Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 6/2010

01-12-2010

The Paracrine Effect: Pivotal Mechanism in Cell-Based Cardiac Repair

Authors: Simon Maltais, Jacques P. Tremblay, Louis P. Perrault, Hung Q. Ly

Published in: Journal of Cardiovascular Translational Research | Issue 6/2010

Login to get access

Abstract

Cardiac cell therapy has emerged as a controversial yet promising therapeutic strategy. Both experimental data and clinical applications in this field have shown modest but tangible benefits on cardiac structure and function and underscore that transplanted stem–progenitor cells can attenuate the postinfarct microenvironment. The paracrine factors secreted by these cells represent a pivotal mechanism underlying the benefits of cell-mediated cardiac repair. This article reviews key studies behind the paracrine effect related to the cardiac reparative effects of cardiac cell therapy.
Literature
1.
go back to reference Antman, E. M., Hand, M., Armstrong, P. W., Bates, E. R., Green, L. A., et al. (2008). 2007 focused update of the ACC/AHA 2004 guidelines for the management of patients with ST-elevation myocardial infarction: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines: Developed in collaboration with the Canadian Cardiovascular Society endorsed by the American Academy of Family Physicians: 2007 writing group to review new evidence and update the ACC/AHA 2004 Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction, Writing on Behalf of the 2004 Writing Committee. Circulation, 117, 296–329.PubMedCrossRef Antman, E. M., Hand, M., Armstrong, P. W., Bates, E. R., Green, L. A., et al. (2008). 2007 focused update of the ACC/AHA 2004 guidelines for the management of patients with ST-elevation myocardial infarction: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines: Developed in collaboration with the Canadian Cardiovascular Society endorsed by the American Academy of Family Physicians: 2007 writing group to review new evidence and update the ACC/AHA 2004 Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction, Writing on Behalf of the 2004 Writing Committee. Circulation, 117, 296–329.PubMedCrossRef
2.
go back to reference Jessup, M., & Brozena, S. (2003). Heart failure. The New England Journal of Medicine, 348, 2007–2018.PubMedCrossRef Jessup, M., & Brozena, S. (2003). Heart failure. The New England Journal of Medicine, 348, 2007–2018.PubMedCrossRef
3.
go back to reference Hunt, S. A., Abraham, W. T., Chin, M. H., Feldman, A. M., Francis, G. S., et al. (2005). ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): Developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: Endorsed by the Heart Rhythm Society. Circulation, 112, e154–e235.PubMedCrossRef Hunt, S. A., Abraham, W. T., Chin, M. H., Feldman, A. M., Francis, G. S., et al. (2005). ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): Developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: Endorsed by the Heart Rhythm Society. Circulation, 112, e154–e235.PubMedCrossRef
4.
go back to reference Dimmeler, S., Zeiher, A. M., & Schneider, M. D. (2005). Unchain my heart: The scientific foundations of cardiac repair. Journal of Clinical Investigation, 115, 572–583.PubMed Dimmeler, S., Zeiher, A. M., & Schneider, M. D. (2005). Unchain my heart: The scientific foundations of cardiac repair. Journal of Clinical Investigation, 115, 572–583.PubMed
5.
6.
7.
go back to reference Hristov, M., & Weber, C. (2006). The therapeutic potential of progenitor cells in ischemic heart disease—past, present and future. Basic Research in Cardiology, 101, 1–7.PubMedCrossRef Hristov, M., & Weber, C. (2006). The therapeutic potential of progenitor cells in ischemic heart disease—past, present and future. Basic Research in Cardiology, 101, 1–7.PubMedCrossRef
8.
go back to reference Leri, A., Kajstura, J., & Anversa, P. (2005). Cardiac stem cells and mechanisms of myocardial regeneration. Physiological Reviews, 85, 1373–1416.PubMedCrossRef Leri, A., Kajstura, J., & Anversa, P. (2005). Cardiac stem cells and mechanisms of myocardial regeneration. Physiological Reviews, 85, 1373–1416.PubMedCrossRef
9.
go back to reference Fraser, J. K., Schreiber, R. E., Zuk, P. A., & Hedrick, M. H. (2004). Adult stem cell therapy for the heart. The International Journal of Biochemistry & Cell Biology, 36, 658–666.CrossRef Fraser, J. K., Schreiber, R. E., Zuk, P. A., & Hedrick, M. H. (2004). Adult stem cell therapy for the heart. The International Journal of Biochemistry & Cell Biology, 36, 658–666.CrossRef
10.
go back to reference Muller, P., Beltrami, A. P., Cesselli, D., Pfeiffer, P., Kazakov, A., et al. (2005). Myocardial regeneration by endogenous adult progenitor cells. Journal of Molecular and Cellular Cardiology, 39, 377–387.PubMedCrossRef Muller, P., Beltrami, A. P., Cesselli, D., Pfeiffer, P., Kazakov, A., et al. (2005). Myocardial regeneration by endogenous adult progenitor cells. Journal of Molecular and Cellular Cardiology, 39, 377–387.PubMedCrossRef
11.
go back to reference Caplice, N. M., Gersh, B. J., & Alegria, J. R. (2005). Cell therapy for cardiovascular disease: What cells, what diseases and for whom? Nature Clinical Practice. Cardiovascular Medicine, 2, 37–43.PubMedCrossRef Caplice, N. M., Gersh, B. J., & Alegria, J. R. (2005). Cell therapy for cardiovascular disease: What cells, what diseases and for whom? Nature Clinical Practice. Cardiovascular Medicine, 2, 37–43.PubMedCrossRef
12.
go back to reference Fukuda, K., & Yuasa, S. (2006). Stem cells as a source of regenerative cardiomyocytes. Circulation Research, 98, 1002–1013.PubMedCrossRef Fukuda, K., & Yuasa, S. (2006). Stem cells as a source of regenerative cardiomyocytes. Circulation Research, 98, 1002–1013.PubMedCrossRef
13.
go back to reference Gepstein, L. (2006). Cardiovascular therapeutic aspects of cell therapy and stem cells. Annals of the New York Academy of Sciences, 1080, 415–425.PubMedCrossRef Gepstein, L. (2006). Cardiovascular therapeutic aspects of cell therapy and stem cells. Annals of the New York Academy of Sciences, 1080, 415–425.PubMedCrossRef
14.
go back to reference Anversa, P., Kajstura, J., Leri, A., & Bolli, R. (2006). Life and death of cardiac stem cells: A paradigm shift in cardiac biology. Circulation, 113, 1451–1463.PubMedCrossRef Anversa, P., Kajstura, J., Leri, A., & Bolli, R. (2006). Life and death of cardiac stem cells: A paradigm shift in cardiac biology. Circulation, 113, 1451–1463.PubMedCrossRef
15.
go back to reference Wang, Q. D., & Sjoquist, P. O. (2006). Myocardial regeneration with stem cells: Pharmacological possibilities for efficacy enhancement. Pharmacological Research, 53, 331–340.PubMedCrossRef Wang, Q. D., & Sjoquist, P. O. (2006). Myocardial regeneration with stem cells: Pharmacological possibilities for efficacy enhancement. Pharmacological Research, 53, 331–340.PubMedCrossRef
16.
go back to reference Beltrami, A. P., Urbanek, K., Kajstura, J., Yan, S. M., Finato, N., et al. (2001). Evidence that human cardiac myocytes divide after myocardial infarction. The New England Journal of Medicine, 344, 1750–1757.PubMedCrossRef Beltrami, A. P., Urbanek, K., Kajstura, J., Yan, S. M., Finato, N., et al. (2001). Evidence that human cardiac myocytes divide after myocardial infarction. The New England Journal of Medicine, 344, 1750–1757.PubMedCrossRef
17.
go back to reference Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114, 763–776.PubMedCrossRef Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114, 763–776.PubMedCrossRef
18.
go back to reference Oh, H., Bradfute, S. B., Gallardo, T. D., Nakamura, T., Gaussin, V., et al. (2003). Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America, 100, 12313–12318.PubMedCrossRef Oh, H., Bradfute, S. B., Gallardo, T. D., Nakamura, T., Gaussin, V., et al. (2003). Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America, 100, 12313–12318.PubMedCrossRef
19.
go back to reference Matsuura, K., Nagai, T., Nishigaki, N., Oyama, T., Nishi, J., et al. (2004). Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. The Journal of Biological Chemistry, 279, 11384–11391.PubMedCrossRef Matsuura, K., Nagai, T., Nishigaki, N., Oyama, T., Nishi, J., et al. (2004). Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. The Journal of Biological Chemistry, 279, 11384–11391.PubMedCrossRef
20.
go back to reference Martin, C. M., Meeson, A. P., Robertson, S. M., Hawke, T. J., Richardson, J. A., et al. (2004). Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Developmental Biology, 265, 262–275.PubMedCrossRef Martin, C. M., Meeson, A. P., Robertson, S. M., Hawke, T. J., Richardson, J. A., et al. (2004). Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Developmental Biology, 265, 262–275.PubMedCrossRef
21.
go back to reference Pfister, O., Mouquet, F., Jain, M., Summer, R., Helmes, M., et al. (2005). CD31− but not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circulation Research, 97, 52–61.PubMedCrossRef Pfister, O., Mouquet, F., Jain, M., Summer, R., Helmes, M., et al. (2005). CD31− but not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circulation Research, 97, 52–61.PubMedCrossRef
22.
go back to reference Lipinski, M. J., Biondi-Zoccai, G. G., Abbate, A., Khianey, R., Sheiban, I., et al. (2007). Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: A collaborative systematic review and meta-analysis of controlled clinical trials. Journal of the American College of Cardiology, 50, 1761–1767.PubMedCrossRef Lipinski, M. J., Biondi-Zoccai, G. G., Abbate, A., Khianey, R., Sheiban, I., et al. (2007). Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: A collaborative systematic review and meta-analysis of controlled clinical trials. Journal of the American College of Cardiology, 50, 1761–1767.PubMedCrossRef
23.
go back to reference Abdel-Latif, A., Bolli, R., Tleyjeh, I. M., Montori, V. M., Perin, E. C., et al. (2007). Adult bone marrow-derived cells for cardiac repair: A systematic review and meta-analysis. Archives of Internal Medicine, 167, 989–997.PubMedCrossRef Abdel-Latif, A., Bolli, R., Tleyjeh, I. M., Montori, V. M., Perin, E. C., et al. (2007). Adult bone marrow-derived cells for cardiac repair: A systematic review and meta-analysis. Archives of Internal Medicine, 167, 989–997.PubMedCrossRef
24.
go back to reference Schachinger, V., Erbs, S., Elsasser, A., Haberbosch, W., Hambrecht, R., et al. (2006). Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: Final 1-year results of the REPAIR-AMI trial. European Heart Journal, 28, 638. Schachinger, V., Erbs, S., Elsasser, A., Haberbosch, W., Hambrecht, R., et al. (2006). Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: Final 1-year results of the REPAIR-AMI trial. European Heart Journal, 28, 638.
25.
go back to reference Wollert, K. C., Meyer, G. P., Lotz, J., Ringes-Lichtenberg, S., Lippolt, P., et al. (2004). Intracoronary autologous bone-marrow cell transfer after myocardial infarction: The BOOST randomised controlled clinical trial. Lancet, 364, 141–148.PubMedCrossRef Wollert, K. C., Meyer, G. P., Lotz, J., Ringes-Lichtenberg, S., Lippolt, P., et al. (2004). Intracoronary autologous bone-marrow cell transfer after myocardial infarction: The BOOST randomised controlled clinical trial. Lancet, 364, 141–148.PubMedCrossRef
26.
go back to reference Janssens, S., Dubois, C., Bogaert, J., Theunissen, K., Deroose, C., et al. (2006). Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: Double-blind, randomised controlled trial. Lancet, 367, 113–121.PubMedCrossRef Janssens, S., Dubois, C., Bogaert, J., Theunissen, K., Deroose, C., et al. (2006). Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: Double-blind, randomised controlled trial. Lancet, 367, 113–121.PubMedCrossRef
27.
go back to reference Oettgen, P., Boyle, A. J., Schulman, S. P., & Hare, J. M. (2006). Controversies in cardiovascular medicine. Circulation, 114, 353–358.PubMedCrossRef Oettgen, P., Boyle, A. J., Schulman, S. P., & Hare, J. M. (2006). Controversies in cardiovascular medicine. Circulation, 114, 353–358.PubMedCrossRef
28.
go back to reference Murry, C. E., Field, L. J., & Menasche, P. (2005). Cell-based cardiac repair: Reflections at the 10-year point. Circulation, 112, 3174–3183.PubMedCrossRef Murry, C. E., Field, L. J., & Menasche, P. (2005). Cell-based cardiac repair: Reflections at the 10-year point. Circulation, 112, 3174–3183.PubMedCrossRef
29.
go back to reference Boyle, A. J., Schulman, S. P., Hare, J. M., & Oettgen, P. (2006). Controversies in cardiovascular medicine: Ready for the next step. Circulation, 114, 339–352.PubMedCrossRef Boyle, A. J., Schulman, S. P., Hare, J. M., & Oettgen, P. (2006). Controversies in cardiovascular medicine: Ready for the next step. Circulation, 114, 339–352.PubMedCrossRef
30.
go back to reference Charwat, S., Gyongyosi, M., Lang, I., Graf, S., Beran, G., et al. (2008). Role of adult bone marrow stem cells in the repair of ischemic myocardium: Current state of the art. Experimental Hematology, 36, 672–680.PubMedCrossRef Charwat, S., Gyongyosi, M., Lang, I., Graf, S., Beran, G., et al. (2008). Role of adult bone marrow stem cells in the repair of ischemic myocardium: Current state of the art. Experimental Hematology, 36, 672–680.PubMedCrossRef
31.
go back to reference Burt, R. K., Loh, Y., Pearce, W., Beohar, N., Barr, W. G., et al. (2008). Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. JAMA, 299, 925–936.PubMedCrossRef Burt, R. K., Loh, Y., Pearce, W., Beohar, N., Barr, W. G., et al. (2008). Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. JAMA, 299, 925–936.PubMedCrossRef
32.
go back to reference Sussman, M. A., & Murry, C. E. (2008). Bones of contention: Marrow-derived cells in myocardial regeneration. Journal of Molecular and Cellular Cardiology, 44, 950–953.PubMedCrossRef Sussman, M. A., & Murry, C. E. (2008). Bones of contention: Marrow-derived cells in myocardial regeneration. Journal of Molecular and Cellular Cardiology, 44, 950–953.PubMedCrossRef
33.
go back to reference Rosenzweig, A. (2006). Cardiac cell therapy—mixed results from mixed cells. The New England Journal of Medicine, 355, 1274–1277.PubMedCrossRef Rosenzweig, A. (2006). Cardiac cell therapy—mixed results from mixed cells. The New England Journal of Medicine, 355, 1274–1277.PubMedCrossRef
34.
go back to reference Gersh, B. J., & Simari, R. D. (2006). Cardiac cell-repair therapy: Clinical issues. Nature Clinical Practice. Cardiovascular Medicine, 3(Suppl 1), S105–S109.PubMedCrossRef Gersh, B. J., & Simari, R. D. (2006). Cardiac cell-repair therapy: Clinical issues. Nature Clinical Practice. Cardiovascular Medicine, 3(Suppl 1), S105–S109.PubMedCrossRef
35.
go back to reference Murry, C. E., Reinecke, H., & Pabon, L. M. (2006). Regeneration gaps: Observations on stem cells and cardiac repair. Journal of the American College of Cardiology, 47, 1777–1785.PubMedCrossRef Murry, C. E., Reinecke, H., & Pabon, L. M. (2006). Regeneration gaps: Observations on stem cells and cardiac repair. Journal of the American College of Cardiology, 47, 1777–1785.PubMedCrossRef
36.
go back to reference Ott, H. C., McCue, J., & Taylor, D. A. (2005). Cell-based cardiovascular repair—the hurdles and the opportunities. Basic Research in Cardiology, 100, 504–517.PubMedCrossRef Ott, H. C., McCue, J., & Taylor, D. A. (2005). Cell-based cardiovascular repair—the hurdles and the opportunities. Basic Research in Cardiology, 100, 504–517.PubMedCrossRef
37.
go back to reference Rosen, M. R. (2006). Are stem cells drugs? The regulation of stem cell research and development. Circulation, 114, 1992–2000.PubMedCrossRef Rosen, M. R. (2006). Are stem cells drugs? The regulation of stem cell research and development. Circulation, 114, 1992–2000.PubMedCrossRef
38.
go back to reference Anversa, P., Leri, A., & Kajstura, J. (2006). Cardiac regeneration. Journal of the American College of Cardiology, 47, 1769–1776.PubMedCrossRef Anversa, P., Leri, A., & Kajstura, J. (2006). Cardiac regeneration. Journal of the American College of Cardiology, 47, 1769–1776.PubMedCrossRef
39.
go back to reference Hou, D., Youssef, E. A., Brinton, T. J., Zhang, P., Rogers, P., et al. (2005). Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: Implications for current clinical trials. Circulation, 112, I150–I156.PubMed Hou, D., Youssef, E. A., Brinton, T. J., Zhang, P., Rogers, P., et al. (2005). Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: Implications for current clinical trials. Circulation, 112, I150–I156.PubMed
40.
go back to reference Ly, H. Q., Hoshino, K., Pomerantseva, I., Kawase, Y., Yoneyama, R., et al. (2009). In vivo myocardial distribution of multipotent progenitor cells following intracoronary delivery in a swine model of myocardial infarction. European Heart Journal, 30, 2861–2868.PubMedCrossRef Ly, H. Q., Hoshino, K., Pomerantseva, I., Kawase, Y., Yoneyama, R., et al. (2009). In vivo myocardial distribution of multipotent progenitor cells following intracoronary delivery in a swine model of myocardial infarction. European Heart Journal, 30, 2861–2868.PubMedCrossRef
41.
go back to reference Schachinger, V., Aicher, A., Dobert, N., Rover, R., Diener, J., et al. (2008). Pilot trial on determinants of progenitor cell recruitment to the infarcted human myocardium. Circulation, 118, 1425–1432.PubMedCrossRef Schachinger, V., Aicher, A., Dobert, N., Rover, R., Diener, J., et al. (2008). Pilot trial on determinants of progenitor cell recruitment to the infarcted human myocardium. Circulation, 118, 1425–1432.PubMedCrossRef
42.
go back to reference Hofmann, M., Wollert, K. C., Meyer, G. P., Menke, A., Arseniev, L., et al. (2005). Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation, 111, 2198–2202.PubMedCrossRef Hofmann, M., Wollert, K. C., Meyer, G. P., Menke, A., Arseniev, L., et al. (2005). Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation, 111, 2198–2202.PubMedCrossRef
43.
go back to reference Beeres, S. L., Bengel, F. M., Bartunek, J., Atsma, D. E., Hill, J. M., et al. (2007). Role of imaging in cardiac stem cell therapy. Journal of the American College of Cardiology, 49, 1137–1148.PubMedCrossRef Beeres, S. L., Bengel, F. M., Bartunek, J., Atsma, D. E., Hill, J. M., et al. (2007). Role of imaging in cardiac stem cell therapy. Journal of the American College of Cardiology, 49, 1137–1148.PubMedCrossRef
44.
go back to reference Yau, T. M., Kim, C., Li, G., Zhang, Y., Weisel, R. D., et al. (2005). Maximizing ventricular function with multimodal cell-based gene therapy. Circulation, 112, I123–I128.PubMedCrossRef Yau, T. M., Kim, C., Li, G., Zhang, Y., Weisel, R. D., et al. (2005). Maximizing ventricular function with multimodal cell-based gene therapy. Circulation, 112, I123–I128.PubMedCrossRef
45.
go back to reference Jain, M., DerSimonian, H., Brenner, D. A., Ngoy, S., Teller, P., et al. (2001). Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction. Circulation, 103, 1920–1927.PubMed Jain, M., DerSimonian, H., Brenner, D. A., Ngoy, S., Teller, P., et al. (2001). Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction. Circulation, 103, 1920–1927.PubMed
46.
go back to reference Lapidot, T., & Petit, I. (2002). Current understanding of stem cell mobilization: The roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Experimental Hematology, 30, 973–981.PubMedCrossRef Lapidot, T., & Petit, I. (2002). Current understanding of stem cell mobilization: The roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Experimental Hematology, 30, 973–981.PubMedCrossRef
47.
go back to reference Thum, T., Bauersachs, J., Poole-Wilson, P. A., Volk, H. D., & Anker, S. D. (2005). The dying stem cell hypothesis: Immune modulation as a novel mechanism for progenitor cell therapy in cardiac muscle. Journal of the American College of Cardiology, 46, 1799–1802.PubMedCrossRef Thum, T., Bauersachs, J., Poole-Wilson, P. A., Volk, H. D., & Anker, S. D. (2005). The dying stem cell hypothesis: Immune modulation as a novel mechanism for progenitor cell therapy in cardiac muscle. Journal of the American College of Cardiology, 46, 1799–1802.PubMedCrossRef
48.
go back to reference Heil, M., Ziegelhoeffer, T., Mees, B., & Schaper, W. (2004). A different outlook on the role of bone marrow stem cells in vascular growth: Bone marrow delivers software not hardware. Circulation Research, 94, 573–574.PubMedCrossRef Heil, M., Ziegelhoeffer, T., Mees, B., & Schaper, W. (2004). A different outlook on the role of bone marrow stem cells in vascular growth: Bone marrow delivers software not hardware. Circulation Research, 94, 573–574.PubMedCrossRef
49.
go back to reference Frangogiannis, N. G., Smith, C. W., & Entman, M. L. (2002). The inflammatory response in myocardial infarction. Cardiovascular Research, 53, 31–47.PubMedCrossRef Frangogiannis, N. G., Smith, C. W., & Entman, M. L. (2002). The inflammatory response in myocardial infarction. Cardiovascular Research, 53, 31–47.PubMedCrossRef
50.
go back to reference Mann, D. L. (2002). Inflammatory mediators and the failing heart: Past, present, and the foreseeable future. Circulation Research, 91, 988–998.PubMedCrossRef Mann, D. L. (2002). Inflammatory mediators and the failing heart: Past, present, and the foreseeable future. Circulation Research, 91, 988–998.PubMedCrossRef
51.
go back to reference Riese, U., Brenner, S., Docke, W. D., Prosch, S., Reinke, P., et al. (2000). Catecholamines induce IL-10 release in patients suffering from acute myocardial infarction by transactivating its promoter in monocytic but not in T-cells. Molecular and Cellular Biochemistry, 212, 45–50.PubMedCrossRef Riese, U., Brenner, S., Docke, W. D., Prosch, S., Reinke, P., et al. (2000). Catecholamines induce IL-10 release in patients suffering from acute myocardial infarction by transactivating its promoter in monocytic but not in T-cells. Molecular and Cellular Biochemistry, 212, 45–50.PubMedCrossRef
52.
go back to reference Kranz, A., Rau, C., Kochs, M., & Waltenberger, J. (2000). Elevation of vascular endothelial growth factor-A serum levels following acute myocardial infarction. Evidence for its origin and functional significance. Journal of Molecular and Cellular Cardiology, 32, 65–72.PubMedCrossRef Kranz, A., Rau, C., Kochs, M., & Waltenberger, J. (2000). Elevation of vascular endothelial growth factor-A serum levels following acute myocardial infarction. Evidence for its origin and functional significance. Journal of Molecular and Cellular Cardiology, 32, 65–72.PubMedCrossRef
53.
go back to reference Ziegelhoeffer, T., Fernandez, B., Kostin, S., Heil, M., Voswinckel, R., et al. (2004). Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circulation Research, 94, 230–238.PubMedCrossRef Ziegelhoeffer, T., Fernandez, B., Kostin, S., Heil, M., Voswinckel, R., et al. (2004). Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circulation Research, 94, 230–238.PubMedCrossRef
54.
go back to reference Kinnaird, T., Stabile, E., Burnett, M. S., Shou, M., Lee, C. W., et al. (2004). Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation, 109, 1543–1549.PubMedCrossRef Kinnaird, T., Stabile, E., Burnett, M. S., Shou, M., Lee, C. W., et al. (2004). Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation, 109, 1543–1549.PubMedCrossRef
55.
go back to reference Kinnaird, T., Stabile, E., Burnett, M. S., Lee, C. W., Barr, S., et al. (2004). Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circulation Research, 94, 678–685.PubMedCrossRef Kinnaird, T., Stabile, E., Burnett, M. S., Lee, C. W., Barr, S., et al. (2004). Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circulation Research, 94, 678–685.PubMedCrossRef
56.
go back to reference Uemura, R., Xu, M., Ahmad, N., & Ashraf, M. (2006). Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circulation Research, 98, 1414–1421.PubMedCrossRef Uemura, R., Xu, M., Ahmad, N., & Ashraf, M. (2006). Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circulation Research, 98, 1414–1421.PubMedCrossRef
57.
go back to reference Gnecchi, M., He, H., Liang, O. D., Melo, L. G., Morello, F., et al. (2005). Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Natural Medicines, 11, 367–368.CrossRef Gnecchi, M., He, H., Liang, O. D., Melo, L. G., Morello, F., et al. (2005). Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Natural Medicines, 11, 367–368.CrossRef
58.
go back to reference Gnecchi, M., He, H., Noiseux, N., Liang, O. D., Zhang, L., et al. (2006). Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. The FASEB Journal, 20, 661–669.PubMedCrossRef Gnecchi, M., He, H., Noiseux, N., Liang, O. D., Zhang, L., et al. (2006). Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. The FASEB Journal, 20, 661–669.PubMedCrossRef
59.
go back to reference Noiseux, N., Gnecchi, M., Lopez-Ilasaca, M., Zhang, L., Solomon, S. D., et al. (2006). Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Molecular Therapy, 14, 840–850.PubMedCrossRef Noiseux, N., Gnecchi, M., Lopez-Ilasaca, M., Zhang, L., Solomon, S. D., et al. (2006). Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Molecular Therapy, 14, 840–850.PubMedCrossRef
60.
go back to reference Mirotsou, M., Zhang, Z., Deb, A., Zhang, L., Gnecchi, M., et al. (2007). Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proceedings of the National Academy of Sciences of the United States of America, 104, 1643–1648.PubMedCrossRef Mirotsou, M., Zhang, Z., Deb, A., Zhang, L., Gnecchi, M., et al. (2007). Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proceedings of the National Academy of Sciences of the United States of America, 104, 1643–1648.PubMedCrossRef
61.
go back to reference Fazel, S., Cimini, M., Chen, L., Li, S., Angoulvant, D., et al. (2006). Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. Journal of Clinical Investigation, 116, 1865–1877.PubMedCrossRef Fazel, S., Cimini, M., Chen, L., Li, S., Angoulvant, D., et al. (2006). Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. Journal of Clinical Investigation, 116, 1865–1877.PubMedCrossRef
62.
go back to reference Brogi, E., Schatteman, G., Wu, T., Kim, E. A., Varticovski, L., et al. (1996). Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. Journal of Clinical Investigation, 97, 469–476.PubMedCrossRef Brogi, E., Schatteman, G., Wu, T., Kim, E. A., Varticovski, L., et al. (1996). Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. Journal of Clinical Investigation, 97, 469–476.PubMedCrossRef
63.
go back to reference Murtuza, B., Suzuki, K., Bou-Gharios, G., Beauchamp, J. R., Smolenski, R. T., et al. (2004). Transplantation of skeletal myoblasts secreting an IL-1 inhibitor modulates adverse remodeling in infarcted murine myocardium. Proceedings of the National Academy of Sciences of the United States of America, 101, 4216–4221.PubMedCrossRef Murtuza, B., Suzuki, K., Bou-Gharios, G., Beauchamp, J. R., Smolenski, R. T., et al. (2004). Transplantation of skeletal myoblasts secreting an IL-1 inhibitor modulates adverse remodeling in infarcted murine myocardium. Proceedings of the National Academy of Sciences of the United States of America, 101, 4216–4221.PubMedCrossRef
64.
go back to reference Formigli, L., Perna, A. M., Meacci, E., Cinci, L., Margheri, M., et al. (2007). Paracrine effects of transplanted myoblasts and relaxin on post-infarction heart remodelling. Journal of Cellular and Molecular Medicine, 11, 1087–1100.PubMedCrossRef Formigli, L., Perna, A. M., Meacci, E., Cinci, L., Margheri, M., et al. (2007). Paracrine effects of transplanted myoblasts and relaxin on post-infarction heart remodelling. Journal of Cellular and Molecular Medicine, 11, 1087–1100.PubMedCrossRef
65.
go back to reference Perez-Ilzarbe, M., Agbulut, O., Pelacho, B., Ciorba, C., San Jose-Eneriz, E., et al. (2008). Characterization of the paracrine effects of human skeletal myoblasts transplanted in infarcted myocardium. European Journal of Heart Failure, 10, 1065–1072.PubMedCrossRef Perez-Ilzarbe, M., Agbulut, O., Pelacho, B., Ciorba, C., San Jose-Eneriz, E., et al. (2008). Characterization of the paracrine effects of human skeletal myoblasts transplanted in infarcted myocardium. European Journal of Heart Failure, 10, 1065–1072.PubMedCrossRef
66.
go back to reference Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C. J., et al. (2004). Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 109, 1292–1298.PubMedCrossRef Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C. J., et al. (2004). Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 109, 1292–1298.PubMedCrossRef
67.
go back to reference Lapidot, T., Dar, A., & Kollet, O. (2005). How do stem cells find their way home? Blood, 106, 1901–1910.PubMedCrossRef Lapidot, T., Dar, A., & Kollet, O. (2005). How do stem cells find their way home? Blood, 106, 1901–1910.PubMedCrossRef
68.
go back to reference Tilling, L., Chowienczyk, P., & Clapp, B. (2009). Progenitors in motion: Mechanisms of mobilization of endothelial progenitor cells. British Journal of Clinical Pharmacology, 68, 484–492.PubMedCrossRef Tilling, L., Chowienczyk, P., & Clapp, B. (2009). Progenitors in motion: Mechanisms of mobilization of endothelial progenitor cells. British Journal of Clinical Pharmacology, 68, 484–492.PubMedCrossRef
69.
go back to reference Tashiro, K., Tada, H., Heilker, R., Shirozu, M., Nakano, T., et al. (1993). Signal sequence trap: A cloning strategy for secreted proteins and type I membrane proteins. Science, 261, 600–603.PubMedCrossRef Tashiro, K., Tada, H., Heilker, R., Shirozu, M., Nakano, T., et al. (1993). Signal sequence trap: A cloning strategy for secreted proteins and type I membrane proteins. Science, 261, 600–603.PubMedCrossRef
70.
go back to reference Levesque, J. P., Hendy, J., Takamatsu, Y., Simmons, P. J., & Bendall, L. J. (2003). Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. Journal of Clinical Investigation, 111, 187–196.PubMed Levesque, J. P., Hendy, J., Takamatsu, Y., Simmons, P. J., & Bendall, L. J. (2003). Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. Journal of Clinical Investigation, 111, 187–196.PubMed
71.
go back to reference De Falco, E., Porcelli, D., Torella, A. R., Straino, S., Iachininoto, M. G., et al. (2004). SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood, 104, 3472–3482.PubMedCrossRef De Falco, E., Porcelli, D., Torella, A. R., Straino, S., Iachininoto, M. G., et al. (2004). SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood, 104, 3472–3482.PubMedCrossRef
72.
go back to reference Burns, J. M., Summers, B. C., Wang, Y., Melikian, A., Berahovich, R., et al. (2006). A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. The Journal of Experimental Medicine, 203, 2201–2213.PubMedCrossRef Burns, J. M., Summers, B. C., Wang, Y., Melikian, A., Berahovich, R., et al. (2006). A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. The Journal of Experimental Medicine, 203, 2201–2213.PubMedCrossRef
73.
go back to reference Peichev, M., Naiyer, A. J., Pereira, D., Zhu, Z., Lane, W. J., et al. (2000). Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 95, 952–958.PubMed Peichev, M., Naiyer, A. J., Pereira, D., Zhu, Z., Lane, W. J., et al. (2000). Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 95, 952–958.PubMed
74.
go back to reference Ceradini, D. J., & Gurtner, G. C. (2005). Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends in Cardiovascular Medicine, 15, 57–63.PubMedCrossRef Ceradini, D. J., & Gurtner, G. C. (2005). Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends in Cardiovascular Medicine, 15, 57–63.PubMedCrossRef
75.
go back to reference Heissig, B., Hattori, K., Dias, S., Friedrich, M., Ferris, B., et al. (2002). Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell, 109, 625–637.PubMedCrossRef Heissig, B., Hattori, K., Dias, S., Friedrich, M., Ferris, B., et al. (2002). Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell, 109, 625–637.PubMedCrossRef
76.
go back to reference Petit, I., Jin, D., & Rafii, S. (2007). The SDF-1-CXCR4 signaling pathway: A molecular hub modulating neo-angiogenesis. Trends in Immunology, 28, 299–307.PubMedCrossRef Petit, I., Jin, D., & Rafii, S. (2007). The SDF-1-CXCR4 signaling pathway: A molecular hub modulating neo-angiogenesis. Trends in Immunology, 28, 299–307.PubMedCrossRef
77.
go back to reference Massa, M., Rosti, V., Ferrario, M., Campanelli, R., Ramajoli, I., et al. (2005). Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood, 105, 199–206.PubMedCrossRef Massa, M., Rosti, V., Ferrario, M., Campanelli, R., Ramajoli, I., et al. (2005). Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood, 105, 199–206.PubMedCrossRef
78.
go back to reference Isner, J. M. (2000). Tissue responses to ischemia: Local and remote responses for preserving perfusion of ischemic muscle. Journal of Clinical Investigation, 106, 615–619.PubMedCrossRef Isner, J. M. (2000). Tissue responses to ischemia: Local and remote responses for preserving perfusion of ischemic muscle. Journal of Clinical Investigation, 106, 615–619.PubMedCrossRef
79.
go back to reference Tepper, O. M., Capla, J. M., Galiano, R. D., Ceradini, D. J., Callaghan, M. J., et al. (2005). Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood, 105, 1068–1077.PubMedCrossRef Tepper, O. M., Capla, J. M., Galiano, R. D., Ceradini, D. J., Callaghan, M. J., et al. (2005). Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood, 105, 1068–1077.PubMedCrossRef
80.
go back to reference Minchenko, A., Salceda, S., Bauer, T., & Caro, J. (1994). Hypoxia regulatory elements of the human vascular endothelial growth factor gene. Cellular & Molecular Biology Research, 40, 35–39. Minchenko, A., Salceda, S., Bauer, T., & Caro, J. (1994). Hypoxia regulatory elements of the human vascular endothelial growth factor gene. Cellular & Molecular Biology Research, 40, 35–39.
81.
go back to reference Laterveer, L., Zijlmans, J. M., Lindley, I. J., Hamilton, M. S., Willemze, R., et al. (1996). Improved survival of lethally irradiated recipient mice transplanted with circulating progenitor cells mobilized by IL-8 after pretreatment with stem cell factor. Experimental Hematology, 24, 1387–1393.PubMed Laterveer, L., Zijlmans, J. M., Lindley, I. J., Hamilton, M. S., Willemze, R., et al. (1996). Improved survival of lethally irradiated recipient mice transplanted with circulating progenitor cells mobilized by IL-8 after pretreatment with stem cell factor. Experimental Hematology, 24, 1387–1393.PubMed
82.
go back to reference King, A. G., Horowitz, D., Dillon, S. B., Levin, R., Farese, A. M., et al. (2001). Rapid mobilization of murine hematopoietic stem cells with enhanced engraftment properties and evaluation of hematopoietic progenitor cell mobilization in rhesus monkeys by a single injection of SB-251353, a specific truncated form of the human CXC chemokine GRObeta. Blood, 97, 1534–1542.PubMedCrossRef King, A. G., Horowitz, D., Dillon, S. B., Levin, R., Farese, A. M., et al. (2001). Rapid mobilization of murine hematopoietic stem cells with enhanced engraftment properties and evaluation of hematopoietic progenitor cell mobilization in rhesus monkeys by a single injection of SB-251353, a specific truncated form of the human CXC chemokine GRObeta. Blood, 97, 1534–1542.PubMedCrossRef
83.
go back to reference Discher, D. E., Mooney, D. J., & Zandstra, P. W. (2009). Growth factors, matrices, and forces combine and control stem cells. Science, 324, 1673–1677.PubMedCrossRef Discher, D. E., Mooney, D. J., & Zandstra, P. W. (2009). Growth factors, matrices, and forces combine and control stem cells. Science, 324, 1673–1677.PubMedCrossRef
84.
go back to reference Yla-Herttuala, S., Rissanen, T. T., Vajanto, I., & Hartikainen, J. (2007). Vascular endothelial growth factors: Biology and current status of clinical applications in cardiovascular medicine. Journal of the American College of Cardiology, 49, 1015–1026.PubMedCrossRef Yla-Herttuala, S., Rissanen, T. T., Vajanto, I., & Hartikainen, J. (2007). Vascular endothelial growth factors: Biology and current status of clinical applications in cardiovascular medicine. Journal of the American College of Cardiology, 49, 1015–1026.PubMedCrossRef
85.
go back to reference Hattori, K., Dias, S., Heissig, B., Hackett, N. R., Lyden, D., et al. (2001). Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. The Journal of Experimental Medicine, 193, 1005–1014.PubMedCrossRef Hattori, K., Dias, S., Heissig, B., Hackett, N. R., Lyden, D., et al. (2001). Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. The Journal of Experimental Medicine, 193, 1005–1014.PubMedCrossRef
86.
go back to reference Hiasa, K., Egashira, K., Kitamoto, S., Ishibashi, M., Inoue, S., et al. (2004). Bone marrow mononuclear cell therapy limits myocardial infarct size through vascular endothelial growth factor. Basic Research in Cardiology, 99, 165–172.PubMedCrossRef Hiasa, K., Egashira, K., Kitamoto, S., Ishibashi, M., Inoue, S., et al. (2004). Bone marrow mononuclear cell therapy limits myocardial infarct size through vascular endothelial growth factor. Basic Research in Cardiology, 99, 165–172.PubMedCrossRef
87.
go back to reference Laguens, R., Cabeza Meckert, P., Vera Janavel, G., Del Valle, H., Lascano, E., et al. (2002). Entrance in mitosis of adult cardiomyocytes in ischemic pig hearts after plasmid-mediated rhVEGF165 gene transfer. Gene Therapy, 9, 1676–1681.PubMedCrossRef Laguens, R., Cabeza Meckert, P., Vera Janavel, G., Del Valle, H., Lascano, E., et al. (2002). Entrance in mitosis of adult cardiomyocytes in ischemic pig hearts after plasmid-mediated rhVEGF165 gene transfer. Gene Therapy, 9, 1676–1681.PubMedCrossRef
88.
go back to reference Zarnegar, R., & Michalopoulos, G. K. (1995). The many faces of hepatocyte growth factor: From hepatopoiesis to hematopoiesis. The Journal of Cell Biology, 129, 1177–1180.PubMedCrossRef Zarnegar, R., & Michalopoulos, G. K. (1995). The many faces of hepatocyte growth factor: From hepatopoiesis to hematopoiesis. The Journal of Cell Biology, 129, 1177–1180.PubMedCrossRef
89.
go back to reference Nakamura, T., Mizuno, S., Matsumoto, K., Sawa, Y., & Matsuda, H. (2000). Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. Journal of Clinical Investigation, 106, 1511–1519.PubMedCrossRef Nakamura, T., Mizuno, S., Matsumoto, K., Sawa, Y., & Matsuda, H. (2000). Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. Journal of Clinical Investigation, 106, 1511–1519.PubMedCrossRef
90.
go back to reference Niagara, M. I., Haider, H., Jiang, S., & Ashraf, M. (2007). Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circulation Research, 100, 545–555.PubMedCrossRef Niagara, M. I., Haider, H., Jiang, S., & Ashraf, M. (2007). Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circulation Research, 100, 545–555.PubMedCrossRef
91.
go back to reference Miyagawa, S., Sawa, Y., Taketani, S., Kawaguchi, N., Nakamura, T., et al. (2002). Myocardial regeneration therapy for heart failure: Hepatocyte growth factor enhances the effect of cellular cardiomyoplasty. Circulation, 105, 2556–2561.PubMedCrossRef Miyagawa, S., Sawa, Y., Taketani, S., Kawaguchi, N., Nakamura, T., et al. (2002). Myocardial regeneration therapy for heart failure: Hepatocyte growth factor enhances the effect of cellular cardiomyoplasty. Circulation, 105, 2556–2561.PubMedCrossRef
92.
go back to reference Duan, H. F., Wu, C. T., Wu, D. L., Lu, Y., Liu, H. J., et al. (2003). Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor. Molecular Therapy, 8, 467–474.PubMedCrossRef Duan, H. F., Wu, C. T., Wu, D. L., Lu, Y., Liu, H. J., et al. (2003). Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor. Molecular Therapy, 8, 467–474.PubMedCrossRef
93.
go back to reference Urbanek, K., Torella, D., Sheikh, F., De Angelis, A., Nurzynska, D., et al. (2005). Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proceedings of the National Academy of Sciences of the United States of America, 102, 8692–8697.PubMedCrossRef Urbanek, K., Torella, D., Sheikh, F., De Angelis, A., Nurzynska, D., et al. (2005). Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proceedings of the National Academy of Sciences of the United States of America, 102, 8692–8697.PubMedCrossRef
94.
go back to reference Luster, A. D. (1998). Chemokines–chemotactic cytokines that mediate inflammation. The New England Journal of Medicine, 338, 436–445.PubMedCrossRef Luster, A. D. (1998). Chemokines–chemotactic cytokines that mediate inflammation. The New England Journal of Medicine, 338, 436–445.PubMedCrossRef
95.
go back to reference Murphy, P. M. (2001). Chemokines and the molecular basis of cancer metastasis. The New England Journal of Medicine, 345, 833–835.PubMedCrossRef Murphy, P. M. (2001). Chemokines and the molecular basis of cancer metastasis. The New England Journal of Medicine, 345, 833–835.PubMedCrossRef
96.
go back to reference Orimo, A., Gupta, P. B., Sgroi, D. C., Arenzana-Seisdedos, F., Delaunay, T., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121, 335–348.PubMedCrossRef Orimo, A., Gupta, P. B., Sgroi, D. C., Arenzana-Seisdedos, F., Delaunay, T., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121, 335–348.PubMedCrossRef
97.
go back to reference Staller, P., Sulitkova, J., Lisztwan, J., Moch, H., Oakeley, E. J., et al. (2003). Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL. Nature, 425, 307–311.PubMedCrossRef Staller, P., Sulitkova, J., Lisztwan, J., Moch, H., Oakeley, E. J., et al. (2003). Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL. Nature, 425, 307–311.PubMedCrossRef
98.
go back to reference Schutyser, E., Su, Y., Yu, Y., Gouwy, M., Zaja-Milatovic, S., et al. (2007). Hypoxia enhances CXCR4 expression in human microvascular endothelial cells and human melanoma cells. European Cytokine Network, 18, 59–70.PubMed Schutyser, E., Su, Y., Yu, Y., Gouwy, M., Zaja-Milatovic, S., et al. (2007). Hypoxia enhances CXCR4 expression in human microvascular endothelial cells and human melanoma cells. European Cytokine Network, 18, 59–70.PubMed
99.
go back to reference Abbott, J. D., Huang, Y., Liu, D., Hickey, R., Krause, D. S., et al. (2004). Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation, 110, 3300–3305.PubMedCrossRef Abbott, J. D., Huang, Y., Liu, D., Hickey, R., Krause, D. S., et al. (2004). Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation, 110, 3300–3305.PubMedCrossRef
100.
go back to reference Askari, A. T., Unzek, S., Popovic, Z. B., Goldman, C. K., Forudi, F., et al. (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 362, 697–703.PubMedCrossRef Askari, A. T., Unzek, S., Popovic, Z. B., Goldman, C. K., Forudi, F., et al. (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 362, 697–703.PubMedCrossRef
101.
go back to reference Yamaguchi, J., Kusano, K. F., Masuo, O., Kawamoto, A., Silver, M., et al. (2003). Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation, 107, 1322–1328.PubMedCrossRef Yamaguchi, J., Kusano, K. F., Masuo, O., Kawamoto, A., Silver, M., et al. (2003). Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation, 107, 1322–1328.PubMedCrossRef
102.
go back to reference Heldin, C. H., Westermark, B., & Wasteson, A. (1981). Platelet-derived growth factor. Isolation by a large-scale procedure and analysis of subunit composition. Biochemical Journal, 193, 907–913.PubMed Heldin, C. H., Westermark, B., & Wasteson, A. (1981). Platelet-derived growth factor. Isolation by a large-scale procedure and analysis of subunit composition. Biochemical Journal, 193, 907–913.PubMed
103.
go back to reference Raines, E. W., & Ross, R. (1982). Platelet-derived growth factor. I. High yield purification and evidence for multiple forms. Journal of Biological Chemistry, 257, 5154–5160.PubMed Raines, E. W., & Ross, R. (1982). Platelet-derived growth factor. I. High yield purification and evidence for multiple forms. Journal of Biological Chemistry, 257, 5154–5160.PubMed
104.
go back to reference Raines, E. W. (2004). PDGF and cardiovascular disease. Cytokine & Growth Factor Reviews, 15, 237–254.CrossRef Raines, E. W. (2004). PDGF and cardiovascular disease. Cytokine & Growth Factor Reviews, 15, 237–254.CrossRef
105.
go back to reference Sarzani, R., Arnaldi, G., & Chobanian, A. V. (1991). Hypertension-induced changes of platelet-derived growth factor receptor expression in rat aorta and heart. Hypertension, 17, 888–895.PubMed Sarzani, R., Arnaldi, G., & Chobanian, A. V. (1991). Hypertension-induced changes of platelet-derived growth factor receptor expression in rat aorta and heart. Hypertension, 17, 888–895.PubMed
106.
go back to reference Edelberg, J. M., Lee, S. H., Kaur, M., Tang, L., Feirt, N. M., et al. (2002). Platelet-derived growth factor-AB limits the extent of myocardial infarction in a rat model: Feasibility of restoring impaired angiogenic capacity in the aging heart. Circulation, 105, 608–613.PubMedCrossRef Edelberg, J. M., Lee, S. H., Kaur, M., Tang, L., Feirt, N. M., et al. (2002). Platelet-derived growth factor-AB limits the extent of myocardial infarction in a rat model: Feasibility of restoring impaired angiogenic capacity in the aging heart. Circulation, 105, 608–613.PubMedCrossRef
107.
go back to reference Zheng, J., Shin, J. H., Xaymardan, M., Chin, A., Duignan, I., et al. (2004). Platelet-derived growth factor improves cardiac function in a rodent myocardial infarction model. Coronary Artery Disease, 15, 59–64.PubMedCrossRef Zheng, J., Shin, J. H., Xaymardan, M., Chin, A., Duignan, I., et al. (2004). Platelet-derived growth factor improves cardiac function in a rodent myocardial infarction model. Coronary Artery Disease, 15, 59–64.PubMedCrossRef
108.
go back to reference Xaymardan, M., Tang, L., Zagreda, L., Pallante, B., Zheng, J., et al. (2004). Platelet-derived growth factor-AB promotes the generation of adult bone marrow-derived cardiac myocytes. Circulation Research, 94, E39–E45.PubMedCrossRef Xaymardan, M., Tang, L., Zagreda, L., Pallante, B., Zheng, J., et al. (2004). Platelet-derived growth factor-AB promotes the generation of adult bone marrow-derived cardiac myocytes. Circulation Research, 94, E39–E45.PubMedCrossRef
109.
go back to reference Hao, X., Mansson-Broberg, A., Blomberg, P., Dellgren, G., Siddiqui, A. J., et al. (2004). Angiogenic and cardiac functional effects of dual gene transfer of VEGF-A165 and PDGF-BB after myocardial infarction. Biochemical and Biophysical Research Communications, 322, 292–296.PubMedCrossRef Hao, X., Mansson-Broberg, A., Blomberg, P., Dellgren, G., Siddiqui, A. J., et al. (2004). Angiogenic and cardiac functional effects of dual gene transfer of VEGF-A165 and PDGF-BB after myocardial infarction. Biochemical and Biophysical Research Communications, 322, 292–296.PubMedCrossRef
110.
go back to reference Hao, X., Mansson-Broberg, A., Gustafsson, T., Grinnemo, K. H., Blomberg, P., et al. (2004). Angiogenic effects of dual gene transfer of bFGF and PDGF-BB after myocardial infarction. Biochemical and Biophysical Research Communications, 315, 1058–1063.PubMedCrossRef Hao, X., Mansson-Broberg, A., Gustafsson, T., Grinnemo, K. H., Blomberg, P., et al. (2004). Angiogenic effects of dual gene transfer of bFGF and PDGF-BB after myocardial infarction. Biochemical and Biophysical Research Communications, 315, 1058–1063.PubMedCrossRef
111.
go back to reference Schweigerer, L., Neufeld, G., Friedman, J., Abraham, J. A., Fiddes, J. C., et al. (1987). Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth. Nature, 325, 257–259.PubMedCrossRef Schweigerer, L., Neufeld, G., Friedman, J., Abraham, J. A., Fiddes, J. C., et al. (1987). Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth. Nature, 325, 257–259.PubMedCrossRef
112.
go back to reference Schumacher, B., Pecher, P., von Specht, B. U., & Stegmann, T. (1998). Induction of neoangiogenesis in ischemic myocardium by human growth factors: First clinical results of a new treatment of coronary heart disease. Circulation, 97, 645–650.PubMed Schumacher, B., Pecher, P., von Specht, B. U., & Stegmann, T. (1998). Induction of neoangiogenesis in ischemic myocardium by human growth factors: First clinical results of a new treatment of coronary heart disease. Circulation, 97, 645–650.PubMed
113.
go back to reference Henry, T. D., Grines, C. L., Watkins, M. W., Dib, N., Barbeau, G., et al. (2007). Effects of Ad5FGF-4 in patients with angina: An analysis of pooled data from the AGENT-3 and AGENT-4 trials. Journal of the American College of Cardiology, 50, 1038–1046.PubMedCrossRef Henry, T. D., Grines, C. L., Watkins, M. W., Dib, N., Barbeau, G., et al. (2007). Effects of Ad5FGF-4 in patients with angina: An analysis of pooled data from the AGENT-3 and AGENT-4 trials. Journal of the American College of Cardiology, 50, 1038–1046.PubMedCrossRef
114.
go back to reference Lu, H., Xu, X., Zhang, M., Cao, R., Brakenhielm, E., et al. (2007). Combinatorial protein therapy of angiogenic and arteriogenic factors remarkably improves collaterogenesis and cardiac function in pigs. Proceedings of the National Academy of Sciences of the United States of America, 104, 12140–12145.PubMedCrossRef Lu, H., Xu, X., Zhang, M., Cao, R., Brakenhielm, E., et al. (2007). Combinatorial protein therapy of angiogenic and arteriogenic factors remarkably improves collaterogenesis and cardiac function in pigs. Proceedings of the National Academy of Sciences of the United States of America, 104, 12140–12145.PubMedCrossRef
115.
go back to reference Padua, R. R., & Kardami, E. (1993). Increased basic fibroblast growth factor (bFGF) accumulation and distinct patterns of localization in isoproterenol-induced cardiomyocyte injury. Growth Factors, 8, 291–306.PubMedCrossRef Padua, R. R., & Kardami, E. (1993). Increased basic fibroblast growth factor (bFGF) accumulation and distinct patterns of localization in isoproterenol-induced cardiomyocyte injury. Growth Factors, 8, 291–306.PubMedCrossRef
116.
go back to reference Kardami, E. (1990). Stimulation and inhibition of cardiac myocyte proliferation in vitro. Molecular and Cellular Biochemistry, 92, 129–135.PubMedCrossRef Kardami, E. (1990). Stimulation and inhibition of cardiac myocyte proliferation in vitro. Molecular and Cellular Biochemistry, 92, 129–135.PubMedCrossRef
117.
go back to reference Sakakibara, Y., Nishimura, K., Tambara, K., Yamamoto, M., Lu, F., et al. (2002). Prevascularization with gelatin microspheres containing basic fibroblast growth factor enhances the benefits of cardiomyocyte transplantation. The Journal of Thoracic and Cardiovascular Surgery, 124, 50–56.PubMedCrossRef Sakakibara, Y., Nishimura, K., Tambara, K., Yamamoto, M., Lu, F., et al. (2002). Prevascularization with gelatin microspheres containing basic fibroblast growth factor enhances the benefits of cardiomyocyte transplantation. The Journal of Thoracic and Cardiovascular Surgery, 124, 50–56.PubMedCrossRef
118.
go back to reference Baker, J., Liu, J. P., Robertson, E. J., & Efstratiadis, A. (1993). Role of insulin-like growth factors in embryonic and postnatal growth. Cell, 75, 73–82.PubMed Baker, J., Liu, J. P., Robertson, E. J., & Efstratiadis, A. (1993). Role of insulin-like growth factors in embryonic and postnatal growth. Cell, 75, 73–82.PubMed
119.
go back to reference Le Roith, D. (1997). Seminars in medicine of the Beth Israel Deaconess Medical Center. Insulin-like growth factors. New England Journal of Medicine, 336, 633–640.PubMedCrossRef Le Roith, D. (1997). Seminars in medicine of the Beth Israel Deaconess Medical Center. Insulin-like growth factors. New England Journal of Medicine, 336, 633–640.PubMedCrossRef
120.
go back to reference Werner, H., & Le Roith, D. (1997). The insulin-like growth factor-I receptor signaling pathways are important for tumorigenesis and inhibition of apoptosis. Critical Reviews in Oncogenesis, 8, 71–92.PubMed Werner, H., & Le Roith, D. (1997). The insulin-like growth factor-I receptor signaling pathways are important for tumorigenesis and inhibition of apoptosis. Critical Reviews in Oncogenesis, 8, 71–92.PubMed
121.
go back to reference Ishii, D. N., & Lupien, S. B. (1995). Insulin-like growth factors protect against diabetic neuropathy: Effects on sensory nerve regeneration in rats. Journal of Neuroscience Research, 40, 138–144.PubMedCrossRef Ishii, D. N., & Lupien, S. B. (1995). Insulin-like growth factors protect against diabetic neuropathy: Effects on sensory nerve regeneration in rats. Journal of Neuroscience Research, 40, 138–144.PubMedCrossRef
122.
go back to reference Arsenijevic, Y., Weiss, S., Schneider, B., & Aebischer, P. (2001). Insulin-like growth factor-I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. The Journal of Neuroscience, 21, 7194–7202.PubMed Arsenijevic, Y., Weiss, S., Schneider, B., & Aebischer, P. (2001). Insulin-like growth factor-I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. The Journal of Neuroscience, 21, 7194–7202.PubMed
123.
go back to reference de Pablo, F., & de la Rosa, E. J. (1995). The developing CNS: A scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends in Neurosciences, 18, 143–150.PubMedCrossRef de Pablo, F., & de la Rosa, E. J. (1995). The developing CNS: A scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends in Neurosciences, 18, 143–150.PubMedCrossRef
124.
go back to reference Urbanek, K., Rota, M., Cascapera, S., Bearzi, C., Nascimbene, A., et al. (2005). Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circulation Research, 97, 663–673.PubMedCrossRef Urbanek, K., Rota, M., Cascapera, S., Bearzi, C., Nascimbene, A., et al. (2005). Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circulation Research, 97, 663–673.PubMedCrossRef
125.
go back to reference Border, W. A., & Noble, N. A. (1994). Transforming growth factor beta in tissue fibrosis. The New England Journal of Medicine, 331, 1286–1292.PubMedCrossRef Border, W. A., & Noble, N. A. (1994). Transforming growth factor beta in tissue fibrosis. The New England Journal of Medicine, 331, 1286–1292.PubMedCrossRef
126.
go back to reference Blobe, G. C., Schiemann, W. P., & Lodish, H. F. (2000). Role of transforming growth factor beta in human disease. The New England Journal of Medicine, 342, 1350–1358.PubMedCrossRef Blobe, G. C., Schiemann, W. P., & Lodish, H. F. (2000). Role of transforming growth factor beta in human disease. The New England Journal of Medicine, 342, 1350–1358.PubMedCrossRef
127.
go back to reference Dickson, M. C., Martin, J. S., Cousins, F. M., Kulkarni, A. B., Karlsson, S., et al. (1995). Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development, 121, 1845–1854.PubMed Dickson, M. C., Martin, J. S., Cousins, F. M., Kulkarni, A. B., Karlsson, S., et al. (1995). Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development, 121, 1845–1854.PubMed
128.
go back to reference Oshima, M., Oshima, H., & Taketo, M. M. (1996). TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Developmental Biology, 179, 297–302.PubMedCrossRef Oshima, M., Oshima, H., & Taketo, M. M. (1996). TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Developmental Biology, 179, 297–302.PubMedCrossRef
129.
go back to reference Burrows, F. J., Derbyshire, E. J., Tazzari, P. L., Amlot, P., Gazdar, A. F., et al. (1995). Up-regulation of endoglin on vascular endothelial cells in human solid tumors: Implications for diagnosis and therapy. Clinical Cancer Research, 1, 1623–1634.PubMed Burrows, F. J., Derbyshire, E. J., Tazzari, P. L., Amlot, P., Gazdar, A. F., et al. (1995). Up-regulation of endoglin on vascular endothelial cells in human solid tumors: Implications for diagnosis and therapy. Clinical Cancer Research, 1, 1623–1634.PubMed
130.
go back to reference Bartram, U., Molin, D. G., Wisse, L. J., Mohamad, A., Sanford, L. P., et al. (2001). Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGF-beta(2)-knockout mice. Circulation, 103, 2745–2752.PubMed Bartram, U., Molin, D. G., Wisse, L. J., Mohamad, A., Sanford, L. P., et al. (2001). Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGF-beta(2)-knockout mice. Circulation, 103, 2745–2752.PubMed
131.
go back to reference Goumans, M. J., Valdimarsdottir, G., Itoh, S., Rosendahl, A., Sideras, P., et al. (2002). Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. The EMBO Journal, 21, 1743–1753.PubMedCrossRef Goumans, M. J., Valdimarsdottir, G., Itoh, S., Rosendahl, A., Sideras, P., et al. (2002). Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. The EMBO Journal, 21, 1743–1753.PubMedCrossRef
132.
go back to reference Li, J., Hampton, T., Morgan, J. P., & Simons, M. (1997). Stretch-induced VEGF expression in the heart. Journal of Clinical Investigation, 100, 18–24.PubMedCrossRef Li, J., Hampton, T., Morgan, J. P., & Simons, M. (1997). Stretch-induced VEGF expression in the heart. Journal of Clinical Investigation, 100, 18–24.PubMedCrossRef
133.
go back to reference Li, T. S., Hayashi, M., Ito, H., Furutani, A., Murata, T., et al. (2005). Regeneration of infarcted myocardium by intramyocardial implantation of ex vivo transforming growth factor-beta-preprogrammed bone marrow stem cells. Circulation, 111, 2438–2445.PubMedCrossRef Li, T. S., Hayashi, M., Ito, H., Furutani, A., Murata, T., et al. (2005). Regeneration of infarcted myocardium by intramyocardial implantation of ex vivo transforming growth factor-beta-preprogrammed bone marrow stem cells. Circulation, 111, 2438–2445.PubMedCrossRef
134.
go back to reference Dimmeler, S., & Leri, A. (2008). Aging and disease as modifiers of efficacy of cell therapy. Circulation Research, 102, 1319–1330.PubMedCrossRef Dimmeler, S., & Leri, A. (2008). Aging and disease as modifiers of efficacy of cell therapy. Circulation Research, 102, 1319–1330.PubMedCrossRef
135.
go back to reference Valgimigli, M., Rigolin, G. M., Fucili, A., Porta, M. D., Soukhomovskaia, O., et al. (2004). CD34+ and endothelial progenitor cells in patients with various degrees of congestive heart failure. Circulation, 110, 1209–1212.PubMedCrossRef Valgimigli, M., Rigolin, G. M., Fucili, A., Porta, M. D., Soukhomovskaia, O., et al. (2004). CD34+ and endothelial progenitor cells in patients with various degrees of congestive heart failure. Circulation, 110, 1209–1212.PubMedCrossRef
136.
go back to reference Seeger, F. H., Tonn, T., Krzossok, N., Zeiher, A. M., & Dimmeler, S. (2007). Cell isolation procedures matter: A comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. European Heart Journal, 28, 766–772.PubMedCrossRef Seeger, F. H., Tonn, T., Krzossok, N., Zeiher, A. M., & Dimmeler, S. (2007). Cell isolation procedures matter: A comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. European Heart Journal, 28, 766–772.PubMedCrossRef
137.
go back to reference Woo, Y. J., Panlilio, C. M., Cheng, R. K., Liao, G. P., Atluri, P., et al. (2006). Therapeutic delivery of cyclin A2 induces myocardial regeneration and enhances cardiac function in ischemic heart failure. Circulation, 114, I206–I213.PubMedCrossRef Woo, Y. J., Panlilio, C. M., Cheng, R. K., Liao, G. P., Atluri, P., et al. (2006). Therapeutic delivery of cyclin A2 induces myocardial regeneration and enhances cardiac function in ischemic heart failure. Circulation, 114, I206–I213.PubMedCrossRef
138.
go back to reference Kuhn, B., del Monte, F., Hajjar, R. J., Chang, Y. S., Lebeche, D., et al. (2007). Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Natural Medicines, 13, 962–969.CrossRef Kuhn, B., del Monte, F., Hajjar, R. J., Chang, Y. S., Lebeche, D., et al. (2007). Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Natural Medicines, 13, 962–969.CrossRef
139.
go back to reference Chien, K. R., Domian, I. J., & Parker, K. K. (2008). Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science, 322, 1494–1497.PubMedCrossRef Chien, K. R., Domian, I. J., & Parker, K. K. (2008). Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science, 322, 1494–1497.PubMedCrossRef
140.
go back to reference Bursac, N. (2007). Stem cell therapies for heart disease: Why do we need bioengineers? IEEE Engineering in Medicine and Biology Magazine, 26, 76–79.PubMedCrossRef Bursac, N. (2007). Stem cell therapies for heart disease: Why do we need bioengineers? IEEE Engineering in Medicine and Biology Magazine, 26, 76–79.PubMedCrossRef
Metadata
Title
The Paracrine Effect: Pivotal Mechanism in Cell-Based Cardiac Repair
Authors
Simon Maltais
Jacques P. Tremblay
Louis P. Perrault
Hung Q. Ly
Publication date
01-12-2010
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 6/2010
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-010-9198-2

Other articles of this Issue 6/2010

Journal of Cardiovascular Translational Research 6/2010 Go to the issue