Skip to main content
Top
Published in: Cancer Microenvironment 3/2012

01-12-2012 | Review Article

The Plexiform Neurofibroma Microenvironment

Authors: Feng-Chun Yang, Karl Staser, D. Wade Clapp

Published in: Cancer Microenvironment | Issue 3/2012

Login to get access

Abstract

Dynamic interactions between tumorigenic cells and surrounding cells, including immunomodulatory hematopoietic cells, can dictate tumor initiation, progression, and transformation. Hematopoietic-stromal interactions underpin the plexiform neurofibroma, a debilitating tumor arising in individuals afflicted with Neurofibromatosis type 1 (NF1), a common genetic disorder resulting from mutations in the NF1 tumor suppressor gene. At the tissue level, plexiform neurofibromas demonstrate a complex microenvironment composed of Schwann cells, fibroblasts, perineural cells, mast cells, secreted collagen, and blood vessels. At the cellular level, specific interactions between these cells engender tumor initiation and progression. In this microenvironment hypothesis, tumorigenic Schwann cells secrete pathological concentrations of stem cell factor, which recruit c-kit expressing mast cells. In turn, activated mast cells release inflammatory effectors stimulating the tumorigenic Schwann cells and their supporting fibroblasts and blood vessels, thus promoting tumor expansion in a feed-forward loop. Bone marrow transplantation experiments in plexiform neurofibroma mouse models have shown that tumorigenesis requires Nf1 haploinsufficiency in the hematopoietic compartment, suggesting that tumor microenvironments can depend on intricate interactions at both cellular and genetic levels. Overall, our continued understanding of critical tumor-stromal interactions will illuminate novel therapeutic targets, as shown by the first-ever successful medical treatment of a plexiform neurofibroma by targeted inhibition of the stem cell factor/c-kit axis.
Literature
1.
go back to reference Wallace MR et al (1990) Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249(4965):181–186PubMedCrossRef Wallace MR et al (1990) Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249(4965):181–186PubMedCrossRef
2.
go back to reference Morris M, Fox WS (1908) Von Recklinghausen’s Disease. Proc R Soc Med 1(Dermatol Sect):16–17PubMed Morris M, Fox WS (1908) Von Recklinghausen’s Disease. Proc R Soc Med 1(Dermatol Sect):16–17PubMed
3.
go back to reference Martin GA et al (1990) The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63(4):843–849PubMedCrossRef Martin GA et al (1990) The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63(4):843–849PubMedCrossRef
4.
go back to reference Ballester R et al (1990) The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63(4):851–859PubMedCrossRef Ballester R et al (1990) The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63(4):851–859PubMedCrossRef
5.
go back to reference Hiatt KK et al (2001) Neurofibromin GTPase-activating protein-related domains restore normal growth in Nf1−/− cells. J Biol Chem 276(10):7240–7245PubMedCrossRef Hiatt KK et al (2001) Neurofibromin GTPase-activating protein-related domains restore normal growth in Nf1−/− cells. J Biol Chem 276(10):7240–7245PubMedCrossRef
7.
go back to reference Friedman J et al (1999) Neurofibromatosis: phenotype, natural history, and pathogenesis, 3rd edn. The Johns Hopkins University Press, Baltimore Friedman J et al (1999) Neurofibromatosis: phenotype, natural history, and pathogenesis, 3rd edn. The Johns Hopkins University Press, Baltimore
10.
go back to reference Coussens LM, Werb Z (2001) Inflammatory cells and cancer: think different! J Exp Med 193(6):F23–F26PubMedCrossRef Coussens LM, Werb Z (2001) Inflammatory cells and cancer: think different! J Exp Med 193(6):F23–F26PubMedCrossRef
11.
go back to reference Kacinski BM (1995) CSF-1 and its receptor in ovarian, endometrial and breast cancer. Ann Med 27(1):79–85PubMedCrossRef Kacinski BM (1995) CSF-1 and its receptor in ovarian, endometrial and breast cancer. Ann Med 27(1):79–85PubMedCrossRef
12.
go back to reference Bergers G et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2(10):737–744PubMedCrossRef Bergers G et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2(10):737–744PubMedCrossRef
13.
go back to reference Coussens LM et al (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13:1382–1397PubMedCrossRef Coussens LM et al (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13:1382–1397PubMedCrossRef
14.
go back to reference Franco CB et al (2010) Distinguishing mast cell and granulocyte differentiation at the single-cell level. Cell Stem Cell 6(4):361–368PubMedCrossRef Franco CB et al (2010) Distinguishing mast cell and granulocyte differentiation at the single-cell level. Cell Stem Cell 6(4):361–368PubMedCrossRef
15.
go back to reference Galli SJ, Maurer M, Lantz CS (1999) Mast cells as sentinels of innate immunity. Curr Opin Immunol 11(1):53–59PubMedCrossRef Galli SJ, Maurer M, Lantz CS (1999) Mast cells as sentinels of innate immunity. Curr Opin Immunol 11(1):53–59PubMedCrossRef
16.
go back to reference Theoharides TC, Conti P (2004) Mast cells: the Jekyll and Hyde of tumor growth. Trends Immunol 25(5):235–241PubMedCrossRef Theoharides TC, Conti P (2004) Mast cells: the Jekyll and Hyde of tumor growth. Trends Immunol 25(5):235–241PubMedCrossRef
17.
go back to reference Metz M et al (2006) Mast cells can enhance resistance to snake and honeybee venoms. Science 313(5786):526–530PubMedCrossRef Metz M et al (2006) Mast cells can enhance resistance to snake and honeybee venoms. Science 313(5786):526–530PubMedCrossRef
18.
go back to reference Zhu Y et al (2002) Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 296(5569):920–922PubMedCrossRef Zhu Y et al (2002) Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 296(5569):920–922PubMedCrossRef
19.
go back to reference Viskochil DH (2003) It takes two to tango: mast cell and Schwann cell interactions in neurofibromas. J Clin Invest 112(12):1791–1793PubMed Viskochil DH (2003) It takes two to tango: mast cell and Schwann cell interactions in neurofibromas. J Clin Invest 112(12):1791–1793PubMed
20.
go back to reference Yang FC et al (2003) Neurofibromin-deficient Schwann cells secrete a potent migratory stimulus for Nf1+/− mast cells. J Clin Invest 112(12):1851–1861PubMedCrossRef Yang FC et al (2003) Neurofibromin-deficient Schwann cells secrete a potent migratory stimulus for Nf1+/− mast cells. J Clin Invest 112(12):1851–1861PubMedCrossRef
21.
go back to reference Hirota S et al (1993) Possible involvement of c-kit Receptor and its ligand in increase of mast cells in neurofibroma tissues. Arch Pathol Lab Med 117:996–999PubMed Hirota S et al (1993) Possible involvement of c-kit Receptor and its ligand in increase of mast cells in neurofibroma tissues. Arch Pathol Lab Med 117:996–999PubMed
22.
go back to reference Staser K, Yang FC, Clapp DW (2010) Mast cells and the neurofibroma microenvironment. Blood 116(2):157–164PubMedCrossRef Staser K, Yang FC, Clapp DW (2010) Mast cells and the neurofibroma microenvironment. Blood 116(2):157–164PubMedCrossRef
23.
go back to reference Staser K, Yang FC, Clapp DW (2012) Pathogenesis of plexiform neurofibroma: tumor-stromal/hematopoietic interactions in tumor progression. Annu Rev Pathol 7:469–495PubMedCrossRef Staser K, Yang FC, Clapp DW (2012) Pathogenesis of plexiform neurofibroma: tumor-stromal/hematopoietic interactions in tumor progression. Annu Rev Pathol 7:469–495PubMedCrossRef
24.
go back to reference Staser K, Yang FC, Clapp DW (2010) Plexiform neurofibroma genesis: questions of Nf1 gene dose and hyperactive mast cells. Curr Opin Hematol 17(4):287–293PubMedCrossRef Staser K, Yang FC, Clapp DW (2010) Plexiform neurofibroma genesis: questions of Nf1 gene dose and hyperactive mast cells. Curr Opin Hematol 17(4):287–293PubMedCrossRef
25.
go back to reference Yang FC et al (2008) Nf1-dependent tumors require a microenvironment containing Nf1+/−− and c-kit-dependent bone marrow. Cell 135(3):437–448PubMedCrossRef Yang FC et al (2008) Nf1-dependent tumors require a microenvironment containing Nf1+/−− and c-kit-dependent bone marrow. Cell 135(3):437–448PubMedCrossRef
26.
go back to reference Greggio H (1911) Les cellules granuleuses (Mastzellen) dans les tissus normaux et dans certaines maladies chirurgicales. Arch Med Exp 23:323–375 Greggio H (1911) Les cellules granuleuses (Mastzellen) dans les tissus normaux et dans certaines maladies chirurgicales. Arch Med Exp 23:323–375
27.
go back to reference Pineda A (1965) Mast cells–their presence and ultrastructural characteristics in peripheral nerve tumors. Arch Neurol 13(4):372–382PubMedCrossRef Pineda A (1965) Mast cells–their presence and ultrastructural characteristics in peripheral nerve tumors. Arch Neurol 13(4):372–382PubMedCrossRef
29.
31.
go back to reference Baroni C (1964) On the relationship of mast cells to various soft tissue tumours. Br J Cancer 18:686–691PubMedCrossRef Baroni C (1964) On the relationship of mast cells to various soft tissue tumours. Br J Cancer 18:686–691PubMedCrossRef
32.
go back to reference Nurnberger M, Moll I (1994) Semiquantitative aspects of mast cells in normal skin and in neurofibromas of neurofibromatosis types 1 and 5. Dermatology 188(4):296–299PubMedCrossRef Nurnberger M, Moll I (1994) Semiquantitative aspects of mast cells in normal skin and in neurofibromas of neurofibromatosis types 1 and 5. Dermatology 188(4):296–299PubMedCrossRef
33.
go back to reference Riccardi VM (1981) Cutaneous manifestation of neurofibromatosis: cellular interaction, pigmentation, and mast cells. Birth Defects Orig Artic Ser 17(2):129–145PubMed Riccardi VM (1981) Cutaneous manifestation of neurofibromatosis: cellular interaction, pigmentation, and mast cells. Birth Defects Orig Artic Ser 17(2):129–145PubMed
34.
go back to reference Riccardi VM (1987) Mast-cell stabilization to decrease neurofibroma growth. Preliminary experience with ketotifen. Arch Dermatol 123(8):1011–1016PubMedCrossRef Riccardi VM (1987) Mast-cell stabilization to decrease neurofibroma growth. Preliminary experience with ketotifen. Arch Dermatol 123(8):1011–1016PubMedCrossRef
35.
go back to reference Riccardi VM (1993) A controlled multiphase trial of ketotifen to minimize neurofibroma-associated pain and itching. Arch Dermatol 129(5):577–581PubMedCrossRef Riccardi VM (1993) A controlled multiphase trial of ketotifen to minimize neurofibroma-associated pain and itching. Arch Dermatol 129(5):577–581PubMedCrossRef
36.
go back to reference Galli SJ, Tsai M, Wershil BK (1993) The c-kit receptor, stem cell factor, and mast cells. What each is teaching us about the others. Am J Pathol 142(4):965–974PubMed Galli SJ, Tsai M, Wershil BK (1993) The c-kit receptor, stem cell factor, and mast cells. What each is teaching us about the others. Am J Pathol 142(4):965–974PubMed
37.
go back to reference Chen S et al (2010) Nf1−/− Schwann cell-conditioned medium modulates mast cell degranulation by c-Kit-mediated hyperactivation of phosphatidylinositol 3-kinase. Am J Pathol 177(6):3125–3132 Chen S et al (2010) Nf1−/− Schwann cell-conditioned medium modulates mast cell degranulation by c-Kit-mediated hyperactivation of phosphatidylinositol 3-kinase. Am J Pathol 177(6):3125–3132
38.
go back to reference Yang FC et al (2006) Nf1+/− mast cells induce neurofibroma like phenotypes through secreted TGF-beta signaling. Hum Mol Genet 15(16):2421–2437PubMedCrossRef Yang FC et al (2006) Nf1+/− mast cells induce neurofibroma like phenotypes through secreted TGF-beta signaling. Hum Mol Genet 15(16):2421–2437PubMedCrossRef
39.
go back to reference Li F et al (2006) Neurofibromin is a novel regulator of RAS-induced signals in primary vascular smooth muscle cells. Hum Mol Genet 15(11):1921–1930PubMedCrossRef Li F et al (2006) Neurofibromin is a novel regulator of RAS-induced signals in primary vascular smooth muscle cells. Hum Mol Genet 15(11):1921–1930PubMedCrossRef
40.
go back to reference Munchhof AM et al (2006) Neurofibroma-associated growth factors activate a distinct signaling network to alter the function of neurofibromin-deficient endothelial cells. Hum Mol Genet 15(11):1858–1869PubMedCrossRef Munchhof AM et al (2006) Neurofibroma-associated growth factors activate a distinct signaling network to alter the function of neurofibromin-deficient endothelial cells. Hum Mol Genet 15(11):1858–1869PubMedCrossRef
41.
go back to reference McDaniel AS et al (2008) Pak1 regulates multiple c-Kit mediated Ras-MAPK gain-in-function phenotypes in Nf1+/− mast cells. Blood 112(12):4646–4654PubMedCrossRef McDaniel AS et al (2008) Pak1 regulates multiple c-Kit mediated Ras-MAPK gain-in-function phenotypes in Nf1+/− mast cells. Blood 112(12):4646–4654PubMedCrossRef
42.
go back to reference Ingram DA et al (2000) Genetic and biochemical evidence that haploinsufficiency of the Nf1 tumor suppressor gene modulates melanocyte and mast cell fates in vivo. J Exp Med 191(1):181–188PubMedCrossRef Ingram DA et al (2000) Genetic and biochemical evidence that haploinsufficiency of the Nf1 tumor suppressor gene modulates melanocyte and mast cell fates in vivo. J Exp Med 191(1):181–188PubMedCrossRef
43.
go back to reference Khalaf WF et al (2007) K-ras is critical for modulating multiple c-kit-mediated cellular functions in wild-type and Nf1+/− mast cells. J Immunol 178(4):2527–2534PubMed Khalaf WF et al (2007) K-ras is critical for modulating multiple c-kit-mediated cellular functions in wild-type and Nf1+/− mast cells. J Immunol 178(4):2527–2534PubMed
44.
go back to reference Jaakkola S et al (1989) Type 1 neurofibromatosis: selective expression of extracellular matrix genes by Schwann cells, perineurial cells, and fibroblasts in mixed cultures. J Clin Invest 84(1):253–261PubMedCrossRef Jaakkola S et al (1989) Type 1 neurofibromatosis: selective expression of extracellular matrix genes by Schwann cells, perineurial cells, and fibroblasts in mixed cultures. J Clin Invest 84(1):253–261PubMedCrossRef
45.
go back to reference Druker BJ (2008) Translation of the Philadelphia chromosome into therapy for CML. Blood 112(13):4808–4817PubMedCrossRef Druker BJ (2008) Translation of the Philadelphia chromosome into therapy for CML. Blood 112(13):4808–4817PubMedCrossRef
46.
go back to reference Wu J et al (2008) Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells. Cancer Cell 13(2):105–116PubMedCrossRef Wu J et al (2008) Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells. Cancer Cell 13(2):105–116PubMedCrossRef
Metadata
Title
The Plexiform Neurofibroma Microenvironment
Authors
Feng-Chun Yang
Karl Staser
D. Wade Clapp
Publication date
01-12-2012
Publisher
Springer Netherlands
Published in
Cancer Microenvironment / Issue 3/2012
Print ISSN: 1875-2292
Electronic ISSN: 1875-2284
DOI
https://doi.org/10.1007/s12307-012-0115-x

Other articles of this Issue 3/2012

Cancer Microenvironment 3/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine