Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 12/2015

01-12-2015 | Cornea

The pattern of early corneal endothelial cell recovery following cataract surgery: cellular migration or enlargement?

Authors: Dong-Hyun Kim, Won Ryang Wee, Joon Young Hyon

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 12/2015

Login to get access

Abstract

Purpose

To evaluate whether cellular migration or enlargement is the main mechanism of initial endothelial cell recovery following cataract surgery.

Methods

A prospective observational study, of 24 patients aged 50–80 years who were diagnosed with moderate cataract and received uncomplicated cataract surgery with a 2.75 mm temporal clear corneal incision, was performed in Seoul National University Bundang Hospital. Endothelial cell density (ECD) and area (ECA) were obtained in central and four paracentral (superior, inferior, nasal, and temporal) areas using non-contact specular microscopy. ECD, ECA, ECD% (ECD% = ECD in each area/the sum total of ECD in five areas), and the coefficient of variation of ECA (CV) in each location were investigated pre- and 1 day, 1 week, and 4 weeks postoperatively.

Results

ECD significantly decreased 1 day, 1 week, and 4 weeks postoperatively (p = 0.010, 0.015, and 0.003 respectively), and ECA increased (p = 0.008, 0.013, and 0.002 respectively) in only the temporal area. Postoperative ECD% decreased, and CV increased in only the temporal area significantly, when compared to preoperative values. There were no significant postoperative changes of ECD, ECA, ECD%, and CV in other areas.

Conclusions

Postoperative changes of ECD, ECA, ECD%, and CV were limited to the temporal area adjacent to the primary corneal incision. Cellular enlargement, rather than migration, may have the major effect on early endothelial cell recovery after cataract surgery.
Literature
1.
go back to reference Vajpayee RB, Kumar A, Dada T, Titiyal JS, Sharma N, Dada VK (2000) Phaco-chop versus stop-and-chop nucleotomy for phacoemulsification. J Cataract Refract Surg 26:1638–1641CrossRefPubMed Vajpayee RB, Kumar A, Dada T, Titiyal JS, Sharma N, Dada VK (2000) Phaco-chop versus stop-and-chop nucleotomy for phacoemulsification. J Cataract Refract Surg 26:1638–1641CrossRefPubMed
2.
go back to reference Liu Y, Zeng M, Liu X, Luo L, Yuan Z, Xia Y, Zeng Y (2007) Torsional mode versus conventional ultrasound mode phacoemulsification: randomized comparative clinical study. J Cataract Refract Surg 33:287–292CrossRefPubMed Liu Y, Zeng M, Liu X, Luo L, Yuan Z, Xia Y, Zeng Y (2007) Torsional mode versus conventional ultrasound mode phacoemulsification: randomized comparative clinical study. J Cataract Refract Surg 33:287–292CrossRefPubMed
3.
go back to reference Zeng M, Liu X, Liu Y, Xia Y, Luo L, Yuan Z, Zeng Y (2008) Torsional ultrasound modality for hard nucleus phacoemulsification cataract extraction. Br J Ophthalmol 92:1092–1096PubMedCentralCrossRefPubMed Zeng M, Liu X, Liu Y, Xia Y, Luo L, Yuan Z, Zeng Y (2008) Torsional ultrasound modality for hard nucleus phacoemulsification cataract extraction. Br J Ophthalmol 92:1092–1096PubMedCentralCrossRefPubMed
4.
go back to reference Storr-Paulsen A, Norregaard JC, Ahmed S, Storr-Paulsen T, Pedersen TH (2008) Endothelial cell damage after cataract surgery: divide-and-conquer versus phaco-chop technique. J Cataract Refract Surg 34:996–1000CrossRefPubMed Storr-Paulsen A, Norregaard JC, Ahmed S, Storr-Paulsen T, Pedersen TH (2008) Endothelial cell damage after cataract surgery: divide-and-conquer versus phaco-chop technique. J Cataract Refract Surg 34:996–1000CrossRefPubMed
5.
go back to reference Krachmer JH, Mannis MJ, Holland EJ (2010) Cornea. In: Nishida T, Saika S (eds) Cornea and sclera — anatomy and physiology, 3rd edn. Elsevier Mosby, Philadelphia, pp 4–24 Krachmer JH, Mannis MJ, Holland EJ (2010) Cornea. In: Nishida T, Saika S (eds) Cornea and sclera — anatomy and physiology, 3rd edn. Elsevier Mosby, Philadelphia, pp 4–24
6.
go back to reference Ichijima H, Petroll WM, Jester JV, Barry PA, Andrews PM, Dai M, Cavanagh HD (1993) In vivo confocal microscopic studies of endothelial wound healing in rabbit cornea. Cornea 12:369–378CrossRefPubMed Ichijima H, Petroll WM, Jester JV, Barry PA, Andrews PM, Dai M, Cavanagh HD (1993) In vivo confocal microscopic studies of endothelial wound healing in rabbit cornea. Cornea 12:369–378CrossRefPubMed
7.
go back to reference Tuft SJ, Williams KA, Coster DJ (1986) Endothelial repair in the rat cornea. Invest Ophthalmol Vis Sci 27:1199–1204PubMed Tuft SJ, Williams KA, Coster DJ (1986) Endothelial repair in the rat cornea. Invest Ophthalmol Vis Sci 27:1199–1204PubMed
8.
go back to reference Matsuda M, Sawa M, Edelhauser HF, Bartels SP, Neufeld AH, Kenyon KR (1985) Cellular migration and morphology in corneal endothelial wound repair. Invest Ophthalmol Vis Sci 26:443–449PubMed Matsuda M, Sawa M, Edelhauser HF, Bartels SP, Neufeld AH, Kenyon KR (1985) Cellular migration and morphology in corneal endothelial wound repair. Invest Ophthalmol Vis Sci 26:443–449PubMed
9.
go back to reference Matsubara M, Tanishima T (1982) Wound-healing of the corneal endothelium in the monkey: a morphometric study. Jpn J Ophthalmol 26:264–273PubMed Matsubara M, Tanishima T (1982) Wound-healing of the corneal endothelium in the monkey: a morphometric study. Jpn J Ophthalmol 26:264–273PubMed
10.
go back to reference Yamaguchi M, Ebihara N, Shima N, Kimoto M, Funaki T, Yokoo S, Murakami A, Yamagami S (2011) Adhesion, migration, and proliferation of cultured human corneal endothelial cells by laminin-5. Invest Ophthalmol Vis Sci 52:679–684CrossRefPubMed Yamaguchi M, Ebihara N, Shima N, Kimoto M, Funaki T, Yokoo S, Murakami A, Yamagami S (2011) Adhesion, migration, and proliferation of cultured human corneal endothelial cells by laminin-5. Invest Ophthalmol Vis Sci 52:679–684CrossRefPubMed
11.
go back to reference Nakahara M, Okumura N, Kay EP, Hagiya M, Imagawa K, Hosoda Y, Kinoshita S, Koizumi N (2013) Corneal endothelial expansion promoted by human bone marrow mesenchymal stem cell-derived conditioned medium. PLoS One 8, e69009PubMedCentralCrossRefPubMed Nakahara M, Okumura N, Kay EP, Hagiya M, Imagawa K, Hosoda Y, Kinoshita S, Koizumi N (2013) Corneal endothelial expansion promoted by human bone marrow mesenchymal stem cell-derived conditioned medium. PLoS One 8, e69009PubMedCentralCrossRefPubMed
12.
go back to reference Patel SV, Bachman LA, Hann CR, Bahler CK, Fautsch MP (2009) Human corneal endothelial cell transplantation in a human ex vivo model. Invest Ophthalmol Vis Sci 50:2123–2131PubMedCentralCrossRefPubMed Patel SV, Bachman LA, Hann CR, Bahler CK, Fautsch MP (2009) Human corneal endothelial cell transplantation in a human ex vivo model. Invest Ophthalmol Vis Sci 50:2123–2131PubMedCentralCrossRefPubMed
13.
go back to reference Joko T, Shiraishi A, Akune Y, Tokumaru S, Kobayashi T, Miyata K, Ohashi Y (2013) Involvement of P38MAPK in human corneal endothelial cell migration induced by TGF-beta(2). Exp Eye Res 108:23–32CrossRefPubMed Joko T, Shiraishi A, Akune Y, Tokumaru S, Kobayashi T, Miyata K, Ohashi Y (2013) Involvement of P38MAPK in human corneal endothelial cell migration induced by TGF-beta(2). Exp Eye Res 108:23–32CrossRefPubMed
14.
go back to reference Hughes EH, Pretorius M, Eleftheriadis H, Liu CS (2007) Long-term recovery of the human corneal endothelium after toxic injury by benzalkonium chloride. Br J Ophthalmol 91:1460–1463PubMedCentralCrossRefPubMed Hughes EH, Pretorius M, Eleftheriadis H, Liu CS (2007) Long-term recovery of the human corneal endothelium after toxic injury by benzalkonium chloride. Br J Ophthalmol 91:1460–1463PubMedCentralCrossRefPubMed
15.
go back to reference Schilling-Schon A, Pleyer U, Hartmann C, Rieck PW (2000) The role of endogenous growth factors to support corneal endothelial migration after wounding in vitro. Exp Eye Res 71:583–589CrossRefPubMed Schilling-Schon A, Pleyer U, Hartmann C, Rieck PW (2000) The role of endogenous growth factors to support corneal endothelial migration after wounding in vitro. Exp Eye Res 71:583–589CrossRefPubMed
16.
go back to reference Regis-Pacheco LF, Binder PS (2014) What happens to the corneal transplant endothelium after penetrating keratoplasty? Cornea 33:587–596CrossRefPubMed Regis-Pacheco LF, Binder PS (2014) What happens to the corneal transplant endothelium after penetrating keratoplasty? Cornea 33:587–596CrossRefPubMed
17.
go back to reference Jacobi C, Zhivov A, Korbmacher J, Falke K, Guthoff R, Schlötzer-Schrehardt U, Cursiefen C, Kruse FE (2011) Evidence of endothelial cell migration after Descemet membrane endothelial keratoplasty. Am J Ophthalmol 152:537–542CrossRefPubMed Jacobi C, Zhivov A, Korbmacher J, Falke K, Guthoff R, Schlötzer-Schrehardt U, Cursiefen C, Kruse FE (2011) Evidence of endothelial cell migration after Descemet membrane endothelial keratoplasty. Am J Ophthalmol 152:537–542CrossRefPubMed
18.
go back to reference Chylack LT Jr, Wolfe JK, Singer DM, Leske MC, Bullimore MA, Bailey IL, Friend J, McCarthy D, Wu SY (1993) The lens opacities classification system III. The Longitudinal Study of Cataract Study Group. Arch Ophthalmol 111:831–836CrossRefPubMed Chylack LT Jr, Wolfe JK, Singer DM, Leske MC, Bullimore MA, Bailey IL, Friend J, McCarthy D, Wu SY (1993) The lens opacities classification system III. The Longitudinal Study of Cataract Study Group. Arch Ophthalmol 111:831–836CrossRefPubMed
19.
20.
go back to reference Bourne WM, McLaren JW (2004) Clinical responses of the corneal endothelium. Exp Eye Res 78:561–572CrossRefPubMed Bourne WM, McLaren JW (2004) Clinical responses of the corneal endothelium. Exp Eye Res 78:561–572CrossRefPubMed
21.
go back to reference Dick HB, Kohnen T, Jacobi FK, Jacobi KW (1996) Long-term endothelial cell loss following phacoemulsification through a temporal clear corneal incision. J Cataract Refract Surg 22:63–71CrossRefPubMed Dick HB, Kohnen T, Jacobi FK, Jacobi KW (1996) Long-term endothelial cell loss following phacoemulsification through a temporal clear corneal incision. J Cataract Refract Surg 22:63–71CrossRefPubMed
22.
go back to reference Diaz-Valle D, del Castillo B, Sanchez JM, Castillo A, Sayagues O, Moriche M (1998) Endothelial damage with cataract surgery techniques. J Cataract Refract Surg 24:951–955CrossRefPubMed Diaz-Valle D, del Castillo B, Sanchez JM, Castillo A, Sayagues O, Moriche M (1998) Endothelial damage with cataract surgery techniques. J Cataract Refract Surg 24:951–955CrossRefPubMed
23.
go back to reference Walkow T, Anders N, Klebe S (2000) Endothelial cell loss after phacoemulsification: relation to preoperative and intraoperative parameters. J Cataract Refract Surg 26:727–732CrossRefPubMed Walkow T, Anders N, Klebe S (2000) Endothelial cell loss after phacoemulsification: relation to preoperative and intraoperative parameters. J Cataract Refract Surg 26:727–732CrossRefPubMed
24.
go back to reference Beltrame G, Salvetat ML, Driussi G, Chizzolini M (2002) Effect of incision size and site on corneal endothelial changes in cataract surgery. J Cataract Refract Surg 28:118–125CrossRefPubMed Beltrame G, Salvetat ML, Driussi G, Chizzolini M (2002) Effect of incision size and site on corneal endothelial changes in cataract surgery. J Cataract Refract Surg 28:118–125CrossRefPubMed
25.
go back to reference Inoue K, Tokuda Y, Inoue Y, Amano S, Oshika T, Inoue J (2002) Corneal endothelial cell morphology in patients undergoing cataract surgery. Cornea 21:360–363CrossRefPubMed Inoue K, Tokuda Y, Inoue Y, Amano S, Oshika T, Inoue J (2002) Corneal endothelial cell morphology in patients undergoing cataract surgery. Cornea 21:360–363CrossRefPubMed
26.
go back to reference Ravalico G, Botteri E, Baccara F (2003) Long-term endothelial changes after implantation of anterior chamber intraocular lenses in cataract surgery. J Cataract Refract Surg 29:1918–1923CrossRefPubMed Ravalico G, Botteri E, Baccara F (2003) Long-term endothelial changes after implantation of anterior chamber intraocular lenses in cataract surgery. J Cataract Refract Surg 29:1918–1923CrossRefPubMed
27.
go back to reference Bourne RR, Minassian DC, Dart JK, Rosen P, Kaushal S, Wingate N (2004) Effect of cataract surgery on the corneal endothelium: modern phacoemulsification compared with extracapsular cataract surgery. Ophthalmology 111:679–685CrossRefPubMed Bourne RR, Minassian DC, Dart JK, Rosen P, Kaushal S, Wingate N (2004) Effect of cataract surgery on the corneal endothelium: modern phacoemulsification compared with extracapsular cataract surgery. Ophthalmology 111:679–685CrossRefPubMed
28.
go back to reference Lee JS, Lee JE, Choi HY, Oum BS, Cho BM (2005) Corneal endothelial cell change after phacoemulsification relative to the severity of diabetic retinopathy. J Cataract Refract Surg 31:742–749CrossRefPubMed Lee JS, Lee JE, Choi HY, Oum BS, Cho BM (2005) Corneal endothelial cell change after phacoemulsification relative to the severity of diabetic retinopathy. J Cataract Refract Surg 31:742–749CrossRefPubMed
29.
go back to reference McCarey BE, Edelhauser HF, Lynn MJ (2008) Review of corneal endothelial specular microscopy for FDA clinical trials of refractive procedures, surgical devices and new intraocular drugs and solutions. Cornea 27:1–16PubMedCentralCrossRefPubMed McCarey BE, Edelhauser HF, Lynn MJ (2008) Review of corneal endothelial specular microscopy for FDA clinical trials of refractive procedures, surgical devices and new intraocular drugs and solutions. Cornea 27:1–16PubMedCentralCrossRefPubMed
30.
go back to reference Gonen T, Sever O, Horozoglu F, Yasar M, Keskinbora KH (2012) Endothelial cell loss: biaxial small-incision torsional phacoemulsification versus biaxial small-incision longitudinal phacoemulsification. J Cataract Refract Surg 38:1918–1924CrossRefPubMed Gonen T, Sever O, Horozoglu F, Yasar M, Keskinbora KH (2012) Endothelial cell loss: biaxial small-incision torsional phacoemulsification versus biaxial small-incision longitudinal phacoemulsification. J Cataract Refract Surg 38:1918–1924CrossRefPubMed
31.
go back to reference Vasavada AR, Vasavada V, Vasavada VA, Praveen MR, Johar SR, Gajjar D, Arora AI (2012) Comparison of the effect of torsional and microburst longitudinal ultrasound on clear corneal incisions during phacoemulsification. J Cataract Refract Surg 38:833–839CrossRefPubMed Vasavada AR, Vasavada V, Vasavada VA, Praveen MR, Johar SR, Gajjar D, Arora AI (2012) Comparison of the effect of torsional and microburst longitudinal ultrasound on clear corneal incisions during phacoemulsification. J Cataract Refract Surg 38:833–839CrossRefPubMed
32.
go back to reference Assaf A, Roshdy MM (2013) Comparative analysis of corneal morphological changes after transversal and torsional phacoemulsification through 2.2 mm corneal incision. Clin Ophthalmol 7:55–61PubMedCentralPubMed Assaf A, Roshdy MM (2013) Comparative analysis of corneal morphological changes after transversal and torsional phacoemulsification through 2.2 mm corneal incision. Clin Ophthalmol 7:55–61PubMedCentralPubMed
33.
go back to reference Schultz RO, Glasser DB, Matsuda M, Yee RW, Edelhauser HF (1986) Response of the corneal endothelium to cataract surgery. Arch Ophthalmol 104:1164–1169CrossRefPubMed Schultz RO, Glasser DB, Matsuda M, Yee RW, Edelhauser HF (1986) Response of the corneal endothelium to cataract surgery. Arch Ophthalmol 104:1164–1169CrossRefPubMed
34.
go back to reference Werblin TP (1993) Long-term endothelial cell loss following phacoemulsification: model for evaluating endothelial damage after intraocular surgery. Refract Corneal Surg 9:29–35PubMed Werblin TP (1993) Long-term endothelial cell loss following phacoemulsification: model for evaluating endothelial damage after intraocular surgery. Refract Corneal Surg 9:29–35PubMed
35.
go back to reference Dick B, Kohnen T, Jacobi KW (1995) Endothelial cell loss after phacoemulsification and 3.5 vs. 5 mm corneal tunnel incision. Ophthalmologe 92:476–483PubMed Dick B, Kohnen T, Jacobi KW (1995) Endothelial cell loss after phacoemulsification and 3.5 vs. 5 mm corneal tunnel incision. Ophthalmologe 92:476–483PubMed
36.
go back to reference Mathys KC, Cohen KL, Armstrong BD (2007) Determining factors for corneal endothelial cell loss by using bimanual microincision phacoemulsification and power modulation. Cornea 26:1049–1055CrossRefPubMed Mathys KC, Cohen KL, Armstrong BD (2007) Determining factors for corneal endothelial cell loss by using bimanual microincision phacoemulsification and power modulation. Cornea 26:1049–1055CrossRefPubMed
37.
go back to reference Ling T, Vannas A, Holden B (1988) Long-term changes in corneal endothelial morphology following wounding in the cat. Invest Ophthalmol Vis Sci 29:1407–1412PubMed Ling T, Vannas A, Holden B (1988) Long-term changes in corneal endothelial morphology following wounding in the cat. Invest Ophthalmol Vis Sci 29:1407–1412PubMed
38.
go back to reference Huang P, Nelson L, Bourne W (1989) The morphology and function of healing cat corneal endothelium. Invest Ophthalmol Vis Sci 30:1794–1801PubMed Huang P, Nelson L, Bourne W (1989) The morphology and function of healing cat corneal endothelium. Invest Ophthalmol Vis Sci 30:1794–1801PubMed
39.
go back to reference Treffers WF (1982) Human corneal endothelial wound repair. In vitro and in vivo. Ophthalmology 89:605–613CrossRefPubMed Treffers WF (1982) Human corneal endothelial wound repair. In vitro and in vivo. Ophthalmology 89:605–613CrossRefPubMed
40.
go back to reference Rieck PW, Cholidis S, Hartmann C (2001) Intracellular signaling pathway of FGF-2-modulated corneal endothelial cell migration during wound healing in vitro. Exp Eye Res 73:639–650CrossRefPubMed Rieck PW, Cholidis S, Hartmann C (2001) Intracellular signaling pathway of FGF-2-modulated corneal endothelial cell migration during wound healing in vitro. Exp Eye Res 73:639–650CrossRefPubMed
41.
go back to reference Lee JG, Kay EP (2006) FGF-2-induced wound healing in corneal endothelial cells requires Cdc42 activation and Rho inactivation through the phosphatidylinositol 3-kinase pathway. Invest Ophthalmol Vis Sci 47:1376–1386CrossRefPubMed Lee JG, Kay EP (2006) FGF-2-induced wound healing in corneal endothelial cells requires Cdc42 activation and Rho inactivation through the phosphatidylinositol 3-kinase pathway. Invest Ophthalmol Vis Sci 47:1376–1386CrossRefPubMed
42.
go back to reference He Z, Campolmi N, Gain P, Ha Thi BM, Dumollard JM, Duband S, Peoc’h M, Piselli S, Garraud O, Thuret G (2012) Revisited microanatomy of the corneal endothelial periphery: new evidence for continuous centripetal migration of endothelial cells in humans. Stem Cells 30:2523–2534CrossRefPubMed He Z, Campolmi N, Gain P, Ha Thi BM, Dumollard JM, Duband S, Peoc’h M, Piselli S, Garraud O, Thuret G (2012) Revisited microanatomy of the corneal endothelial periphery: new evidence for continuous centripetal migration of endothelial cells in humans. Stem Cells 30:2523–2534CrossRefPubMed
43.
Metadata
Title
The pattern of early corneal endothelial cell recovery following cataract surgery: cellular migration or enlargement?
Authors
Dong-Hyun Kim
Won Ryang Wee
Joon Young Hyon
Publication date
01-12-2015
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 12/2015
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-015-3100-5

Other articles of this Issue 12/2015

Graefe's Archive for Clinical and Experimental Ophthalmology 12/2015 Go to the issue