Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2020

Open Access 01-12-2020 | Research article

The Porphyromonas gingivalis inhibitory effects, antioxidant effects and the safety of a Sri Lankan traditional betel quid - an in vitro study

Authors: Madhavi Priyanka Paranagama, Nadisha Sewwandi Piyarathne, Tharanga Lakmali Nandasena, Sumedha Jayatilake, Ayanthi Navaratne, Bandula Prasanna Galhena, Senani Williams, Jayantha Rajapakse, Kiyoshi Kita

Published in: BMC Complementary Medicine and Therapies | Issue 1/2020

Login to get access

Abstract

Background

The Sri Lankan traditional betel quid (TBQ) which had been extensively used in the country before its colonization is claimed to have antiperiodontopathic effects in the Sri Lankan folklore. However, there is no reported scientific evidence to support the claimed antiperiodontopathic effects mediated by this TBQ. The present study was carried out to investigate the protective effect of the Sri Lankan TBQ in the pathogenesis of periodontitis.

Methods

We investigate the ethyl acetate extract of the Sri Lankan TBQ for its antibacterial effects against the keystone periodontopathic bacterium, P. gingivalis and also its antioxidant potential, which is important to protect the periodontium from oxidative stress. Further, its safety was analyzed using the cytokinesis block micronucleus assay on human peripheral blood lymphocytes (PBLs).

Results

Ethyl acetate extract of this TBQ inhibited the growth of P. gingivalis with a minimum bactericidal concentration (MBC) of 125 μg/ml. It was found to be a rich source of polyphenols and displayed considerable DPPH and ABTS radical scavenging activities and a strong ferric reducing antioxidant power. This extract could protect the cultured human gingival fibroblasts from H2O2 induced oxidative stress. In addition, this TBQ extract was not genotoxic to human PBLs even at a concentration of 2.5 mg/ml. Moreover, it exhibited protective effects against bleomycin induced genotoxicity in PBLs.

Conclusion

Ethyl acetate extract of the Sri Lankan TBQ is a source of natural antibacterial compounds against P. gingivalis. It is also a source of natural antioxidants which can protect human gingival fibroblasts from H2O2 induced oxidative stress. These properties of the TBQ may have contributed to its claimed antiperiodontopathic effects. Besides, it was found to be relatively non-toxic to human cells. Thus this TBQ extract has a huge potential to be developed as a novel adjunctive therapeutic lead against periodontitis.
Literature
1.
go back to reference Kassebaum NJ, Smith AGC, Bernabé E, Fleming TD, Reynolds AE, Vos T, Murray CJL. Marcenes W; GBD 2015 Oral health collaborators. Global, regional, and National Prevalence, incidence, and disability-adjusted life years for Oral conditions for 195 countries, 1990-2015: a systematic analysis for the global burden of diseases, injuries, and risk factors. J Dent Res. 2017;96(4):380–7.PubMed Kassebaum NJ, Smith AGC, Bernabé E, Fleming TD, Reynolds AE, Vos T, Murray CJL. Marcenes W; GBD 2015 Oral health collaborators. Global, regional, and National Prevalence, incidence, and disability-adjusted life years for Oral conditions for 195 countries, 1990-2015: a systematic analysis for the global burden of diseases, injuries, and risk factors. J Dent Res. 2017;96(4):380–7.PubMed
2.
go back to reference Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet. 2005;366(9499):1809–20.PubMed Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet. 2005;366(9499):1809–20.PubMed
3.
go back to reference Belinga LEE, Ngan WB, Lemougoum D, Nlo'o ASPE, Bongue B, Ngono A, Mandengue SH, Sembene M. Association between periodontal diseases and cardiovascular diseases in Cameroon. J Public Health Africa. 2018;9(1):761. Belinga LEE, Ngan WB, Lemougoum D, Nlo'o ASPE, Bongue B, Ngono A, Mandengue SH, Sembene M. Association between periodontal diseases and cardiovascular diseases in Cameroon. J Public Health Africa. 2018;9(1):761.
5.
go back to reference Araújo VMA, Melo IM, and Lima V. Relationship between periodontitis and rheumatoid arthritis: review of the literature. Mediat Inflamm 2015. doi.10.1155/2015/259074. Araújo VMA, Melo IM, and Lima V. Relationship between periodontitis and rheumatoid arthritis: review of the literature. Mediat Inflamm 2015. doi.10.1155/2015/259074.
7.
go back to reference Cardoso EM, Reis C, Manzanares-Cespedes MC. Chronic periodontitis, inflammatory cytokines, and interrelationship with other chronic diseases. J Postgrad Med. 2018;130(1):98–104. Cardoso EM, Reis C, Manzanares-Cespedes MC. Chronic periodontitis, inflammatory cytokines, and interrelationship with other chronic diseases. J Postgrad Med. 2018;130(1):98–104.
8.
go back to reference Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the "red complex", a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000. 2005;38:72–122. Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the "red complex", a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000. 2005;38:72–122.
9.
10.
go back to reference Rafiei M, Kiani F, Sayehmiri K, Sayehmiri F, Tavirani M, Dousti M, et al. Prevalence of anaerobic Bacteria (P. gingivalis) as major microbial agent in the incidence periodontal diseases by meta-analysis. J Dent. 2018;19(3):232–42. Rafiei M, Kiani F, Sayehmiri K, Sayehmiri F, Tavirani M, Dousti M, et al. Prevalence of anaerobic Bacteria (P. gingivalis) as major microbial agent in the incidence periodontal diseases by meta-analysis. J Dent. 2018;19(3):232–42.
11.
go back to reference Hajishengallis G, Lamont RJ. Breaking bad: manipulation of the host response by Porphyromonas gingivalis. Eur J Immunol. 2014;44(2):328–38.PubMedPubMedCentral Hajishengallis G, Lamont RJ. Breaking bad: manipulation of the host response by Porphyromonas gingivalis. Eur J Immunol. 2014;44(2):328–38.PubMedPubMedCentral
12.
go back to reference Bostanci N, Belibasakis GN. Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett. 2012;333(1):1–9.PubMed Bostanci N, Belibasakis GN. Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett. 2012;333(1):1–9.PubMed
13.
go back to reference Scott DA, Krauss J. Neutrophils in periodontal inflammation. Front Oral Biol. 2012;15:56–83.PubMed Scott DA, Krauss J. Neutrophils in periodontal inflammation. Front Oral Biol. 2012;15:56–83.PubMed
14.
go back to reference Chapple IL, Matthews JB. The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontol 2000. 2007;43:160–232. Chapple IL, Matthews JB. The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontol 2000. 2007;43:160–232.
15.
go back to reference Wang Y, Andrukhov O, Rausch-Fan X. Oxidative stress and antioxidant system in periodontitis. Front Physiol. 2017;8:910.PubMedPubMedCentral Wang Y, Andrukhov O, Rausch-Fan X. Oxidative stress and antioxidant system in periodontitis. Front Physiol. 2017;8:910.PubMedPubMedCentral
16.
go back to reference Sharma S, Khan IA, Ali I, Ali F, Kumar M, Kumar A, et al. Evaluation of the antimicrobial, antioxidant, and anti-inflammatory activities of Hydroxychavicol for its potential use as an Oral care agent. Antimicrob Agents Chemother. 2009;53(1):216–22.PubMed Sharma S, Khan IA, Ali I, Ali F, Kumar M, Kumar A, et al. Evaluation of the antimicrobial, antioxidant, and anti-inflammatory activities of Hydroxychavicol for its potential use as an Oral care agent. Antimicrob Agents Chemother. 2009;53(1):216–22.PubMed
17.
go back to reference Hung YT, Hou LT, Wong MY. The effects of areca nut extract and nicotine on selected periodontal pathogens; in vitro study. Chin Dent J. 2005;24(2):101–6. Hung YT, Hou LT, Wong MY. The effects of areca nut extract and nicotine on selected periodontal pathogens; in vitro study. Chin Dent J. 2005;24(2):101–6.
18.
go back to reference Cai L. Compounds from Syzygium aromaticum possessing growth inhibitory activity against Oral pathogens. J Nat Prod. 1996;59(10):987–90.PubMed Cai L. Compounds from Syzygium aromaticum possessing growth inhibitory activity against Oral pathogens. J Nat Prod. 1996;59(10):987–90.PubMed
19.
go back to reference Zhang Y, Wang Y, Zhu X, Cao P, Wei S, Lu Y. Antibacterial and antibiofilm activities of eugenol from essential oil of Syzygium aromaticum (L.) Merr. & L. M. Perry (clove) leaf against periodontal pathogen Porphyromonas gingivalis. Microb Pathog. 2017;113:396–402.PubMed Zhang Y, Wang Y, Zhu X, Cao P, Wei S, Lu Y. Antibacterial and antibiofilm activities of eugenol from essential oil of Syzygium aromaticum (L.) Merr. & L. M. Perry (clove) leaf against periodontal pathogen Porphyromonas gingivalis. Microb Pathog. 2017;113:396–402.PubMed
20.
go back to reference Shafiei Z, Shuhairi NN, Md Fazly Shah Yap N, Harry Sibungkil C-A, Latip J. Antibacterial Activity of Myristica fragrans against Oral Pathogens. Evid Based Complement Alternat Med. 2012; 7. Shafiei Z, Shuhairi NN, Md Fazly Shah Yap N, Harry Sibungkil C-A, Latip J. Antibacterial Activity of Myristica fragrans against Oral Pathogens. Evid Based Complement Alternat Med. 2012; 7.
21.
go back to reference Nanasombat S, Kuncharoen N, Ritcharoon B, Sukcharoen P. Antibacterial activity of thai medicinal plant extracts against oral and gastrointestinal pathogenic bacteria and prebiotic effect on the growth of lactobacillus acidophilus. J Med Assoc Thail. 2018:33–44. Nanasombat S, Kuncharoen N, Ritcharoon B, Sukcharoen P. Antibacterial activity of thai medicinal plant extracts against oral and gastrointestinal pathogenic bacteria and prebiotic effect on the growth of lactobacillus acidophilus. J Med Assoc Thail. 2018:33–44.
22.
go back to reference Bersan SM, Galvao LC, Goes VF, Sartoratto A, Figueira GM, Rehder VL, et al. Action of essential oils from Brazilian native and exotic medicinal species on oral biofilms. BMC Complement Altern Med. 2014;14:451.PubMedPubMedCentral Bersan SM, Galvao LC, Goes VF, Sartoratto A, Figueira GM, Rehder VL, et al. Action of essential oils from Brazilian native and exotic medicinal species on oral biofilms. BMC Complement Altern Med. 2014;14:451.PubMedPubMedCentral
23.
go back to reference Zhou X, Sai WS, Dennis C, Hosen K, Valentina RN, Kelvin C, Alan B. Synergistic effects of Chinese herbal medicine: a comprehensive review of methodology and current research. Front Pharmacol. 2016;201. Zhou X, Sai WS, Dennis C, Hosen K, Valentina RN, Kelvin C, Alan B. Synergistic effects of Chinese herbal medicine: a comprehensive review of methodology and current research. Front Pharmacol. 2016;201.
24.
go back to reference Arambewela L, Arawwawala M, Rajapaksa D. Piper betle: a potential natural antioxidant. Int J Food Sci Technol. 2006;41(1):10–4. Arambewela L, Arawwawala M, Rajapaksa D. Piper betle: a potential natural antioxidant. Int J Food Sci Technol. 2006;41(1):10–4.
25.
go back to reference Chavan YV, Singhal RS. Separation of polyphenols and Arecoline from Areca nut (Areca Catechu L.) by solvent extraction, its anti oxidant activity, and identification of polyphenols. J Sci Food Agric. 2013;93(10):2580–9.PubMed Chavan YV, Singhal RS. Separation of polyphenols and Arecoline from Areca nut (Areca Catechu L.) by solvent extraction, its anti oxidant activity, and identification of polyphenols. J Sci Food Agric. 2013;93(10):2580–9.PubMed
26.
go back to reference Rojas C, Francisco D, Souza CRF, Oliveira VP. Clove (Syzygium aromaticum): a precious spice. Asian Pac J Trop Biomed. 2014;2:90–6. Rojas C, Francisco D, Souza CRF, Oliveira VP. Clove (Syzygium aromaticum): a precious spice. Asian Pac J Trop Biomed. 2014;2:90–6.
27.
go back to reference Deepa B, Anuradha CV. Antioxidant potential of Coriandrum sativum L. Seed Extract Indian J Exp Biol. 2011;49(1):30–8.PubMed Deepa B, Anuradha CV. Antioxidant potential of Coriandrum sativum L. Seed Extract Indian J Exp Biol. 2011;49(1):30–8.PubMed
28.
go back to reference Sahoo S, Reena P, Sikha S, Rabindra NP, Nayak S. Evaluation of yield, quality and antioxidant activity of essential oil of in vitro propagated Kaempferia galanga Linn. J Acute Dis. 2014;3(2):124–30. Sahoo S, Reena P, Sikha S, Rabindra NP, Nayak S. Evaluation of yield, quality and antioxidant activity of essential oil of in vitro propagated Kaempferia galanga Linn. J Acute Dis. 2014;3(2):124–30.
29.
go back to reference Gupta AD, Vipin KB, Vikash B, Nishi M. Chemistry, antioxidant and antimicrobial potential of nutmeg (Myristica fragrans Houtt). J Genet Eng Biotechnol. 2013;11(1):25–31. Gupta AD, Vipin KB, Vikash B, Nishi M. Chemistry, antioxidant and antimicrobial potential of nutmeg (Myristica fragrans Houtt). J Genet Eng Biotechnol. 2013;11(1):25–31.
30.
go back to reference Singh G, Shashi K, Palanisamy M, Valery I, Vera V. Antioxidant and antimicrobial activities of essential oil and various oleoresins of Elettaria cardamomum (seeds and pods). J Sci Food Agric. 2008;88(2):280–9. Singh G, Shashi K, Palanisamy M, Valery I, Vera V. Antioxidant and antimicrobial activities of essential oil and various oleoresins of Elettaria cardamomum (seeds and pods). J Sci Food Agric. 2008;88(2):280–9.
31.
go back to reference Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727–47.PubMed Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727–47.PubMed
32.
go back to reference Terao J. I4 factors affecting bioavailability of plant polyphenols. Biochem Pharmacol. 2017;139:105–6. Terao J. I4 factors affecting bioavailability of plant polyphenols. Biochem Pharmacol. 2017;139:105–6.
33.
go back to reference Madduluri S, Babu Rao K, Sitaram B. In vitro evaluation of antibacterial activity of five indigenous plants extract against five bacterial pathogens of human. Int J Pharm Pharm Sci. 2013;5:679–84. Madduluri S, Babu Rao K, Sitaram B. In vitro evaluation of antibacterial activity of five indigenous plants extract against five bacterial pathogens of human. Int J Pharm Pharm Sci. 2013;5:679–84.
34.
go back to reference Gamboa F, Muñoz CC, Numpaque G, Sequeda-Castañeda LG, Gutierrez SJ, and Tellez N. Antimicrobial Activity of Piper marginatum Jacq and Ilex guayusa Loes on Microorganisms Associated with Periodontal Disease. Int. J. Microbiol.2018:1–9. doi.org/10.1155/2018/4147383. Gamboa F, Muñoz CC, Numpaque G, Sequeda-Castañeda LG, Gutierrez SJ, and Tellez N. Antimicrobial Activity of Piper marginatum Jacq and Ilex guayusa Loes on Microorganisms Associated with Periodontal Disease. Int. J. Microbiol.2018:1–9. doi.org/10.1155/2018/4147383.
35.
go back to reference CLSI, Methods for Determining Bactericidal Activity of Antimicrobial Agents. Approved Guideline, CLSI document M26-A. 1998. Clinical and Laboratory Standards Institute, 950 West Valley Roadn Suite 2500,Wayne, Pennsylvania 19087, USA.. CLSI, Methods for Determining Bactericidal Activity of Antimicrobial Agents. Approved Guideline, CLSI document M26-A. 1998. Clinical and Laboratory Standards Institute, 950 West Valley Roadn Suite 2500,Wayne, Pennsylvania 19087, USA..
36.
go back to reference Singleton VL, Rossi JA. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic acid reagents. Am J Enol Vitic. 1965;16(3):144–58. Singleton VL, Rossi JA. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic acid reagents. Am J Enol Vitic. 1965;16(3):144–58.
37.
go back to reference Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. Food Sci Technol. 1995;28(1):25–30. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. Food Sci Technol. 1995;28(1):25–30.
38.
go back to reference Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical Cation Decolorization assay. Free Radic Biol Med. 1999;26(9–10):1231–7.PubMed Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical Cation Decolorization assay. Free Radic Biol Med. 1999;26(9–10):1231–7.PubMed
39.
go back to reference Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the Frap assay. Anal Biochem. 1996;239(1):70–6.PubMed Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the Frap assay. Anal Biochem. 1996;239(1):70–6.PubMed
40.
go back to reference Illeperuma RP, Kim DK, Park YJ, Son HK, Kim JY, Kim J, Lee DY, Kim KY, Jung DW, Tilakaratne WM, Kim J. Areca nut exposure increases secretion of tumor-promoting cytokines in gingival fibroblasts that trigger DNA damage in oral keratinocytes. Int J Cancer. 2015;137(11):2545–57.PubMedPubMedCentral Illeperuma RP, Kim DK, Park YJ, Son HK, Kim JY, Kim J, Lee DY, Kim KY, Jung DW, Tilakaratne WM, Kim J. Areca nut exposure increases secretion of tumor-promoting cytokines in gingival fibroblasts that trigger DNA damage in oral keratinocytes. Int J Cancer. 2015;137(11):2545–57.PubMedPubMedCentral
41.
go back to reference van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237–45.PubMed van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237–45.PubMed
42.
go back to reference Nur Sazwi N, Nalina T, Rahim ZHA. Antioxidant and cytoprotective activities of Piper betle, Areca catechu, Uncaria gambir and betel quid with and without calcium hydroxide. BMC Complement Altern Med. 2013;13(1):351.PubMedCentral Nur Sazwi N, Nalina T, Rahim ZHA. Antioxidant and cytoprotective activities of Piper betle, Areca catechu, Uncaria gambir and betel quid with and without calcium hydroxide. BMC Complement Altern Med. 2013;13(1):351.PubMedCentral
43.
go back to reference Fenech M. Cytokinesis-block micronucleus Cytome assay. Nat Protoc. 2007;2(5):1084–104.PubMed Fenech M. Cytokinesis-block micronucleus Cytome assay. Nat Protoc. 2007;2(5):1084–104.PubMed
44.
go back to reference U.S. Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Guidance for Industry S2 (R1) Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use. 2012. U.S. Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Guidance for Industry S2 (R1) Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use. 2012.
45.
go back to reference Iwaki K, Koya-Miyata S, Kohno K, Ushio S, Fukuda S. Antimicrobial activity of Polygonum tinctorium Lour: extract against oral pathogenic bacteria. Nat Med. 2006;60:121–5. Iwaki K, Koya-Miyata S, Kohno K, Ushio S, Fukuda S. Antimicrobial activity of Polygonum tinctorium Lour: extract against oral pathogenic bacteria. Nat Med. 2006;60:121–5.
46.
go back to reference Mohieldin EAM, Muddathir AM, Mitsunaga T. Inhibitory activities of selected Sudanese medicinal plants on Porphyromonas gingivalis and matrix metalloproteinase-9 and isolation of bioactive compounds from Combretum hartmannianum (Schweinf) bark. BMC Complement Altern Med. 2017;17(1):224.PubMedPubMedCentral Mohieldin EAM, Muddathir AM, Mitsunaga T. Inhibitory activities of selected Sudanese medicinal plants on Porphyromonas gingivalis and matrix metalloproteinase-9 and isolation of bioactive compounds from Combretum hartmannianum (Schweinf) bark. BMC Complement Altern Med. 2017;17(1):224.PubMedPubMedCentral
47.
go back to reference Patra JK, Kim ES, Oh K, Kim H-J, Kim Y, Baek K-H. Antibacterial effect of crude extract and metabolites of Phytolacca americana on pathogens responsible for periodontal inflammatory diseases and dental caries. BMC Complement Altern Med. 2014;14:343-. Patra JK, Kim ES, Oh K, Kim H-J, Kim Y, Baek K-H. Antibacterial effect of crude extract and metabolites of Phytolacca americana on pathogens responsible for periodontal inflammatory diseases and dental caries. BMC Complement Altern Med. 2014;14:343-.
48.
go back to reference Araghizadeh A, Kohanteb J, Fani MM. Inhibitory activity of green tea (Camellia sinensis) extract on some clinically isolated cariogenic and Periodontopathic Bacteria. Med Prin Pract. 2013;22(4):368–72. Araghizadeh A, Kohanteb J, Fani MM. Inhibitory activity of green tea (Camellia sinensis) extract on some clinically isolated cariogenic and Periodontopathic Bacteria. Med Prin Pract. 2013;22(4):368–72.
49.
go back to reference Shetty S, Thomas B, Shetty V, Bhandary R, Shetty RM. An in-vitro evaluation of the efficacy of garlic extract as an antimicrobial agent on periodontal pathogens: a microbiological study. Ayu. 2013;34(4):445–51.PubMedPubMedCentral Shetty S, Thomas B, Shetty V, Bhandary R, Shetty RM. An in-vitro evaluation of the efficacy of garlic extract as an antimicrobial agent on periodontal pathogens: a microbiological study. Ayu. 2013;34(4):445–51.PubMedPubMedCentral
50.
go back to reference Herrera Herrera A, Franco Ospina L, Fang L, Díaz Caballero A. Susceptibility of Porphyromonas gingivalis and Streptococcus mutans to Antibacterial Effect from Mammea americana. Adv Pharmacol Sci. 2014; 2014:384815-. Herrera Herrera A, Franco Ospina L, Fang L, Díaz Caballero A. Susceptibility of Porphyromonas gingivalis and Streptococcus mutans to Antibacterial Effect from Mammea americana. Adv Pharmacol Sci. 2014; 2014:384815-.
51.
go back to reference Gao Y, Zhang X, Yin J, Du Q, Tu Y, Shi J, et al. Castanopsis lamontii water extract shows potential in suppressing pathogens, lipopolysaccharide-induced inflammation and oxidative stress-induced cell injury. Molecules. 2019;24(2):273.PubMedCentral Gao Y, Zhang X, Yin J, Du Q, Tu Y, Shi J, et al. Castanopsis lamontii water extract shows potential in suppressing pathogens, lipopolysaccharide-induced inflammation and oxidative stress-induced cell injury. Molecules. 2019;24(2):273.PubMedCentral
52.
go back to reference Kohli D, Hugar S, Bhat K, Shah P, Mundada M, Badakar C. Comparative evaluation of the antimicrobial susceptibility and cytotoxicity of husk extract of Cocos nucifera and chlorhexidine as irrigating solutions against Enterococcus Faecalis, Prevotella Intermedia and Porphyromonas Gingivalis – An in-vitro study. J Indian Soc Pedod Prev Dent. 2018;36:142.PubMed Kohli D, Hugar S, Bhat K, Shah P, Mundada M, Badakar C. Comparative evaluation of the antimicrobial susceptibility and cytotoxicity of husk extract of Cocos nucifera and chlorhexidine as irrigating solutions against Enterococcus Faecalis, Prevotella Intermedia and Porphyromonas Gingivalis – An in-vitro study. J Indian Soc Pedod Prev Dent. 2018;36:142.PubMed
53.
go back to reference Kasote DM, Katyare SS, Hegde MV, Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci. 2015;11(8):982–91.PubMedPubMedCentral Kasote DM, Katyare SS, Hegde MV, Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci. 2015;11(8):982–91.PubMedPubMedCentral
54.
go back to reference Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J. 2013;21(2):143–52.PubMed Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J. 2013;21(2):143–52.PubMed
55.
go back to reference Hwang KA, Hwang YJ, Song J. Antioxidant activities and oxidative stress inhibitory effects of ethanol extracts from Cornus officinalis on raw 264.7 cells. BMC Complement Altern Med. 2016; 16:196-. Hwang KA, Hwang YJ, Song J. Antioxidant activities and oxidative stress inhibitory effects of ethanol extracts from Cornus officinalis on raw 264.7 cells. BMC Complement Altern Med. 2016; 16:196-.
56.
go back to reference Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev. 2009;2(5):270–8. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev. 2009;2(5):270–8.
57.
go back to reference Msaada K, Jemia MB, Salem N, Bachrouch O, Sriti J, Tammar S, Bettaieb I, Jabri I, Kefi S, Limam F, Marzouk B. Antioxidant activity of methanolic extracts from three coriander (Coriandrum sativum L.) fruit varieties. Arab J Chem. 2017;10(2):S3176–83. Msaada K, Jemia MB, Salem N, Bachrouch O, Sriti J, Tammar S, Bettaieb I, Jabri I, Kefi S, Limam F, Marzouk B. Antioxidant activity of methanolic extracts from three coriander (Coriandrum sativum L.) fruit varieties. Arab J Chem. 2017;10(2):S3176–83.
58.
go back to reference Sultana S, Ripa FA, Hamid K. Comparative antioxidant activity study of some commonly used spices in Bangladesh. Paki J Biol Sci. 2010;13:340–3. Sultana S, Ripa FA, Hamid K. Comparative antioxidant activity study of some commonly used spices in Bangladesh. Paki J Biol Sci. 2010;13:340–3.
59.
go back to reference Tuekaew J, Siriwatanametanon N, Wongkrajang Y, Temsiririrkkul R, Jantan I. Evaluation of the antioxidant activities of Ya-hom Intajak, a Thai herbal formulation, and its component plants. Trop J Pharm Res. 2014;13(9):1477–85. Tuekaew J, Siriwatanametanon N, Wongkrajang Y, Temsiririrkkul R, Jantan I. Evaluation of the antioxidant activities of Ya-hom Intajak, a Thai herbal formulation, and its component plants. Trop J Pharm Res. 2014;13(9):1477–85.
60.
go back to reference Chan E, Lim Y, Wong LF, Lianto FS, Wong SK, Lim KK, Joe CE, Lim TY. Antioxidant and Tyrosinase inhibition properties of leaves and rhizomes of ginger species. Food Chem. 2008;109:477–83. Chan E, Lim Y, Wong LF, Lianto FS, Wong SK, Lim KK, Joe CE, Lim TY. Antioxidant and Tyrosinase inhibition properties of leaves and rhizomes of ginger species. Food Chem. 2008;109:477–83.
61.
go back to reference Burger RM. Cleavage of nucleic acids by Bleomycin. Chem Rev. 1998;98(3):1153–70.PubMed Burger RM. Cleavage of nucleic acids by Bleomycin. Chem Rev. 1998;98(3):1153–70.PubMed
63.
go back to reference Galhena BP, Samarakoon SSR, Thabrew MI, Solomon FDP, Perumal V, and Mani C. Protective Effect of a Polyherbal Aqueous Extract Comprised of Nigella sativa (Seeds), Hemidesmus indicus (Roots), and Smilax glabra (Rhizome) on Bleomycin Induced Cytogenetic Damage in Human Lymphocytes. BioMed Res Int. 2017; doi. /10.1155/2017/1856713. Galhena BP, Samarakoon SSR, Thabrew MI, Solomon FDP, Perumal V, and Mani C. Protective Effect of a Polyherbal Aqueous Extract Comprised of Nigella sativa (Seeds), Hemidesmus indicus (Roots), and Smilax glabra (Rhizome) on Bleomycin Induced Cytogenetic Damage in Human Lymphocytes. BioMed Res Int. 2017; doi. /10.1155/2017/1856713.
64.
go back to reference Shirname LP, Menon MM, Bhide SV. Mutagenicity of betel quid and its ingredients using mammalian test systems. Carcinogenesis. 1984;5(4):501–3.4.PubMed Shirname LP, Menon MM, Bhide SV. Mutagenicity of betel quid and its ingredients using mammalian test systems. Carcinogenesis. 1984;5(4):501–3.4.PubMed
65.
go back to reference Chen PH, Mahmood Q, Mariottini GL, Chiang TA, Lee KW. Adverse Health Effects of Betel Quid and the Risk of Oral and Pharyngeal Cancers. BioMed Res Int. 2017; doi.org/10.1155/2017/3904098. Chen PH, Mahmood Q, Mariottini GL, Chiang TA, Lee KW. Adverse Health Effects of Betel Quid and the Risk of Oral and Pharyngeal Cancers. BioMed Res Int. 2017; doi.org/10.1155/2017/3904098.
66.
go back to reference Chiba I. Prevention of betel quid chewers’ Oral Cancer in the Asian-Pacific area. Asian Pac J Cancer Prev. 2001;2:263–9.PubMed Chiba I. Prevention of betel quid chewers’ Oral Cancer in the Asian-Pacific area. Asian Pac J Cancer Prev. 2001;2:263–9.PubMed
67.
go back to reference Lee CH, Ko AM, Warnakulasuriya S, Yin BL. Sunarjo, Zain RB, Ibrahim SO, Liu ZW, Li WH, Zhang SS, Kuntoro, Utomo B, Rajapakse PS, Warusavithana SA, Razak, IA, Abdullah N, Shrestha P, Kwan AL, Shieh TY, Chen MK. Ko YC. Et al. Intercountry prevalences and practices of betel-quid use in south, southeast and eastern Asia regions and associated oral preneoplastic disorders: an international collaborative study by Asian betel-quid consortium of south and East Asia. Int J Cancer. 2011;129(7):1741–51.PubMed Lee CH, Ko AM, Warnakulasuriya S, Yin BL. Sunarjo, Zain RB, Ibrahim SO, Liu ZW, Li WH, Zhang SS, Kuntoro, Utomo B, Rajapakse PS, Warusavithana SA, Razak, IA, Abdullah N, Shrestha P, Kwan AL, Shieh TY, Chen MK. Ko YC. Et al. Intercountry prevalences and practices of betel-quid use in south, southeast and eastern Asia regions and associated oral preneoplastic disorders: an international collaborative study by Asian betel-quid consortium of south and East Asia. Int J Cancer. 2011;129(7):1741–51.PubMed
68.
go back to reference IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines. IARC Monogr. Eval Carcinog Risks Hum. 2004, 85, 1–334. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines. IARC Monogr. Eval Carcinog Risks Hum. 2004, 85, 1–334.
69.
go back to reference Thomas SJ, MacLennan R. Slaked lime and betel nut cancer in Papua New Guinea. Lancet. 1992;340(8819):577–8.PubMed Thomas SJ, MacLennan R. Slaked lime and betel nut cancer in Papua New Guinea. Lancet. 1992;340(8819):577–8.PubMed
70.
go back to reference Nair UJ, Obe G, Friesen M, Goldberg MT, Bartsch H. Role of lime in the generation of reactive oxygen species from betel-quid ingredients. Environ Health Perspect. 1992;98:203–5.PubMedPubMedCentral Nair UJ, Obe G, Friesen M, Goldberg MT, Bartsch H. Role of lime in the generation of reactive oxygen species from betel-quid ingredients. Environ Health Perspect. 1992;98:203–5.PubMedPubMedCentral
71.
go back to reference Amarasinghe HK, Usgodaarachchi US, Johnson NW, Lalloo R, Warnakulasuriya S. Betel-quid chewing with or without tobacco is a major risk factor for oral potentially malignant disorders in Sri Lanka: a case-control study. Oral Oncol. 2010;46(4):297–301.PubMed Amarasinghe HK, Usgodaarachchi US, Johnson NW, Lalloo R, Warnakulasuriya S. Betel-quid chewing with or without tobacco is a major risk factor for oral potentially malignant disorders in Sri Lanka: a case-control study. Oral Oncol. 2010;46(4):297–301.PubMed
72.
go back to reference Li YC, Cheng AJ, Lee LY, Huang YC, Chang JTC. Multifaceted mechanisms of Areca nuts in Oral carcinogenesis: the molecular pathology from precancerous condition to malignant transformation. J Cancer. 2019;10(17):4054–62.PubMedPubMedCentral Li YC, Cheng AJ, Lee LY, Huang YC, Chang JTC. Multifaceted mechanisms of Areca nuts in Oral carcinogenesis: the molecular pathology from precancerous condition to malignant transformation. J Cancer. 2019;10(17):4054–62.PubMedPubMedCentral
73.
go back to reference Lu CT, Yen YY, Ho CS, Ko YC, Tsai CC, Hsieh CC, et al. A case-control study of oral cancer in Changhua County. Taiwan Journal Oral Pathol Med. 1996;25(5):245–8. Lu CT, Yen YY, Ho CS, Ko YC, Tsai CC, Hsieh CC, et al. A case-control study of oral cancer in Changhua County. Taiwan Journal Oral Pathol Med. 1996;25(5):245–8.
74.
go back to reference Jeong SJ, Kim OS, Yoo SR, Seo CS, Kim Y, Shin HK. Anti-inflammatory and antioxidant activity of the traditional herbal formula Gwakhyangjeonggi-san via enhancement of heme oxygenase-1 expression in RAW264.7 macrophages. Mol Med Rep. 2016;13(5):4365–71.PubMed Jeong SJ, Kim OS, Yoo SR, Seo CS, Kim Y, Shin HK. Anti-inflammatory and antioxidant activity of the traditional herbal formula Gwakhyangjeonggi-san via enhancement of heme oxygenase-1 expression in RAW264.7 macrophages. Mol Med Rep. 2016;13(5):4365–71.PubMed
75.
go back to reference Liu YJ, Peng W, Hu MB, Xu M, Wu CJ. The pharmacology, toxicology and potential applications of arecoline: a review. Pharm Biol. 2016;54(11):2753–60.PubMed Liu YJ, Peng W, Hu MB, Xu M, Wu CJ. The pharmacology, toxicology and potential applications of arecoline: a review. Pharm Biol. 2016;54(11):2753–60.PubMed
76.
go back to reference Peng W, Liu YJ, Hu MB, Yan D, Gao YX, Wu CJ. Using the “target constituent removal combined with bioactivity assay” strategy to investigate the optimum arecoline content in charred areca nut. Sci Rep. 2017;7(1):40278.PubMedPubMedCentral Peng W, Liu YJ, Hu MB, Yan D, Gao YX, Wu CJ. Using the “target constituent removal combined with bioactivity assay” strategy to investigate the optimum arecoline content in charred areca nut. Sci Rep. 2017;7(1):40278.PubMedPubMedCentral
77.
go back to reference Cheng HL, Su SJ, Huang LW, Hsieh BS, Hu YC, Hung TC, et al. Arecoline induces HA22T/VGH hepatoma cells to undergo anoikis - involvement of STAT3 and RhoA activation. Mol Cancer. 2010;9(1):126.PubMedPubMedCentral Cheng HL, Su SJ, Huang LW, Hsieh BS, Hu YC, Hung TC, et al. Arecoline induces HA22T/VGH hepatoma cells to undergo anoikis - involvement of STAT3 and RhoA activation. Mol Cancer. 2010;9(1):126.PubMedPubMedCentral
78.
go back to reference Fan J, Lin R, Xia S, Chen D, Elf SE, Liu S, et al. Tetrameric acetyl-CoA Acetyltransferase 1 is important for tumor growth. Mol Cell. 2016;64(5):859–74.PubMedPubMedCentral Fan J, Lin R, Xia S, Chen D, Elf SE, Liu S, et al. Tetrameric acetyl-CoA Acetyltransferase 1 is important for tumor growth. Mol Cell. 2016;64(5):859–74.PubMedPubMedCentral
79.
go back to reference Tariot PN, Cohen RM, Welkowitz JA, Sunderland T, Newhouse PA, Murphy DL, et al. Multiple-dose Arecoline infusions in Alzheimer's disease. Arch Gen Psychiatry. 1988;45(10):901–5.PubMed Tariot PN, Cohen RM, Welkowitz JA, Sunderland T, Newhouse PA, Murphy DL, et al. Multiple-dose Arecoline infusions in Alzheimer's disease. Arch Gen Psychiatry. 1988;45(10):901–5.PubMed
80.
go back to reference Xu Z, Adilijiang A, Wang W, You P, Lin D, Li X, et al. Arecoline attenuates memory impairment and demyelination in a cuprizone-induced mouse model of schizophrenia. Neuroreport. 2019;30(2):134–8.PubMed Xu Z, Adilijiang A, Wang W, You P, Lin D, Li X, et al. Arecoline attenuates memory impairment and demyelination in a cuprizone-induced mouse model of schizophrenia. Neuroreport. 2019;30(2):134–8.PubMed
81.
go back to reference Illeperuma DR, Bandara MK, Kim DDK, Siriwardena PS, Jayasinghe PR, Kim PJ, et al. Antioxidant rich tropical herbs to combat Areca-nut induced OPMDs. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;128(1):e80–e1. Illeperuma DR, Bandara MK, Kim DDK, Siriwardena PS, Jayasinghe PR, Kim PJ, et al. Antioxidant rich tropical herbs to combat Areca-nut induced OPMDs. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;128(1):e80–e1.
82.
go back to reference Zhou J, Sun Q, Yang Z, Zhang J. The hepatotoxicity and testicular toxicity induced by arecoline in mice and protective effects of vitamins C and E. Korean J Physiol Pharmacol. 2014;18(2):143–8.PubMedPubMedCentral Zhou J, Sun Q, Yang Z, Zhang J. The hepatotoxicity and testicular toxicity induced by arecoline in mice and protective effects of vitamins C and E. Korean J Physiol Pharmacol. 2014;18(2):143–8.PubMedPubMedCentral
83.
go back to reference Padma PR, Amonkar AJ, Bhide SV. Antimutagenic effects of betel leaf extract against the mutagenicity of two tobacco-specific N-nitrosamines. Mutagenesis. 1989;4(2):154–6.PubMed Padma PR, Amonkar AJ, Bhide SV. Antimutagenic effects of betel leaf extract against the mutagenicity of two tobacco-specific N-nitrosamines. Mutagenesis. 1989;4(2):154–6.PubMed
84.
go back to reference Dwivedi V, Shrivastava R, Hussain S, Ganguly C, Bharadwaj M. Comparative anticancer potential of clove (Syzygium aromaticum)-an Indian spice against cancer cell lines of various anatomical origin. Asian Pac J Cancer Prev. 2011;12(8):1989–93.PubMed Dwivedi V, Shrivastava R, Hussain S, Ganguly C, Bharadwaj M. Comparative anticancer potential of clove (Syzygium aromaticum)-an Indian spice against cancer cell lines of various anatomical origin. Asian Pac J Cancer Prev. 2011;12(8):1989–93.PubMed
85.
go back to reference Tang EL, Rajarajeswaran J, Fung SY, Kanthimathi MS. Antioxidant activity of Coriandrum sativum and protection against DNA damage and cancer cell migration. BMC Complement Altern Med. 2013;13:347.PubMedPubMedCentral Tang EL, Rajarajeswaran J, Fung SY, Kanthimathi MS. Antioxidant activity of Coriandrum sativum and protection against DNA damage and cancer cell migration. BMC Complement Altern Med. 2013;13:347.PubMedPubMedCentral
86.
go back to reference Elguindy NM, Yacout GA, El Azab EF, Maghraby HK. Chemoprotective effect of Elettaria Cardamomum against chemically induced hepatocellular carcinoma in rats by inhibiting NF-κB, oxidative stress, and activity of ornithine decarboxylase. S Afr J Bot. 2016;105:251–8. Elguindy NM, Yacout GA, El Azab EF, Maghraby HK. Chemoprotective effect of Elettaria Cardamomum against chemically induced hepatocellular carcinoma in rats by inhibiting NF-κB, oxidative stress, and activity of ornithine decarboxylase. S Afr J Bot. 2016;105:251–8.
87.
go back to reference Ichwan SJA, Husin A, Suriyah WH, Lestari W, Omar MN, Kasmuri AR. Anti-neoplastic potential of ethyl-p-methoxycinnamate of Kaempferia galanga on oral cancer cell lines. Materials Today: Proceedings. 2019;16:2115–21. Ichwan SJA, Husin A, Suriyah WH, Lestari W, Omar MN, Kasmuri AR. Anti-neoplastic potential of ethyl-p-methoxycinnamate of Kaempferia galanga on oral cancer cell lines. Materials Today: Proceedings. 2019;16:2115–21.
88.
go back to reference Kim EY, Choi HJ, Park MJ, Jung YS, Lee SO, Kim KJ, et al. Myristica fragrans suppresses tumor growth and metabolism by inhibiting lactate dehydrogenase a. Am J Chinese Med. 2016;44(05):1063–79. Kim EY, Choi HJ, Park MJ, Jung YS, Lee SO, Kim KJ, et al. Myristica fragrans suppresses tumor growth and metabolism by inhibiting lactate dehydrogenase a. Am J Chinese Med. 2016;44(05):1063–79.
Metadata
Title
The Porphyromonas gingivalis inhibitory effects, antioxidant effects and the safety of a Sri Lankan traditional betel quid - an in vitro study
Authors
Madhavi Priyanka Paranagama
Nadisha Sewwandi Piyarathne
Tharanga Lakmali Nandasena
Sumedha Jayatilake
Ayanthi Navaratne
Bandula Prasanna Galhena
Senani Williams
Jayantha Rajapakse
Kiyoshi Kita
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2020
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-020-03048-6

Other articles of this Issue 1/2020

BMC Complementary Medicine and Therapies 1/2020 Go to the issue