Skip to main content
Top
Published in: Cancer Cell International 1/2018

Open Access 01-12-2018 | Primary research

The nuclear transcription factor RelB functions as an oncogene in human lung adenocarcinoma SPC-A1 cells

Authors: Hualong Qin, Jun Zhou, Jingjing Xu, Li Cheng, Zaixiang Tang, Haitao Ma, Feng Guo

Published in: Cancer Cell International | Issue 1/2018

Login to get access

Abstract

Background

Lung cancer is a leading public health issue worldwide. Although therapeutic approaches have improved drastically in the last decades, the prognosis of lung cancer patients remains suboptimal. The canonical nuclear transcription factor kappa B (NF-κB) signalling pathway is critical in the carcinogenesis of lung cancer. The non-canonical NF-κB signalling pathway (represented by RelB) has attracted increasing attention in the pathogenesis of haematological and epithelial malignancies. However, the function of RelB in non-small cell lung cancer (NSCLC) is still unclear. Recently, high expression of RelB has been detected in NSCLC tissues. We have also demonstrated that RelB expression is an independent prognostic factor in NSCLC patients.

Methods

The mRNA and protein expression of RelB in NSCLC tissues were detected by qRT-PCR and IHC assay. The cell growth of SPC-A1 cells was detected in real-time using the x-Celligence system and xenograft tumour assays. The proliferation capability of cells was detected using a CFSE assay. Cell apoptosis was measured using Annexin V/PI staining, cell cycle was analyzed by the cytometry. Cell migration abilities were detected using the x-Celligence system and wound healing assays. The relative amounts of the active and inactive gelatinases MMP-2 and MMP-9 were examined using gelatin zymography experiments. Apoptosis of RelB depletion SPC-A1 cells after ionizing radiation at 8 Gy. The expression of cellular proliferation signal pathway related-proteins were examined by Western blot analysis.

Results

The expression of RelB increases in NSCLC tissues. High RelB expression was significantly correlated with advanced-metastatic stage in patients with NSCLC. RelB-silencing inhibits cell growth in vitro and in vivo. We found that RelB affected cell proliferation by regulating AKT phosphorylation. RelB silencing attenuates the migration and invasion abilities of SPC-A1 cells and is likely related to the down regulation of MMP-9 activity and Integrin β-1 expression. In addition, RelB modulated radiation-induced survival of NSCLC cells predominantly by regulating Bcl-xL expression.

Conclusions

Given the involvement of RelB in cell proliferation, migration, invasion, and radio-resistance, RelB functions as an oncogene in NSCLC cells. Our data here shed light on unexplored aspects of RelB in NSCLC.
Literature
1.
2.
go back to reference Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu X, He J. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–32.CrossRefPubMed Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu X, He J. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–32.CrossRefPubMed
3.
go back to reference Cagle PT, Raparia K, Portier BP. Emerging biomarkers in personalized therapy of lung cancer. Adv Exp Med Biol. 2016;890:25–36.CrossRefPubMed Cagle PT, Raparia K, Portier BP. Emerging biomarkers in personalized therapy of lung cancer. Adv Exp Med Biol. 2016;890:25–36.CrossRefPubMed
4.
go back to reference Abe Y, Tanaka N. The Hedgehog signaling networks in lung cancer: the mechanisms and roles in tumor progression and implications for cancer therapy. Biomed Res Int. 2016;2016:7969286.CrossRefPubMedPubMedCentral Abe Y, Tanaka N. The Hedgehog signaling networks in lung cancer: the mechanisms and roles in tumor progression and implications for cancer therapy. Biomed Res Int. 2016;2016:7969286.CrossRefPubMedPubMedCentral
5.
go back to reference Ghosh S, Dass JF. Study of pathway cross-talk interactions with NF-kappaB leading to its activation via ubiquitination or phosphorylation: a brief review. Gene. 2016;584(1):97–109.CrossRefPubMed Ghosh S, Dass JF. Study of pathway cross-talk interactions with NF-kappaB leading to its activation via ubiquitination or phosphorylation: a brief review. Gene. 2016;584(1):97–109.CrossRefPubMed
6.
go back to reference De Silva NS, Anderson MM, Carette A, Silva K, Heise N, Bhagat G, Klein U. Transcription factors of the alternative NF-kappaB pathway are required for germinal center B-cell development. Proc Natl Acad Sci USA. 2016;113(32):9063–8.CrossRefPubMedPubMedCentral De Silva NS, Anderson MM, Carette A, Silva K, Heise N, Bhagat G, Klein U. Transcription factors of the alternative NF-kappaB pathway are required for germinal center B-cell development. Proc Natl Acad Sci USA. 2016;113(32):9063–8.CrossRefPubMedPubMedCentral
7.
go back to reference Mitchell S, Vargas J, Hoffmann A. Signaling via the NFkappaB system. Wiley Interdiscip Rev Syst Biol Med. 2016;8(3):227–41.CrossRefPubMed Mitchell S, Vargas J, Hoffmann A. Signaling via the NFkappaB system. Wiley Interdiscip Rev Syst Biol Med. 2016;8(3):227–41.CrossRefPubMed
8.
go back to reference Wu D, Wu P, Zhao L, Huang L, Zhang Z, Zhao S, Huang J. NF-kappaB expression and outcomes in solid tumors: a systematic review and meta-analysis. Medicine (Baltimore). 2015;94(40):1687.CrossRef Wu D, Wu P, Zhao L, Huang L, Zhang Z, Zhao S, Huang J. NF-kappaB expression and outcomes in solid tumors: a systematic review and meta-analysis. Medicine (Baltimore). 2015;94(40):1687.CrossRef
9.
go back to reference Park MH, Hong JT. Roles of NF-kappaB in cancer and inflammatory diseases and their therapeutic approaches. Cells. 2016;5(2):E15.CrossRefPubMed Park MH, Hong JT. Roles of NF-kappaB in cancer and inflammatory diseases and their therapeutic approaches. Cells. 2016;5(2):E15.CrossRefPubMed
10.
go back to reference Xu J, Zhou P, Wang W, Sun A, Guo F. RelB, together with RelA, sustains cell survival and confers proteasome inhibitor sensitivity of chronic lymphocytic leukemia cells from bone marrow. J Mol Med. 2014;92(1):77–92.CrossRefPubMed Xu J, Zhou P, Wang W, Sun A, Guo F. RelB, together with RelA, sustains cell survival and confers proteasome inhibitor sensitivity of chronic lymphocytic leukemia cells from bone marrow. J Mol Med. 2014;92(1):77–92.CrossRefPubMed
11.
go back to reference Wang X, Belguise K, O’Neill CF, Sánchez-Morgan N, Romagnoli M, Eddy SF, Mineva ND, Yu Z, Min C, Trinkaus-Randall V, Chalbos D, Sonenshein GE. RelB NF-kappaB represses estrogen receptor alpha expression via induction of the zinc finger protein Blimp1. Mol Cell Biol. 2009;29(14):3832–44.CrossRefPubMedPubMedCentral Wang X, Belguise K, O’Neill CF, Sánchez-Morgan N, Romagnoli M, Eddy SF, Mineva ND, Yu Z, Min C, Trinkaus-Randall V, Chalbos D, Sonenshein GE. RelB NF-kappaB represses estrogen receptor alpha expression via induction of the zinc finger protein Blimp1. Mol Cell Biol. 2009;29(14):3832–44.CrossRefPubMedPubMedCentral
12.
go back to reference Rojo F, Gonzalez-Perez A, Furriol J, Nicolau MJ, Ferrer J, Burgués O, Sabbaghi M, González-Navarrete I, Cristobal I, Serrano L, Zazo S, Madoz J, Servitja S, Tusquets I, Albanell J, Lluch A, Rovira A, Eroles P. Non-canonical NF-kappaB pathway activation predicts outcome in borderline oestrogen receptor positive breast carcinoma. Br J Cancer. 2016;115(3):322–31.CrossRefPubMedPubMedCentral Rojo F, Gonzalez-Perez A, Furriol J, Nicolau MJ, Ferrer J, Burgués O, Sabbaghi M, González-Navarrete I, Cristobal I, Serrano L, Zazo S, Madoz J, Servitja S, Tusquets I, Albanell J, Lluch A, Rovira A, Eroles P. Non-canonical NF-kappaB pathway activation predicts outcome in borderline oestrogen receptor positive breast carcinoma. Br J Cancer. 2016;115(3):322–31.CrossRefPubMedPubMedCentral
13.
go back to reference Guo F, Kang S, Zhou P, Guo L, Ma L, Hou J. Maspin expression is regulated by the non-canonical NF-kappaB subunit in androgen-insensitive prostate cancer cell lines. Mol Immunol. 2011;49(1–2):8–17.CrossRefPubMed Guo F, Kang S, Zhou P, Guo L, Ma L, Hou J. Maspin expression is regulated by the non-canonical NF-kappaB subunit in androgen-insensitive prostate cancer cell lines. Mol Immunol. 2011;49(1–2):8–17.CrossRefPubMed
14.
go back to reference Chen W, Li Z, Bai L, Lin Y. NF-kappaB in lung cancer, a carcinogenesis mediator and a prevention and therapy target. Front Biosci (Landmark Ed). 2011;16:1172–85.CrossRef Chen W, Li Z, Bai L, Lin Y. NF-kappaB in lung cancer, a carcinogenesis mediator and a prevention and therapy target. Front Biosci (Landmark Ed). 2011;16:1172–85.CrossRef
15.
go back to reference Meylan E, Dooley AL, Feldser DM, Shen L, Turk E, Ouyang C, Jacks T. Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature. 2009;462(7269):104–7.CrossRefPubMedPubMedCentral Meylan E, Dooley AL, Feldser DM, Shen L, Turk E, Ouyang C, Jacks T. Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature. 2009;462(7269):104–7.CrossRefPubMedPubMedCentral
16.
go back to reference Basseres DS, Ebbs A, Levantini E, Baldwin AS. Requirement of the NF-kappaB subunit p65/RelA for K-Ras-induced lung tumorigenesis. Cancer Res. 2010;70(9):3537–46.CrossRefPubMedPubMedCentral Basseres DS, Ebbs A, Levantini E, Baldwin AS. Requirement of the NF-kappaB subunit p65/RelA for K-Ras-induced lung tumorigenesis. Cancer Res. 2010;70(9):3537–46.CrossRefPubMedPubMedCentral
17.
go back to reference Li D, Beisswenger C, Herr C, Hellberg J, Han G, Zakharkina T, Voss M, Wiewrodt R, Bohle RM, Menger MD, Schmid RM, Stöckel D, Lenhof HP, Bals R. Myeloid cell RelA/p65 promotes lung cancer proliferation through Wnt/beta-catenin signaling in murine and human tumor cells. Oncogene. 2014;33(10):1239–48.CrossRefPubMed Li D, Beisswenger C, Herr C, Hellberg J, Han G, Zakharkina T, Voss M, Wiewrodt R, Bohle RM, Menger MD, Schmid RM, Stöckel D, Lenhof HP, Bals R. Myeloid cell RelA/p65 promotes lung cancer proliferation through Wnt/beta-catenin signaling in murine and human tumor cells. Oncogene. 2014;33(10):1239–48.CrossRefPubMed
18.
go back to reference Dimitrakopoulos FI, Antonacopoulou AG, Kottorou A, Vlotinou H, Panagopoulos ND, Dougenis D, Scopa C, Papadaki H, Kalofonos HP. NSCLC and the alternative pathway of NF-kappaB: uncovering an unknown relation. Virchows Arch. 2012;460(5):515–23.CrossRefPubMed Dimitrakopoulos FI, Antonacopoulou AG, Kottorou A, Vlotinou H, Panagopoulos ND, Dougenis D, Scopa C, Papadaki H, Kalofonos HP. NSCLC and the alternative pathway of NF-kappaB: uncovering an unknown relation. Virchows Arch. 2012;460(5):515–23.CrossRefPubMed
19.
go back to reference Giopanou I, Lilis I, Papaleonidopoulos V, Marazioti A, Spella M, Vreka M, Papadaki H, Stathopoulos GT. Comprehensive evaluation of nuclear factor-kappaBeta expression patterns in non-small cell lung cancer. PLoS ONE. 2015;10(7):e0132527.CrossRefPubMedPubMedCentral Giopanou I, Lilis I, Papaleonidopoulos V, Marazioti A, Spella M, Vreka M, Papadaki H, Stathopoulos GT. Comprehensive evaluation of nuclear factor-kappaBeta expression patterns in non-small cell lung cancer. PLoS ONE. 2015;10(7):e0132527.CrossRefPubMedPubMedCentral
20.
go back to reference Qin H, Zhou J, Zhou P, Xu J, Tang Z, Ma H, Guo F. Prognostic significance of RelB overexpression in non-small cell lung cancer patients. Thorac Cancer. 2016;7(4):415–21.CrossRefPubMedPubMedCentral Qin H, Zhou J, Zhou P, Xu J, Tang Z, Ma H, Guo F. Prognostic significance of RelB overexpression in non-small cell lung cancer patients. Thorac Cancer. 2016;7(4):415–21.CrossRefPubMedPubMedCentral
21.
go back to reference Ge QL, Liu SH, Ai ZH, Tao MF, Ma L, Wen SY, Dai M, Liu F, Liu HS, Jiang RZ, Xue ZW, Jiang YH, Sun XH, Hu YM, Zhao YX, Chen X, Tao Y, Zhu XL, Ding WJ, Yang BQ, Liu DD, Zhang XR, Teng YC. RelB/NF-kappaB links cell cycle transition and apoptosis to endometrioid adenocarcinoma tumorigenesis. Cell Death Dis. 2016;7(10):e2402.CrossRefPubMedPubMedCentral Ge QL, Liu SH, Ai ZH, Tao MF, Ma L, Wen SY, Dai M, Liu F, Liu HS, Jiang RZ, Xue ZW, Jiang YH, Sun XH, Hu YM, Zhao YX, Chen X, Tao Y, Zhu XL, Ding WJ, Yang BQ, Liu DD, Zhang XR, Teng YC. RelB/NF-kappaB links cell cycle transition and apoptosis to endometrioid adenocarcinoma tumorigenesis. Cell Death Dis. 2016;7(10):e2402.CrossRefPubMedPubMedCentral
22.
go back to reference Labouba I, Poisson A, Lafontaine J, Delvoye N, Gannon PO, Le Page C, Saad F, Mes-Masson AM. The RelB alternative NF-kappaB subunit promotes autophagy in 22Rv1 prostate cancer cells in vitro and affects mouse xenograft tumor growth in vivo. Cancer Cell Int. 2014;14:67.CrossRefPubMedPubMedCentral Labouba I, Poisson A, Lafontaine J, Delvoye N, Gannon PO, Le Page C, Saad F, Mes-Masson AM. The RelB alternative NF-kappaB subunit promotes autophagy in 22Rv1 prostate cancer cells in vitro and affects mouse xenograft tumor growth in vivo. Cancer Cell Int. 2014;14:67.CrossRefPubMedPubMedCentral
23.
go back to reference Yip PY. Phosphatidylinositol 3-kinase–AKT–mammalian target of rapamycin (PI3K–Akt–mTOR) signaling pathway in non-small cell lung cancer. Transl Lung Cancer Res. 2015;4(2):165–76.PubMedPubMedCentral Yip PY. Phosphatidylinositol 3-kinase–AKT–mammalian target of rapamycin (PI3K–Akt–mTOR) signaling pathway in non-small cell lung cancer. Transl Lung Cancer Res. 2015;4(2):165–76.PubMedPubMedCentral
24.
go back to reference Xu Y, Fang F, Sun Y, Clair DKS, Clair WHS. RelB-dependent differential radiosensitization effect of STI571 on prostate cancer cells. Mol Cancer Ther. 2010;9(4):803–12.CrossRefPubMedPubMedCentral Xu Y, Fang F, Sun Y, Clair DKS, Clair WHS. RelB-dependent differential radiosensitization effect of STI571 on prostate cancer cells. Mol Cancer Ther. 2010;9(4):803–12.CrossRefPubMedPubMedCentral
25.
go back to reference Demchenko YN, Glebov OK, Zingone A, Keats JJ, Bergsagel PL, Kuehl WM. Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood. 2010;115(17):3541–52.CrossRefPubMedPubMedCentral Demchenko YN, Glebov OK, Zingone A, Keats JJ, Bergsagel PL, Kuehl WM. Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood. 2010;115(17):3541–52.CrossRefPubMedPubMedCentral
26.
go back to reference Vallabhapurapu SD, Noothi SK, Pullum DA, Lawrie CH, Pallapati R, Potluri V, Kuntzen C, Khan S, Plas DR, Orlowski RZ, Chesi M, Kuehl WM, Bergsagel PL, Karin M, Vallabhapurapu S. Transcriptional repression by the HDAC4–RelB–p52 complex regulates multiple myeloma survival and growth. Nat Commun. 2015;6:8428.CrossRefPubMed Vallabhapurapu SD, Noothi SK, Pullum DA, Lawrie CH, Pallapati R, Potluri V, Kuntzen C, Khan S, Plas DR, Orlowski RZ, Chesi M, Kuehl WM, Bergsagel PL, Karin M, Vallabhapurapu S. Transcriptional repression by the HDAC4–RelB–p52 complex regulates multiple myeloma survival and growth. Nat Commun. 2015;6:8428.CrossRefPubMed
27.
go back to reference Lee DW, Ramakrishnan D, Valenta J, Parney IF, Bayless KJ, Sitcheran R. The NF-kappaB RelB protein is an oncogenic driver of mesenchymal glioma. PLoS ONE. 2013;8(2):e57489.CrossRefPubMedPubMedCentral Lee DW, Ramakrishnan D, Valenta J, Parney IF, Bayless KJ, Sitcheran R. The NF-kappaB RelB protein is an oncogenic driver of mesenchymal glioma. PLoS ONE. 2013;8(2):e57489.CrossRefPubMedPubMedCentral
28.
go back to reference Wang J, Yi S, Zhou J, Zhang Y, Guo F. The NF-kappaB subunit RelB regulates the migration and invasion abilities and the radio-sensitivity of prostate cancer cells. Int J Oncol. 2016;49(1):381–92.CrossRefPubMed Wang J, Yi S, Zhou J, Zhang Y, Guo F. The NF-kappaB subunit RelB regulates the migration and invasion abilities and the radio-sensitivity of prostate cancer cells. Int J Oncol. 2016;49(1):381–92.CrossRefPubMed
29.
go back to reference Wang XM, Li J, Yan MX, Liu L, Jia DS, Geng Q, Lin HC, He XH, Li JJ, Yao M. Integrative analyses identify osteopontin, LAMB3 and ITGB1 as critical pro-metastatic genes for lung cancer. PLoS ONE. 2013;8(2):e55714.CrossRefPubMedPubMedCentral Wang XM, Li J, Yan MX, Liu L, Jia DS, Geng Q, Lin HC, He XH, Li JJ, Yao M. Integrative analyses identify osteopontin, LAMB3 and ITGB1 as critical pro-metastatic genes for lung cancer. PLoS ONE. 2013;8(2):e55714.CrossRefPubMedPubMedCentral
30.
go back to reference Ju L, Zhou C. Integrin beta 1 enhances the epithelial–mesenchymal transition in association with gefitinib resistance of non-small cell lung cancer. Cancer Biomark. 2013;13(5):329–36.CrossRefPubMed Ju L, Zhou C. Integrin beta 1 enhances the epithelial–mesenchymal transition in association with gefitinib resistance of non-small cell lung cancer. Cancer Biomark. 2013;13(5):329–36.CrossRefPubMed
31.
go back to reference Saito T, Sasaki CY, Rezanka LJ, Ghosh P, Longo DL. p52-Independent nuclear translocation of RelB promotes LPS-induced attachment. Biochem Biophys Res Commun. 2010;391(1):235–41.CrossRefPubMed Saito T, Sasaki CY, Rezanka LJ, Ghosh P, Longo DL. p52-Independent nuclear translocation of RelB promotes LPS-induced attachment. Biochem Biophys Res Commun. 2010;391(1):235–41.CrossRefPubMed
32.
go back to reference Jiang S, Wang R, Yan H, Jin L, Dou X, Chen D. MicroRNA-21 modulates radiation resistance through upregulation of hypoxia-inducible factor-1alpha-promoted glycolysis in non-small cell lung cancer cells. Mol Med Rep. 2016;13(5):4101–7.CrossRefPubMed Jiang S, Wang R, Yan H, Jin L, Dou X, Chen D. MicroRNA-21 modulates radiation resistance through upregulation of hypoxia-inducible factor-1alpha-promoted glycolysis in non-small cell lung cancer cells. Mol Med Rep. 2016;13(5):4101–7.CrossRefPubMed
33.
go back to reference Rhodes A, Hillen T. Mathematical modeling of the role of survivin on dedifferentiation and radioresistance in cancer. Bull Math Biol. 2016;78(6):1162–88.CrossRefPubMed Rhodes A, Hillen T. Mathematical modeling of the role of survivin on dedifferentiation and radioresistance in cancer. Bull Math Biol. 2016;78(6):1162–88.CrossRefPubMed
34.
go back to reference Wei X, Xu Y, Xu FF, Chaiswing L, Schnell D, Noel T, Wang C, Chen JF, Clair DKS, Clair WHS. RelB expression determines the differential effects of ascorbic acid in normal and cancer cells. Cancer Res. 2017;77(6):1345–56.CrossRefPubMedPubMedCentral Wei X, Xu Y, Xu FF, Chaiswing L, Schnell D, Noel T, Wang C, Chen JF, Clair DKS, Clair WHS. RelB expression determines the differential effects of ascorbic acid in normal and cancer cells. Cancer Res. 2017;77(6):1345–56.CrossRefPubMedPubMedCentral
35.
go back to reference Zhu L, Zhu B, Yang L, Zhao X, Jiang H, Ma F. RelB regulates Bcl-xl expression and the irradiation-induced apoptosis of murine prostate cancer cells. Biomed Rep. 2014;2(3):354–8.CrossRefPubMedPubMedCentral Zhu L, Zhu B, Yang L, Zhao X, Jiang H, Ma F. RelB regulates Bcl-xl expression and the irradiation-induced apoptosis of murine prostate cancer cells. Biomed Rep. 2014;2(3):354–8.CrossRefPubMedPubMedCentral
36.
go back to reference Zhu HC, Qiu T, Dan C, Liu XH, Hu CH. Blockage of RelB expression by gene silencing enhances the radiosensitivity of androgen-independent prostate cancer cells. Mol Med Rep. 2015;11(2):1167–73.CrossRefPubMed Zhu HC, Qiu T, Dan C, Liu XH, Hu CH. Blockage of RelB expression by gene silencing enhances the radiosensitivity of androgen-independent prostate cancer cells. Mol Med Rep. 2015;11(2):1167–73.CrossRefPubMed
37.
go back to reference Braun F, de Carne Trecesson S, Bertin-Ciftci J, Juin P. Protect and serve: Bcl-2 proteins as guardians and rulers of cancer cell survival. Cell Cycle. 2013;12(18):2937–47.CrossRefPubMedPubMedCentral Braun F, de Carne Trecesson S, Bertin-Ciftci J, Juin P. Protect and serve: Bcl-2 proteins as guardians and rulers of cancer cell survival. Cell Cycle. 2013;12(18):2937–47.CrossRefPubMedPubMedCentral
Metadata
Title
The nuclear transcription factor RelB functions as an oncogene in human lung adenocarcinoma SPC-A1 cells
Authors
Hualong Qin
Jun Zhou
Jingjing Xu
Li Cheng
Zaixiang Tang
Haitao Ma
Feng Guo
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2018
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-018-0580-5

Other articles of this Issue 1/2018

Cancer Cell International 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine