-06-2017
Publisher
Springer International Publishing
Published in
Drugs / Issue 9/2017
Print ISSN: 0012-6667
Electronic ISSN: 1179-1950
DOI
https://doi.org/10.1007/s40265-017-0745-x

Other articles of this Issue 9/2017

Drugs 9/2017 Go to the issue