Skip to main content
Top
Published in: Chinese Medicine 1/2017

Open Access 01-12-2017 | Research

The neuroprotective effects of Tao-Ren-Cheng-Qi Tang against embolic stroke in rats

Authors: Ling-Wei Hsu, Wei-Cheng Shiao, Nen-Chung Chang, Meng-Che Yu, Ting-Lin Yen, Philip Aloysius Thomas, Thanasekaran Jayakumar, Joen-Rong Sheu

Published in: Chinese Medicine | Issue 1/2017

Login to get access

Abstract

Background

Combinations of the traditional Chinese and Western medicines have been used to treat numerous diseases throughout the world, and there is a growing body of evidence showing that some of the herbs used in traditional Chinese medicine elicit significant pharmacological effects. The aim of this study was to demonstrate the neuroprotective effects of Tao-Ren-Cheng-Qi Tang (TRCQT) in combination with aspirin following middle cerebral artery occlusion (MCAO)—induced embolic stroke in rats.

Methods

A blood clot was embolized into the middle cerebral artery of rats to induce focal ischemic brain injury. After 24 h of MCAO occlusion, the rats were arbitrarily separated into five groups and subjected to different oral treatment processes with TRCQT and aspirin for 30 days before being evaluated in terms of their neurological behavior using a four-point system. The rats were sacrificed at 30 days after drug treatment and the infarct volumes were measured using a 2,3,5-triphenyltetrazolium chloride staining method. Tumor necrosis factor-α (TNF-α), c-Jun N-terminal kinases (JNK), activated caspase-3 and Bax were detected by western blot analysis. The apoptotic cells were identified by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. ROS generation was also measured by electron spin resonance spectrometry.

Results

Rats treated with TRCQT alone or in combination with aspirin showed a significantly reduced infarct volume (P < 0.001) and improved neurological outcome compared with those treated with distilled water. Rats treated with TRCQT alone (P = 0.021) or in combination with aspirin (P = 0.02) also showed significantly reduced MCAO-induced expression levels of TNF-α and pJNK (P < 0.001) in their ischemic regions. Rats treated with TRCQT alone or in combination with aspirin showed decreased apoptosis by a reduction in the number of TUNEL positive cells, which inhibited the expression of activated caspase-3 (P = 0.038) and Bax (P = 0.004; P = 0.003). TRCQT also led to a significant concentration-dependent reduction in the formation of hydroxyl radicals (P < 0.001).

Conclusions

TRCQT reduced brain infarct volume and improved neurological outcomes by reducing apoptosis, attenuating the expression of TNF-α and p-JNK, and reducing the formation of hydroxyl radicals in MCAO-induced embolic stroke of rats.
Appendix
Available only for authorised users
Literature
1.
go back to reference Feigin VL, Lawes CMM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population based studies: a systematic review. Lancet Neurol. 2009;8:355–69.CrossRefPubMed Feigin VL, Lawes CMM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population based studies: a systematic review. Lancet Neurol. 2009;8:355–69.CrossRefPubMed
2.
3.
go back to reference Jiang B, Wang WZ, Chen H, Hong Z, Yang QD, Wu SP, Du XL, Bao QJ. Incidence and trends of stroke and its subtypes in China. Stroke. 2006;37:63–8.CrossRefPubMed Jiang B, Wang WZ, Chen H, Hong Z, Yang QD, Wu SP, Du XL, Bao QJ. Incidence and trends of stroke and its subtypes in China. Stroke. 2006;37:63–8.CrossRefPubMed
5.
go back to reference Zhu XH, Li SJ, Hu HH, Sun LR, Das M, Gao TM. Neuroprotective effects of Xiao-Xu-Ming decoction against ischemic neuronal injury in vivo and in vitro. J Ethnopharmacol. 2010;127:38–46.CrossRefPubMed Zhu XH, Li SJ, Hu HH, Sun LR, Das M, Gao TM. Neuroprotective effects of Xiao-Xu-Ming decoction against ischemic neuronal injury in vivo and in vitro. J Ethnopharmacol. 2010;127:38–46.CrossRefPubMed
6.
go back to reference Li XM, Bai XC, Huang H, Xiao ZJ, Gao TM. Neuroprotective effects of Buyang Huanwu decoction on neuronal injury in hippocampus after transient forebrain ischemia in rats. Neurosci Lett. 2003;346:29–32.CrossRefPubMed Li XM, Bai XC, Huang H, Xiao ZJ, Gao TM. Neuroprotective effects of Buyang Huanwu decoction on neuronal injury in hippocampus after transient forebrain ischemia in rats. Neurosci Lett. 2003;346:29–32.CrossRefPubMed
7.
go back to reference Wang L, Zhou GB, Liu P, Song JH, Liang Y, Yan XJ, Xu F, Wang BS, Mao JH, Shen ZX, Chen SJ, Chen Z. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc Natl Acad Sci USA. 2008;105:4826–31.CrossRefPubMedPubMedCentral Wang L, Zhou GB, Liu P, Song JH, Liang Y, Yan XJ, Xu F, Wang BS, Mao JH, Shen ZX, Chen SJ, Chen Z. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc Natl Acad Sci USA. 2008;105:4826–31.CrossRefPubMedPubMedCentral
8.
go back to reference Gong X, Sucher NJ. Stroke therapy in traditional Chinese medicine (TCM): prospects for drug discovery and development. Phytomed. 2002;9:478–84.CrossRef Gong X, Sucher NJ. Stroke therapy in traditional Chinese medicine (TCM): prospects for drug discovery and development. Phytomed. 2002;9:478–84.CrossRef
9.
go back to reference Shi H, Shi L. The clinical effect of modified Taohongsiwu decoction on diabetes peripheral neuropathy. J Henan Univ Chin Med. 2006;21:38–9. Shi H, Shi L. The clinical effect of modified Taohongsiwu decoction on diabetes peripheral neuropathy. J Henan Univ Chin Med. 2006;21:38–9.
10.
go back to reference Yang JM. Therapeutic effect observation of 154 cases of coronary artery disease angina using Taohongsiwutang (THSW). China J Mol Med. 2007;17:2268–75. Yang JM. Therapeutic effect observation of 154 cases of coronary artery disease angina using Taohongsiwutang (THSW). China J Mol Med. 2007;17:2268–75.
11.
go back to reference Hsiao G, Lin KH, Chang Y, Chen TL, Tzu NH, Chou DS, Sheu JR. Protective mechanisms of inosine in platelet activation and cerebral ischemic damage. Arterioscler Thromb Vasc Biol. 2005;25:1998–2004.CrossRefPubMed Hsiao G, Lin KH, Chang Y, Chen TL, Tzu NH, Chou DS, Sheu JR. Protective mechanisms of inosine in platelet activation and cerebral ischemic damage. Arterioscler Thromb Vasc Biol. 2005;25:1998–2004.CrossRefPubMed
12.
go back to reference Lee YM, Chang CY, Yen TL, Geraldine P, Lan CC, Sheu JR, Lee JJ. Extract of Antrodia camphorata exerts neuroprotection against embolic stroke in rats without causing the risk of hemorrhagic incidence. Sci World J. 2014;2014:1–8. Lee YM, Chang CY, Yen TL, Geraldine P, Lan CC, Sheu JR, Lee JJ. Extract of Antrodia camphorata exerts neuroprotection against embolic stroke in rats without causing the risk of hemorrhagic incidence. Sci World J. 2014;2014:1–8.
13.
go back to reference Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke. 1986;17(6):1304–8.CrossRefPubMed Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke. 1986;17(6):1304–8.CrossRefPubMed
14.
go back to reference Rodrigo J, Alonso D, Fernandez AP, Serrano J, Richart A, López JC, Santacana M, Martínez-Murillo R, Bentura ML, Ghiglione M, Uttenthal LO. Neuronal and inducible nitric oxide synthase expression and protein nitration in rat cerebellum after oxygen and glucose deprivation. Brain Res. 2001;909:20–45.CrossRefPubMed Rodrigo J, Alonso D, Fernandez AP, Serrano J, Richart A, López JC, Santacana M, Martínez-Murillo R, Bentura ML, Ghiglione M, Uttenthal LO. Neuronal and inducible nitric oxide synthase expression and protein nitration in rat cerebellum after oxygen and glucose deprivation. Brain Res. 2001;909:20–45.CrossRefPubMed
15.
go back to reference Chou DS, Hsiao G, Shen MY, Tsai YJ, Chen TF, Sheu JR. ESR spin trapping of a carbon-centered free radical from agonist-stimulated human platelets. Free Rad Biol Med. 2005;39:237–48.CrossRefPubMed Chou DS, Hsiao G, Shen MY, Tsai YJ, Chen TF, Sheu JR. ESR spin trapping of a carbon-centered free radical from agonist-stimulated human platelets. Free Rad Biol Med. 2005;39:237–48.CrossRefPubMed
17.
go back to reference Barone FC, Feuerstein GZ. Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab. 1999;19:819–34.CrossRefPubMed Barone FC, Feuerstein GZ. Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab. 1999;19:819–34.CrossRefPubMed
18.
go back to reference Barone FC, Arvin B, White RF, Miller A, Webb CL, Willette RN, Lysko PG, Feuerstein GZ. Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury. Stroke. 1997;28:1233–44.CrossRefPubMed Barone FC, Arvin B, White RF, Miller A, Webb CL, Willette RN, Lysko PG, Feuerstein GZ. Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury. Stroke. 1997;28:1233–44.CrossRefPubMed
19.
go back to reference Hosomi N, Ban CR, Naya T, Takahashi T, Guo P, Song XY, Kohno M. Tumor necrosis factor-alpha neutralization reduced cerebral edema through inhibition of matrix metalloproteinase production after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2005;25:959–67.CrossRefPubMed Hosomi N, Ban CR, Naya T, Takahashi T, Guo P, Song XY, Kohno M. Tumor necrosis factor-alpha neutralization reduced cerebral edema through inhibition of matrix metalloproteinase production after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2005;25:959–67.CrossRefPubMed
20.
go back to reference Nawashiro H, Martin D, Hallenbeck JM. Inhibition of tumor necrosis factor and amelioration of brain infarction in mice. J Cereb Blood Flow Metab. 1997;17:229–32.CrossRefPubMed Nawashiro H, Martin D, Hallenbeck JM. Inhibition of tumor necrosis factor and amelioration of brain infarction in mice. J Cereb Blood Flow Metab. 1997;17:229–32.CrossRefPubMed
21.
go back to reference Wang X, Feuerstein GZ, Xu L, Wang H, Schumacher WA, Ogletree ML, Taube R, Duan JJ, Decicco CP, Liu RQ. Inhibition of tumor necrosis factor-alpha-converting enzyme by a selective antagonist protects brain from focal ischemic injury in rats. Mol Pharmacol. 2004;65:890–6.CrossRefPubMed Wang X, Feuerstein GZ, Xu L, Wang H, Schumacher WA, Ogletree ML, Taube R, Duan JJ, Decicco CP, Liu RQ. Inhibition of tumor necrosis factor-alpha-converting enzyme by a selective antagonist protects brain from focal ischemic injury in rats. Mol Pharmacol. 2004;65:890–6.CrossRefPubMed
22.
go back to reference Wu CJ, Chen JT, Yen TL, Jayakumar T, Chou DS, Hsiao G, Sheu JR. Neuroprotection by the traditional Chinese medicine, Tao-Hong-Si-Wu-Tang, against middle cerebral artery occlusion-induced cerebral ischemia in rats. Evid Based Complement Altern Med. 2011;2011:1–9. Wu CJ, Chen JT, Yen TL, Jayakumar T, Chou DS, Hsiao G, Sheu JR. Neuroprotection by the traditional Chinese medicine, Tao-Hong-Si-Wu-Tang, against middle cerebral artery occlusion-induced cerebral ischemia in rats. Evid Based Complement Altern Med. 2011;2011:1–9.
23.
go back to reference Irving EA, Barone FC, Reith AD, Hadingham SJ, Parsons AA. Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat. Brain Res Mol Brain Res. 2000;77:65–75.CrossRefPubMed Irving EA, Barone FC, Reith AD, Hadingham SJ, Parsons AA. Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat. Brain Res Mol Brain Res. 2000;77:65–75.CrossRefPubMed
24.
go back to reference Hayashi T, Sakai K, Sasaki C, Zhang WR, Warita H, Abe K. c-Jun N-terminal kinase (JNK) and JNK interacting protein response in rat brain after transient middle cerebral artery occlusion. Neurosci Lett. 2000;284:195–9.CrossRefPubMed Hayashi T, Sakai K, Sasaki C, Zhang WR, Warita H, Abe K. c-Jun N-terminal kinase (JNK) and JNK interacting protein response in rat brain after transient middle cerebral artery occlusion. Neurosci Lett. 2000;284:195–9.CrossRefPubMed
25.
go back to reference Okami N, Narasimhan P, Yoshioka H, Sakata H, Kim GS, Jung JE, Maier CM, Chan PH. Prevention of JNK phosphorylation as a mechanism for rosiglitazone in neuroprotection after transient cerebral ischemia: activation of dual specificity phosphatase. J Cereb Blood Flow Metab. 2012;33:106–14.CrossRefPubMedPubMedCentral Okami N, Narasimhan P, Yoshioka H, Sakata H, Kim GS, Jung JE, Maier CM, Chan PH. Prevention of JNK phosphorylation as a mechanism for rosiglitazone in neuroprotection after transient cerebral ischemia: activation of dual specificity phosphatase. J Cereb Blood Flow Metab. 2012;33:106–14.CrossRefPubMedPubMedCentral
26.
go back to reference Wallace BK, Jelks KA, O’Donnell ME. Ischemia-induced stimulation of cerebral microvascular endothelial cell Na-K-Cl cotransport involves p38 and JNK MAP kinases. Am J Physiol Cell Physiol. 2012;302:505–17.CrossRef Wallace BK, Jelks KA, O’Donnell ME. Ischemia-induced stimulation of cerebral microvascular endothelial cell Na-K-Cl cotransport involves p38 and JNK MAP kinases. Am J Physiol Cell Physiol. 2012;302:505–17.CrossRef
27.
go back to reference Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science. 2000;288:870–4.CrossRefPubMed Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science. 2000;288:870–4.CrossRefPubMed
28.
go back to reference Chen J, Nagayama T, Jin K, Steler RA, Zhu RL, Graham SH, Simon RP. Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci. 1998;18:4914–28.PubMed Chen J, Nagayama T, Jin K, Steler RA, Zhu RL, Graham SH, Simon RP. Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci. 1998;18:4914–28.PubMed
29.
go back to reference Iijima T, Mishima T, Akagawa K, Iwao Y. Mitochondrial hyperpolarization after transient oxygen-glucose deprivation and subsequent apoptosis in cultured rat hippocampal neurons. Brain Res. 2003;993:140–5.CrossRefPubMed Iijima T, Mishima T, Akagawa K, Iwao Y. Mitochondrial hyperpolarization after transient oxygen-glucose deprivation and subsequent apoptosis in cultured rat hippocampal neurons. Brain Res. 2003;993:140–5.CrossRefPubMed
30.
go back to reference Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 1993;262:689–95.CrossRefPubMed Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 1993;262:689–95.CrossRefPubMed
31.
go back to reference Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev. 2001;53:135–59.PubMed Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev. 2001;53:135–59.PubMed
32.
go back to reference Zhu DY, Deng Q, Yao HH, Wang DC, Deng Y, Liu GQ. Inducible nitric oxide synthase expression in the ischemic core and penumbra after transient focal cerebra lischemia in mice. Life Sci. 2002;71:1985–96.CrossRefPubMed Zhu DY, Deng Q, Yao HH, Wang DC, Deng Y, Liu GQ. Inducible nitric oxide synthase expression in the ischemic core and penumbra after transient focal cerebra lischemia in mice. Life Sci. 2002;71:1985–96.CrossRefPubMed
33.
go back to reference Ikonomidou C, Kaindl AM. Neuronal death and oxidative stress in the developing brain. Antioxid Redox Signal. 2011;14:1535–50.CrossRefPubMed Ikonomidou C, Kaindl AM. Neuronal death and oxidative stress in the developing brain. Antioxid Redox Signal. 2011;14:1535–50.CrossRefPubMed
34.
go back to reference Gong X, Sucher NJ. Stroke therapy in traditional Chinese medicine (TCM): prospects for drug discovery and development. Phytomedicine. 2002;9:478–84.CrossRefPubMed Gong X, Sucher NJ. Stroke therapy in traditional Chinese medicine (TCM): prospects for drug discovery and development. Phytomedicine. 2002;9:478–84.CrossRefPubMed
Metadata
Title
The neuroprotective effects of Tao-Ren-Cheng-Qi Tang against embolic stroke in rats
Authors
Ling-Wei Hsu
Wei-Cheng Shiao
Nen-Chung Chang
Meng-Che Yu
Ting-Lin Yen
Philip Aloysius Thomas
Thanasekaran Jayakumar
Joen-Rong Sheu
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Chinese Medicine / Issue 1/2017
Electronic ISSN: 1749-8546
DOI
https://doi.org/10.1186/s13020-017-0128-y

Other articles of this Issue 1/2017

Chinese Medicine 1/2017 Go to the issue