Skip to main content
Top
Published in: Systematic Reviews 1/2017

Open Access 01-12-2017 | Research

The number of stimuli required to reliably assess corticomotor excitability and primary motor cortical representations using transcranial magnetic stimulation (TMS): a systematic review and meta-analysis

Authors: Rocco Cavaleri, Siobhan M. Schabrun, Lucy S. Chipchase

Published in: Systematic Reviews | Issue 1/2017

Login to get access

Abstract

Background

Transcranial magnetic stimulation (TMS) is a non-invasive means by which to assess the structure and function of the central nervous system. Current practices involve the administration of multiple stimuli over target areas of a participant’s scalp. Decreasing the number of stimuli delivered during TMS assessments would improve time efficiency and decrease participant demand. However, doing so may also compromise the within- or between-session reliability of the technique. The aim of this review was therefore to determine the minimum number of TMS stimuli required to reliably measure (i) corticomotor excitability of a target muscle at a single cranial site and (ii) topography of the primary motor cortical representation of a target muscle across multiple cranial sites.

Methods

Database searches were performed to identify diagnostic reliability studies published before May 2015. Two independent reviewers extracted data from studies employing single-pulse TMS to measure (i) the corticomotor excitability at a single cranial site or (ii) the topographic cortical organisation of a target muscle across a number of cranial sites. Outcome measures included motor evoked potential amplitude, map volume, number of active map sites and location of the map centre of gravity.

Results

Only studies comparing the reliability of varying numbers of stimuli delivered to a single cranial site were identified. Five was the lowest number of stimuli that could be delivered to produce excellent within-session motor evoked potential (MEP) amplitude reliability (intraclass correlation coefficient (ICC) = 0.92, 95% CI 0.87 to 0.95). Ten stimuli were required to achieve consistent between-session MEP amplitudes among healthy participants (ICC = 0.89, 95% CI 0.76 to 0.95). However, between-session reliability was influenced by participant characteristics, intersession intervals and target musculature.

Conclusions

Further exploration of the reliability of multi-site TMS mapping is required. Five stimuli produce reliable MEP recordings during single-site TMS investigations involving one session. For single-site analyses involving multiple sessions, ten stimuli are recommended when investigating corticomotor excitability in healthy participants or the upper limb musculature. However, greater numbers of stimuli may be required for clinical populations or assessments involving the lower limb.

Systematic review registration

PROSPERO CRD42015024579
Appendix
Available only for authorised users
Literature
3.
7.
go back to reference Schabrun SM, Hodges PW, Vicenzino B, Jones E, Chipchase LS. Novel adaptations in motor cortical maps: the relationship to persistent elbow pain. Med Sci Sports Exerc. 2014;5(1):1–34. doi:10.1249/mss.0000000000000469. Schabrun SM, Hodges PW, Vicenzino B, Jones E, Chipchase LS. Novel adaptations in motor cortical maps: the relationship to persistent elbow pain. Med Sci Sports Exerc. 2014;5(1):1–34. doi:10.​1249/​mss.​0000000000000469​.
16.
go back to reference Cavaleri R, Schabrun SM, Chipchase LS. Determining the number of stimuli required to reliably assess corticomotor excitability and primary motor cortical representations using transcranial magnetic stimulation (TMS): a protocol for a systematic review and meta-analysis. Syst Rev. 2015;4(107):1–5. doi:10.1186/s13643-015-0095-2. Cavaleri R, Schabrun SM, Chipchase LS. Determining the number of stimuli required to reliably assess corticomotor excitability and primary motor cortical representations using transcranial magnetic stimulation (TMS): a protocol for a systematic review and meta-analysis. Syst Rev. 2015;4(107):1–5. doi:10.​1186/​s13643-015-0095-2.
19.
22.
go back to reference Bastani A, Jaberzadeh S. A higher number of TMS-elicited MEP from a combined hotspot improves intra- and inter-session reliability of the upper limb muscles in healthy individuals. PLoS One. 2012;7(10):1–8. doi:10.1371/journal.pone.0047582.CrossRef Bastani A, Jaberzadeh S. A higher number of TMS-elicited MEP from a combined hotspot improves intra- and inter-session reliability of the upper limb muscles in healthy individuals. PLoS One. 2012;7(10):1–8. doi:10.​1371/​journal.​pone.​0047582.CrossRef
25.
go back to reference Doeltgen S, Ridding M, O’Beirne G, Dalrymple-Alford J, Huckabee M. Test-retest reliability of motor evoked potentials (MEPs) at the submental muscle group during volitional swallowing. J Neurosci Meth. 2009;178:134–7. doi:10.1016/j.neumeth.2008.12.005.CrossRef Doeltgen S, Ridding M, O’Beirne G, Dalrymple-Alford J, Huckabee M. Test-retest reliability of motor evoked potentials (MEPs) at the submental muscle group during volitional swallowing. J Neurosci Meth. 2009;178:134–7. doi:10.​1016/​j.​neumeth.​2008.​12.​005.CrossRef
28.
go back to reference Carroll T, Riek S, Carson R. Reliability of the input–output properties of the cortico-spinal pathway obtained from transcranial magnetic and electrical stimulation. J Neurosci Meth. 2001;112(2):193–202. doi:10.1016/s0165-0270(01)00468-x.CrossRef Carroll T, Riek S, Carson R. Reliability of the input–output properties of the cortico-spinal pathway obtained from transcranial magnetic and electrical stimulation. J Neurosci Meth. 2001;112(2):193–202. doi:10.​1016/​s0165-0270(01)00468-x.CrossRef
29.
31.
go back to reference Portney L, Watkins M. Foundations of clinical research: application to practice. 2nd ed. Melbourne: Pearson; 2009. Portney L, Watkins M. Foundations of clinical research: application to practice. 2nd ed. Melbourne: Pearson; 2009.
Metadata
Title
The number of stimuli required to reliably assess corticomotor excitability and primary motor cortical representations using transcranial magnetic stimulation (TMS): a systematic review and meta-analysis
Authors
Rocco Cavaleri
Siobhan M. Schabrun
Lucy S. Chipchase
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Systematic Reviews / Issue 1/2017
Electronic ISSN: 2046-4053
DOI
https://doi.org/10.1186/s13643-017-0440-8

Other articles of this Issue 1/2017

Systematic Reviews 1/2017 Go to the issue