Skip to main content
Top
Published in: Journal of Neuro-Oncology 1/2014

01-10-2014 | Laboratory Investigation

The novel immunotherapeutic molecule T11TS modulates glioma-induced changes of key components of the immunological synapse in favor of T cell activation and glioma abrogation

Authors: Suhnrita Chaudhuri, Manoj Kumar Singh, Debanjan Bhattacharya, Sagar Acharya, Sirshendu Chatterjee, Pankaj Kumar, Pushpak Bhattacharjee, Anjan Kumar Basu, Gaurisankar Sa, Tanya Das, Tushar Kanti Ghosh, Swapna Chaudhuri

Published in: Journal of Neuro-Oncology | Issue 1/2014

Login to get access

Abstract

T-cell-mediated immune responses are typically low in conditions of malignant glioma which has been known to cause marked immunesuppression and dysregulate major T-cell signaling molecules. Thus, T-cell-based immunotherapies are currently in vogue in the treatment of malignant glioma. The novel glycopeptide, T11TS/S-LFA-3/S-CD58 has previously been shown by our group to be highly efficacious in glioma abrogation in in vivo and in vitro conditions. This glycopeptide ligands to the costimulatory CD2 molecule on T-cells, causing profound immune stimulation leading to glioma abrogation, suggesting probable involvement of T11TS in modulation of the T-cell signaling pathway. The present study offers a multi-targeted approach towards repair of some of the key components of the immunological synapse at the T-cell-APC interface and is therefore the first of its kind to offer a holistic model of restoration of immunological synapse components so as to trigger T-cells towards activation against glioma. The study thus indicates that the totally dysregulated molecular events at the immunological synapse in glioma are restored back to normal levels with the administration of T11TS, which finally culminates in glioma abrogation. The present study thus delineates an important T-cell signaling approach whereby T11TS acts as an anti-neoplastic agent, thus helping to chart out newer avenues in the fight against gliomas.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rolle CE, Sengupta S, Lesniak MS (2012) Mechanisms of immune evasion by gliomas. Adv Exp Med Biol 746:53–76PubMedCrossRef Rolle CE, Sengupta S, Lesniak MS (2012) Mechanisms of immune evasion by gliomas. Adv Exp Med Biol 746:53–76PubMedCrossRef
2.
go back to reference Finke J, Ferrone S, Frey A, Mufson A, Ochoa A (1999) Where have all the T cells gone? Mechanisms of immune evasion by tumors. Immunol Today 20(4):158–160PubMedCrossRef Finke J, Ferrone S, Frey A, Mufson A, Ochoa A (1999) Where have all the T cells gone? Mechanisms of immune evasion by tumors. Immunol Today 20(4):158–160PubMedCrossRef
3.
go back to reference Elliott LH, Brooks WH, Roszman TL (1984) Cytokinetic basis for the impaired activation of lymphocytes from patients with primary intracranial tumors. J Immunol 132(3):1208–1215PubMed Elliott LH, Brooks WH, Roszman TL (1984) Cytokinetic basis for the impaired activation of lymphocytes from patients with primary intracranial tumors. J Immunol 132(3):1208–1215PubMed
4.
go back to reference Ahmed N, Salsman VS, Kew Y, Shaffer D, Powell S, Zhang YJ, Grossman GR, Heslop HE, Gottschalk S (2010) HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin Cancer Res 16(2):474–485PubMedCrossRefPubMedCentral Ahmed N, Salsman VS, Kew Y, Shaffer D, Powell S, Zhang YJ, Grossman GR, Heslop HE, Gottschalk S (2010) HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin Cancer Res 16(2):474–485PubMedCrossRefPubMedCentral
5.
go back to reference Eshhar Z (1997) Tumor-specific T-bodies: towards clinical application. Cancer Immunol Immunother 45(3–4):131–136PubMedCrossRef Eshhar Z (1997) Tumor-specific T-bodies: towards clinical application. Cancer Immunol Immunother 45(3–4):131–136PubMedCrossRef
6.
go back to reference Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJM, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723PubMedCrossRefPubMedCentral Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJM, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723PubMedCrossRefPubMedCentral
7.
go back to reference Hünig T, Tiefenthaler G, Mitnacht R, Köhler C, Lottspeich F, Meuer S (1987) The “erythrocyte receptor” of T-lymphocytes and T11 target structure (T11TS): complementary cell interaction molecules involved in T-cell activation. Behring Inst Mitt 81:31–40PubMed Hünig T, Tiefenthaler G, Mitnacht R, Köhler C, Lottspeich F, Meuer S (1987) The “erythrocyte receptor” of T-lymphocytes and T11 target structure (T11TS): complementary cell interaction molecules involved in T-cell activation. Behring Inst Mitt 81:31–40PubMed
8.
go back to reference Fox DA, Hussey RE, Fitzgerald KA, Bensussan A, Daley JF, Schlossman SF, Reinherz EL (1985) Activation of human thymocytes via the 50KD T11 sheep erythrocyte binding protein induces the expression of interleukin 2 receptors on both T3 + and T3- populations. J Immunol 134(1):330–335PubMed Fox DA, Hussey RE, Fitzgerald KA, Bensussan A, Daley JF, Schlossman SF, Reinherz EL (1985) Activation of human thymocytes via the 50KD T11 sheep erythrocyte binding protein induces the expression of interleukin 2 receptors on both T3 + and T3- populations. J Immunol 134(1):330–335PubMed
9.
go back to reference Sarkar S, Begum Z, Dutta S, Dutta SK, Chaudhuri S, Chaudhuri S (2002) Sheep form of leucocyte function antigen-3 (T11TS) exerts immunostimulatory and anti-tumor activity against experimental brain tumor. A new approach to biological response modifier therapy. J Exp Clin Cancer Res 21(1):95–106PubMed Sarkar S, Begum Z, Dutta S, Dutta SK, Chaudhuri S, Chaudhuri S (2002) Sheep form of leucocyte function antigen-3 (T11TS) exerts immunostimulatory and anti-tumor activity against experimental brain tumor. A new approach to biological response modifier therapy. J Exp Clin Cancer Res 21(1):95–106PubMed
10.
go back to reference Sarkar S, Ghosh A, Mukherjee J, Chaudhuri S, Chaudhuri S (2004) CD2-SLFA3/T11TS interaction facilitates immune activation and glioma regression by apoptosis. Cancer Biol Ther 3(11):1121–1128PubMedCrossRef Sarkar S, Ghosh A, Mukherjee J, Chaudhuri S, Chaudhuri S (2004) CD2-SLFA3/T11TS interaction facilitates immune activation and glioma regression by apoptosis. Cancer Biol Ther 3(11):1121–1128PubMedCrossRef
11.
go back to reference Mukherjee J, Sarkar S, Ghosh A, Duttagupta AK, Chaudhuri S, Chaudhuri S (2004) Immunotherapeutic effects of T11TS/S-LFA3 against nitrosocompound mediated neural genotoxicity. Toxicol Lett 150(3):239–257PubMedCrossRef Mukherjee J, Sarkar S, Ghosh A, Duttagupta AK, Chaudhuri S, Chaudhuri S (2004) Immunotherapeutic effects of T11TS/S-LFA3 against nitrosocompound mediated neural genotoxicity. Toxicol Lett 150(3):239–257PubMedCrossRef
12.
go back to reference Sarkar P, Bhattacharjee M, Acharya S, Ghosh A, Tripathi SK, Chaudhuri S (2007) Acute toxicity studies of T11TS: a glycopeptide with antineoplastic effects against glioma. Toxicol Int 14:47–56 Sarkar P, Bhattacharjee M, Acharya S, Ghosh A, Tripathi SK, Chaudhuri S (2007) Acute toxicity studies of T11TS: a glycopeptide with antineoplastic effects against glioma. Toxicol Int 14:47–56
13.
go back to reference Sarkar P, Bhattacharjee M, Acharya S, Das Gupta S, Guha D, Sandhu M, Chaudhuri S (2010) Subacute toxicity study of T11TS, a novel glycopeptide against glioma. Adv Pharmacol Toxicol 11:1–10 Sarkar P, Bhattacharjee M, Acharya S, Das Gupta S, Guha D, Sandhu M, Chaudhuri S (2010) Subacute toxicity study of T11TS, a novel glycopeptide against glioma. Adv Pharmacol Toxicol 11:1–10
14.
go back to reference Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227PubMedCrossRef Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227PubMedCrossRef
15.
go back to reference Vĕtvicka V, Fornůsek L, Tlaskalová H (1981) Comparison of different methods for separation of human, mouse and rat macrophages and lymphocytes. Folia Biol (Praha) 27(3):194–202 Vĕtvicka V, Fornůsek L, Tlaskalová H (1981) Comparison of different methods for separation of human, mouse and rat macrophages and lymphocytes. Folia Biol (Praha) 27(3):194–202
16.
go back to reference Bhattacharya D, Singh MK, Chaudhuri S, Basu AK, Chaudhuri S (2013) T11TS impedes glioma angiogenesis by inhibiting VEGF signaling and pro-survival PI3 K/Akt/eNOS pathway with concomitant upregulation of PTEN in brain endothelial cells. J Neurooncol 113(1):13–25PubMedCrossRef Bhattacharya D, Singh MK, Chaudhuri S, Basu AK, Chaudhuri S (2013) T11TS impedes glioma angiogenesis by inhibiting VEGF signaling and pro-survival PI3 K/Akt/eNOS pathway with concomitant upregulation of PTEN in brain endothelial cells. J Neurooncol 113(1):13–25PubMedCrossRef
17.
go back to reference Gruber IV, El Yousfi S, Dürr-Störzer S, Wallwiener D, Solomayer EF, Fehm T (2008) Down-regulation of CD28, TCR-zeta (ζ) and up-regulation of FAS in peripheral cytotoxic T-cells of primary breast cancer patients. Anticancer Res 28(2A):779–784PubMed Gruber IV, El Yousfi S, Dürr-Störzer S, Wallwiener D, Solomayer EF, Fehm T (2008) Down-regulation of CD28, TCR-zeta (ζ) and up-regulation of FAS in peripheral cytotoxic T-cells of primary breast cancer patients. Anticancer Res 28(2A):779–784PubMed
18.
go back to reference Clevers H, Alarcon B, Wileman T, Terhost C (1988) The T cell receptor/CD3 complex: a dynamic protein ensemble. Ann Rev Immunol 6:629–662CrossRef Clevers H, Alarcon B, Wileman T, Terhost C (1988) The T cell receptor/CD3 complex: a dynamic protein ensemble. Ann Rev Immunol 6:629–662CrossRef
19.
go back to reference Kono K, Salazar-Onfray F, Petersson M, Hansson J, Masucci G, Wasserman K, Nakazawa T, Anderson P, Kiessling R (1996) Hydrogen peroxide secreted by tumor-derived macrophages downmodulates signal-transducing zeta molecules and inhibits tumor-specific T cell- and natural killer cell-mediated cytotoxicity. Eur J Immunol 26(6):1308–1313PubMedCrossRef Kono K, Salazar-Onfray F, Petersson M, Hansson J, Masucci G, Wasserman K, Nakazawa T, Anderson P, Kiessling R (1996) Hydrogen peroxide secreted by tumor-derived macrophages downmodulates signal-transducing zeta molecules and inhibits tumor-specific T cell- and natural killer cell-mediated cytotoxicity. Eur J Immunol 26(6):1308–1313PubMedCrossRef
20.
go back to reference Chang YC, Chen TC, Lee CT, Yang CY, Wang HW, Wang CC, Hsieh SL (2008) Epigenetic control of MHC class II expression in tumor-associated macrophages by decoy receptor 3. Blood 111(10):5054–5063PubMedCrossRef Chang YC, Chen TC, Lee CT, Yang CY, Wang HW, Wang CC, Hsieh SL (2008) Epigenetic control of MHC class II expression in tumor-associated macrophages by decoy receptor 3. Blood 111(10):5054–5063PubMedCrossRef
21.
go back to reference Hahn WC, Burakoff SJ, Bierer BE (1993) Signal transduction pathways involved in T cell receptor-induced regulation of CD2 avidity for CD58. J Immunol 150(7):2607–2619PubMed Hahn WC, Burakoff SJ, Bierer BE (1993) Signal transduction pathways involved in T cell receptor-induced regulation of CD2 avidity for CD58. J Immunol 150(7):2607–2619PubMed
22.
go back to reference Thomas RM, Gao L, Wells AD (2005) Signals from CD28 induce stable epigenetic modification of the IL-2 promoter. J Immunol 174(8):4639–4646PubMedCrossRef Thomas RM, Gao L, Wells AD (2005) Signals from CD28 induce stable epigenetic modification of the IL-2 promoter. J Immunol 174(8):4639–4646PubMedCrossRef
23.
go back to reference Siu E, Carreno BM, Madrenas J (2003) TCR subunit specificity of CTLA-4-mediated signaling. J Leukoc Biol 74(6):1102–1107PubMedCrossRef Siu E, Carreno BM, Madrenas J (2003) TCR subunit specificity of CTLA-4-mediated signaling. J Leukoc Biol 74(6):1102–1107PubMedCrossRef
24.
go back to reference McAdam AJ, Schweitzer AN, Sharpe AH (1998) The role of B7 costimulation in activation and differentiation of CD4 + and CD8 + T cells. Immunol Rev 165:231–247PubMedCrossRef McAdam AJ, Schweitzer AN, Sharpe AH (1998) The role of B7 costimulation in activation and differentiation of CD4 + and CD8 + T cells. Immunol Rev 165:231–247PubMedCrossRef
25.
go back to reference Chaudhuri S, Ghosh A (2006) Glioma therapy: a novel insight in the immunotherapeutic regime with T11TS/SLFA-3. CNS Agents in Medic Chem 6(4):245–270 Chaudhuri S, Ghosh A (2006) Glioma therapy: a novel insight in the immunotherapeutic regime with T11TS/SLFA-3. CNS Agents in Medic Chem 6(4):245–270
26.
go back to reference Agarwal SG, Marquet J, Plumas J, Rouard H, Delfau-Larue MH, Gaulard P, Boumsell L, Reyes F, Bensussan A, Farcet JP (2000) Multiple co-stimulatory signals are required for triggering proliferation of T cells from human secondary lymphoid tissue. Int Immunol 13(4):441–450CrossRef Agarwal SG, Marquet J, Plumas J, Rouard H, Delfau-Larue MH, Gaulard P, Boumsell L, Reyes F, Bensussan A, Farcet JP (2000) Multiple co-stimulatory signals are required for triggering proliferation of T cells from human secondary lymphoid tissue. Int Immunol 13(4):441–450CrossRef
27.
go back to reference Lal G, Shaila MS, Nayak R (2006) Activated mouse T cells downregulate, process and present their surface TCR to cognate anti-idiotypic CD4 + T cells. Immunol Cell Biol 84:145–153PubMedCrossRef Lal G, Shaila MS, Nayak R (2006) Activated mouse T cells downregulate, process and present their surface TCR to cognate anti-idiotypic CD4 + T cells. Immunol Cell Biol 84:145–153PubMedCrossRef
28.
go back to reference Ahmadi M, King JW, Xue S, Voisine C, Holler A, Wright GP, Waxman J, Morris E, Stauss HJ (2011) CD3 limits the efficacy of TCR gene therapy in vivo. Blood 118(13):3528–3537PubMedCrossRef Ahmadi M, King JW, Xue S, Voisine C, Holler A, Wright GP, Waxman J, Morris E, Stauss HJ (2011) CD3 limits the efficacy of TCR gene therapy in vivo. Blood 118(13):3528–3537PubMedCrossRef
29.
go back to reference Baker BM, Scott DR, Blevins SJ, Hawse WF (2012) Structural and dynamic control of T-cell receptor specificity, cross-reactivity and binding mechanism. Immunol Rev 250(1):10–31PubMedCrossRef Baker BM, Scott DR, Blevins SJ, Hawse WF (2012) Structural and dynamic control of T-cell receptor specificity, cross-reactivity and binding mechanism. Immunol Rev 250(1):10–31PubMedCrossRef
30.
go back to reference Muraille E, Andris F, Pajak B, Wissing KM, De Smedt F, Desalle T, Goldman M, Alegre M, Urbain J, Moser M, Leo O (1999) Downregulation of antigen-presenting cell functions after administration of mitogenic anti-CD3 monoclonal antibodies in mice. Blood 94(12):4347–4357PubMed Muraille E, Andris F, Pajak B, Wissing KM, De Smedt F, Desalle T, Goldman M, Alegre M, Urbain J, Moser M, Leo O (1999) Downregulation of antigen-presenting cell functions after administration of mitogenic anti-CD3 monoclonal antibodies in mice. Blood 94(12):4347–4357PubMed
31.
go back to reference Morford LA, Elliott LH, Carlson SL, Brooks WH, Roszman TL (1997) T cell receptor-mediated signaling is defective in T cells obtained from patients with primary intracranial tumors. J Immunol 159(9):4415–4425PubMed Morford LA, Elliott LH, Carlson SL, Brooks WH, Roszman TL (1997) T cell receptor-mediated signaling is defective in T cells obtained from patients with primary intracranial tumors. J Immunol 159(9):4415–4425PubMed
32.
go back to reference Shores EW, Tran T, Grinberg A, Sommers CL, Shen H, Love PE (1997) Role of the multiple T cell receptor (TCR)-z chain signaling motifs in selection of the T cell repertoire. J Exp Med 185(5):893–900PubMedCrossRefPubMedCentral Shores EW, Tran T, Grinberg A, Sommers CL, Shen H, Love PE (1997) Role of the multiple T cell receptor (TCR)-z chain signaling motifs in selection of the T cell repertoire. J Exp Med 185(5):893–900PubMedCrossRefPubMedCentral
33.
go back to reference Renner C, Ohnesorge S, Held G, Bauer S, Jung W, Pfitzenmeier JP, Pfreundschuh M (1996) T cells from patients with Hodgkin’s disease have a defective T cell receptor ζ chain expression that is reversible by T-cell stimulation with CD3 and CD28. Blood 88(1):236–241PubMed Renner C, Ohnesorge S, Held G, Bauer S, Jung W, Pfitzenmeier JP, Pfreundschuh M (1996) T cells from patients with Hodgkin’s disease have a defective T cell receptor ζ chain expression that is reversible by T-cell stimulation with CD3 and CD28. Blood 88(1):236–241PubMed
34.
go back to reference Salvadori S, Gansbacher B, Zier K (1994) Functional defects are associated with abnormal signal transduction in T cells of mice inoculated with parental but not IL-2 secreting tumor cells. Cancer Gene Ther 1(3):165–170PubMed Salvadori S, Gansbacher B, Zier K (1994) Functional defects are associated with abnormal signal transduction in T cells of mice inoculated with parental but not IL-2 secreting tumor cells. Cancer Gene Ther 1(3):165–170PubMed
36.
go back to reference Ghosh A, Mukherjee J, Bhattacharjee M, Sarkar P, Acharya S, Chaudhuri S, Chaudhuri S (2007) The other side of the coin: beneficiary effect of ‘oxidative burst’ upsurge with T11TS facilitates the elimination of glioma cells. Cell Mol Biol 53(5):53–62PubMed Ghosh A, Mukherjee J, Bhattacharjee M, Sarkar P, Acharya S, Chaudhuri S, Chaudhuri S (2007) The other side of the coin: beneficiary effect of ‘oxidative burst’ upsurge with T11TS facilitates the elimination of glioma cells. Cell Mol Biol 53(5):53–62PubMed
37.
go back to reference June CH, Ledbetter JA, Linsey PS, Thompson CB (1990) Role of the CD28 receptor in T-cell activation. Immunol Today 11(6):211–216PubMedCrossRef June CH, Ledbetter JA, Linsey PS, Thompson CB (1990) Role of the CD28 receptor in T-cell activation. Immunol Today 11(6):211–216PubMedCrossRef
38.
go back to reference Berg M, Zavazava N (2008) Regulation of CD28 expression on CD8 + T cells by CTLA-4. J Leukoc Biol 83(4):853–863PubMedCrossRef Berg M, Zavazava N (2008) Regulation of CD28 expression on CD8 + T cells by CTLA-4. J Leukoc Biol 83(4):853–863PubMedCrossRef
39.
go back to reference Walunas TL, Bakker CY, Bluestone JA (1996) CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med 183(6):2541–2550PubMedCrossRef Walunas TL, Bakker CY, Bluestone JA (1996) CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med 183(6):2541–2550PubMedCrossRef
40.
go back to reference Michel F, Attal-Bonnefoy G, Mangino G, Mise-Omata S, Acuto O (2001) CD28 as a molecular amplifier extending TCR ligation and signaling capabilities. Immunity 15(16):935–945PubMedCrossRef Michel F, Attal-Bonnefoy G, Mangino G, Mise-Omata S, Acuto O (2001) CD28 as a molecular amplifier extending TCR ligation and signaling capabilities. Immunity 15(16):935–945PubMedCrossRef
42.
go back to reference Agarwalla P, Barnard Z, Fecci P, Dranoff G, Curry WT Jr (2012) Sequential immunotherapy by vaccination with GM-CSF-expressing glioma cells and CTLA-4 blockade effectively treats established murine intracranial tumors. J Immunother 35(5):385–389PubMedCrossRefPubMedCentral Agarwalla P, Barnard Z, Fecci P, Dranoff G, Curry WT Jr (2012) Sequential immunotherapy by vaccination with GM-CSF-expressing glioma cells and CTLA-4 blockade effectively treats established murine intracranial tumors. J Immunother 35(5):385–389PubMedCrossRefPubMedCentral
43.
go back to reference Alberola-Ila J, Places L, de la Calle O, Romero M, Yagüe J, Gallart T, Vives J, Lozano F (1991) Stimulation through the TCR/CD3 complex up-regulates the CD2 surface expression on human T lymphocytes. J Immunol 146(4):1085–1092PubMed Alberola-Ila J, Places L, de la Calle O, Romero M, Yagüe J, Gallart T, Vives J, Lozano F (1991) Stimulation through the TCR/CD3 complex up-regulates the CD2 surface expression on human T lymphocytes. J Immunol 146(4):1085–1092PubMed
44.
go back to reference Koyasu S, Lawton T, Novick D, Recny MA, Siliciano RF, Wallner BP, Reinherz EL (1990) Role of interaction of CD2 molecules with lymphocyte function-associated antigen 3 in T cell recognition of normal antigen. Proc Natl Acad Sci USA 87(7):2603–2607PubMedCrossRefPubMedCentral Koyasu S, Lawton T, Novick D, Recny MA, Siliciano RF, Wallner BP, Reinherz EL (1990) Role of interaction of CD2 molecules with lymphocyte function-associated antigen 3 in T cell recognition of normal antigen. Proc Natl Acad Sci USA 87(7):2603–2607PubMedCrossRefPubMedCentral
45.
go back to reference Crawford K, Stark A, Kitchens B, Sternheim K, Pantazopoulos V, Triantafellow E, Wang Z, Vasir B, Larsen CE, Gabuzda D, Reinherz E, Alper CA (2003) CD2 engagement induces dendritic cell activation: implications for immune surveillance and T-cell activation. Blood 102(5):1745–1752PubMedCrossRef Crawford K, Stark A, Kitchens B, Sternheim K, Pantazopoulos V, Triantafellow E, Wang Z, Vasir B, Larsen CE, Gabuzda D, Reinherz E, Alper CA (2003) CD2 engagement induces dendritic cell activation: implications for immune surveillance and T-cell activation. Blood 102(5):1745–1752PubMedCrossRef
46.
go back to reference Kaizuka Y, Douglass AD, Vardhana S, Dustin ML, Vale RD (2009) The coreceptor CD2 uses plasma membrane microdomains to transduce signals in T cells. J Cell Biol 185(3):521–534PubMedCrossRefPubMedCentral Kaizuka Y, Douglass AD, Vardhana S, Dustin ML, Vale RD (2009) The coreceptor CD2 uses plasma membrane microdomains to transduce signals in T cells. J Cell Biol 185(3):521–534PubMedCrossRefPubMedCentral
47.
go back to reference Ghosh A, Bhattacharya M, Sarkar P, Acharya S, Chaudhuri S (2010) T11 target structure exerts effector function by activating immune cells in CNS against glioma where cytokine modulation provides a favourable microenvironment. Ind J Exp Biol 48:879–888 Ghosh A, Bhattacharya M, Sarkar P, Acharya S, Chaudhuri S (2010) T11 target structure exerts effector function by activating immune cells in CNS against glioma where cytokine modulation provides a favourable microenvironment. Ind J Exp Biol 48:879–888
48.
go back to reference Kumar P, Acharya S, Chatterjee S, Kumari A, Chaudhuri S, Singh MK, Ghosh SN, Chaudhuri S (2012) Immunomodulatory role of T11TS in respect to cytotoxic lymphocytes in four grades of human glioma. Cell Immunol 276(1–2):176–186PubMedCrossRef Kumar P, Acharya S, Chatterjee S, Kumari A, Chaudhuri S, Singh MK, Ghosh SN, Chaudhuri S (2012) Immunomodulatory role of T11TS in respect to cytotoxic lymphocytes in four grades of human glioma. Cell Immunol 276(1–2):176–186PubMedCrossRef
49.
go back to reference Chen X, Woiciechowsky A, Raffegerst S, Schendel D, Kolb H, Roskrow M (2000) Impaired expression of the CD3-zeta chain in peripheral blood T cells of patients with chronic myeloid leukaemia results in an increased susceptibility to apoptosis. Brit J Haematol 111(3):817–825 Chen X, Woiciechowsky A, Raffegerst S, Schendel D, Kolb H, Roskrow M (2000) Impaired expression of the CD3-zeta chain in peripheral blood T cells of patients with chronic myeloid leukaemia results in an increased susceptibility to apoptosis. Brit J Haematol 111(3):817–825
50.
go back to reference Gorelik L, Flavell RA (2000) Abrogation of TGFβ signalling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12(2):171–181PubMedCrossRef Gorelik L, Flavell RA (2000) Abrogation of TGFβ signalling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12(2):171–181PubMedCrossRef
51.
go back to reference Wingren AG, Dahlenborg K, Björklund M, Hedlund G, Kalland T, Sjögren HO, Ljungdahl A, Olsson T, Ekre HP, Sansom D (1993) Monocyte-regulated IFN-gamma production in human T cells involves CD2 signaling. J Immunol 151(3):1328–1336PubMed Wingren AG, Dahlenborg K, Björklund M, Hedlund G, Kalland T, Sjögren HO, Ljungdahl A, Olsson T, Ekre HP, Sansom D (1993) Monocyte-regulated IFN-gamma production in human T cells involves CD2 signaling. J Immunol 151(3):1328–1336PubMed
52.
go back to reference Akdis CA, Joss A, Akdis M, Faith A, Blaser K (2000) A molecular basis for T cell suppression by IL-10: cD28-associated IL-10 receptor inhibits CD28 tyrosine phosphorylation and phosphatidylinositol 3-kinase binding. FASEB J 14(12):1666–1668PubMed Akdis CA, Joss A, Akdis M, Faith A, Blaser K (2000) A molecular basis for T cell suppression by IL-10: cD28-associated IL-10 receptor inhibits CD28 tyrosine phosphorylation and phosphatidylinositol 3-kinase binding. FASEB J 14(12):1666–1668PubMed
53.
go back to reference Chen W, Jin W, Wahl SM (1998) Engagement of cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) induces transforming growth factor β (TGF-β) production by murine CD4 + T cells. J Exp Med 188(10):1849–1857PubMedCrossRefPubMedCentral Chen W, Jin W, Wahl SM (1998) Engagement of cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) induces transforming growth factor β (TGF-β) production by murine CD4 + T cells. J Exp Med 188(10):1849–1857PubMedCrossRefPubMedCentral
54.
go back to reference Akbasak A, Oldfield EH, Saris SC (1991) Expression and modulation of major histocompatibility antigens on murine primary brain tumor in vitro. J Neurosurg 75(6):922–929PubMedCrossRef Akbasak A, Oldfield EH, Saris SC (1991) Expression and modulation of major histocompatibility antigens on murine primary brain tumor in vitro. J Neurosurg 75(6):922–929PubMedCrossRef
55.
go back to reference Pechhold K, Patterson NB, Craighead N, Lee KP, June CH, Harlan DM (1997) Inflammatory cytokines IFN-gamma plus TNF-alpha induce regulated expression of CD80 (B7-1) but not CD86 (B7-2) on murine fibroblasts. J Immunol 158(10):4921–4929PubMed Pechhold K, Patterson NB, Craighead N, Lee KP, June CH, Harlan DM (1997) Inflammatory cytokines IFN-gamma plus TNF-alpha induce regulated expression of CD80 (B7-1) but not CD86 (B7-2) on murine fibroblasts. J Immunol 158(10):4921–4929PubMed
56.
go back to reference Huang L, Crispe IN (1993) Superantigen-driven peripheral deletion of T cells. Apoptosis occurs in cells that have lost the alpha/beta T cell receptor. J Immunol 151(4):1844–1851PubMed Huang L, Crispe IN (1993) Superantigen-driven peripheral deletion of T cells. Apoptosis occurs in cells that have lost the alpha/beta T cell receptor. J Immunol 151(4):1844–1851PubMed
57.
go back to reference Reichert TE, Rabinowich H, Johnson JT, Whiteside TL (1998) Mechanisms responsible for signaling and functional defects. J Immunother 21(4):295–306PubMedCrossRef Reichert TE, Rabinowich H, Johnson JT, Whiteside TL (1998) Mechanisms responsible for signaling and functional defects. J Immunother 21(4):295–306PubMedCrossRef
58.
go back to reference Bhattacharjee M, Acharya S, Ghosh A, Sarkar P, Chatterjee S, Chaudhuri S, Kumar P (2008) Bax and Bid act in synergy to bring about T11TS mediated glioma apoptosis via the release of mitochondrial cytochrome c and subsequent caspase activation. Int Immunol 20(12):1489–1505PubMedCrossRef Bhattacharjee M, Acharya S, Ghosh A, Sarkar P, Chatterjee S, Chaudhuri S, Kumar P (2008) Bax and Bid act in synergy to bring about T11TS mediated glioma apoptosis via the release of mitochondrial cytochrome c and subsequent caspase activation. Int Immunol 20(12):1489–1505PubMedCrossRef
59.
go back to reference Ayroldi E, Migliorati G, Cannarile L, Moraca R, Delfino DV, Riccardi C (1997) CD2 rescues T cells from T-cell receptor/CD3 apoptosis: a role for the Fas/Fas-L system. Blood 89(10):3717–3726PubMed Ayroldi E, Migliorati G, Cannarile L, Moraca R, Delfino DV, Riccardi C (1997) CD2 rescues T cells from T-cell receptor/CD3 apoptosis: a role for the Fas/Fas-L system. Blood 89(10):3717–3726PubMed
60.
go back to reference Mukherjee J, Ghosh A, Sarkar P, Mazumdar M, Banerjee C, Chaudhuri S (2005) Immunotherapy with T11TS/SLFA-3 specifically induces apoptosis of brain tumor cells by augmenting intracranial immune status. Anticancer Res 25:2905–2920PubMed Mukherjee J, Ghosh A, Sarkar P, Mazumdar M, Banerjee C, Chaudhuri S (2005) Immunotherapy with T11TS/SLFA-3 specifically induces apoptosis of brain tumor cells by augmenting intracranial immune status. Anticancer Res 25:2905–2920PubMed
61.
go back to reference Acharya S, Chatterjee S, Kumar P, Bhattacharjee M, Chaudhuri S, Chaudhuri S (2010) Induction of G1 arrest in glioma cells by T11TS is associated with up-regulation of Cip1/Kip1 and concurrent downregulation of cyclin D (1 & 3). Anticancer Drugs 21(1):53–64PubMedCrossRef Acharya S, Chatterjee S, Kumar P, Bhattacharjee M, Chaudhuri S, Chaudhuri S (2010) Induction of G1 arrest in glioma cells by T11TS is associated with up-regulation of Cip1/Kip1 and concurrent downregulation of cyclin D (1 & 3). Anticancer Drugs 21(1):53–64PubMedCrossRef
Metadata
Title
The novel immunotherapeutic molecule T11TS modulates glioma-induced changes of key components of the immunological synapse in favor of T cell activation and glioma abrogation
Authors
Suhnrita Chaudhuri
Manoj Kumar Singh
Debanjan Bhattacharya
Sagar Acharya
Sirshendu Chatterjee
Pankaj Kumar
Pushpak Bhattacharjee
Anjan Kumar Basu
Gaurisankar Sa
Tanya Das
Tushar Kanti Ghosh
Swapna Chaudhuri
Publication date
01-10-2014
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 1/2014
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-014-1528-9

Other articles of this Issue 1/2014

Journal of Neuro-Oncology 1/2014 Go to the issue