Skip to main content
Top
Published in: Brain Structure and Function 6/2015

01-11-2015 | Original Article

The neocortex of cetartiodactyls: I. A comparative Golgi analysis of neuronal morphology in the bottlenose dolphin (Tursiops truncatus), the minke whale (Balaenoptera acutorostrata), and the humpback whale (Megaptera novaeangliae)

Authors: Camilla Butti, Caroline M. Janeway, Courtney Townshend, Bridget A. Wicinski, Joy S. Reidenberg, Sam H. Ridgway, Chet C. Sherwood, Patrick R. Hof, Bob Jacobs

Published in: Brain Structure and Function | Issue 6/2015

Login to get access

Abstract

The present study documents the morphology of neurons in several regions of the neocortex from the bottlenose dolphin (Tursiops truncatus), the North Atlantic minke whale (Balaenoptera acutorostrata), and the humpback whale (Megaptera novaeangliae). Golgi-stained neurons (n = 210) were analyzed in the frontal and temporal neocortex as well as in the primary visual and primary motor areas. Qualitatively, all three species exhibited a diversity of neuronal morphologies, with spiny neurons including typical pyramidal types, similar to those observed in primates and rodents, as well as other spiny neuron types that had more variable morphology and/or orientation. Five neuron types, with a vertical apical dendrite, approximated the general pyramidal neuron morphology (i.e., typical pyramidal, extraverted, magnopyramidal, multiapical, and bitufted neurons), with a predominance of typical and extraverted pyramidal neurons. In what may represent a cetacean morphological apomorphy, both typical pyramidal and magnopyramidal neurons frequently exhibited a tri-tufted variant. In the humpback whale, there were also large, star-like neurons with no discernable apical dendrite. Aspiny bipolar and multipolar interneurons were morphologically consistent with those reported previously in other mammals. Quantitative analyses showed that neuronal size and dendritic extent increased in association with body size and brain mass (bottlenose dolphin < minke whale < humpback whale). The present data thus suggest that certain spiny neuron morphologies may be apomorphies in the neocortex of cetaceans as compared to other mammals and that neuronal dendritic extent covaries with brain and body size.
Literature
go back to reference Anderson K, Bones B, Robinson B, Hass C, Lee H, Ford K, Roberts TA, Jacobs B (2009) The morphology of supragranular pyramidal neurons in the human insular cortex: a quantitative Golgi study. Cereb Cortex 19:2131–2144PubMedCrossRef Anderson K, Bones B, Robinson B, Hass C, Lee H, Ford K, Roberts TA, Jacobs B (2009) The morphology of supragranular pyramidal neurons in the human insular cortex: a quantitative Golgi study. Cereb Cortex 19:2131–2144PubMedCrossRef
go back to reference Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R, Burkhalter A, Buzsaki G, Cauli B, Defelipe J, Fairen A, Feldmeyer D, Fishell G, Fregnac Y, Freund TF, Gardner D, Gardner EP, Goldberg JH, Helmstaedter M, Hestrin S, Karube F, Kisvarday ZF, Lambolez B, Lewis DA, Marin O, Markram H, Munoz A, Packer A, Petersen CC, Rockland KS, Rossier J, Rudy B, Somogyi P, Staiger JF, Tamas G, Thomson AM, Toledo-Rodriguez M, Wang Y, West DC, Yuste R (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–568PubMedCrossRef Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R, Burkhalter A, Buzsaki G, Cauli B, Defelipe J, Fairen A, Feldmeyer D, Fishell G, Fregnac Y, Freund TF, Gardner D, Gardner EP, Goldberg JH, Helmstaedter M, Hestrin S, Karube F, Kisvarday ZF, Lambolez B, Lewis DA, Marin O, Markram H, Munoz A, Packer A, Petersen CC, Rockland KS, Rossier J, Rudy B, Somogyi P, Staiger JF, Tamas G, Thomson AM, Toledo-Rodriguez M, Wang Y, West DC, Yuste R (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–568PubMedCrossRef
go back to reference Au WW, Nachtigall PE (1997) Acoustics of echolocating dolphins and small whales. Mar Freshw Behav Physiol 29:127–162CrossRef Au WW, Nachtigall PE (1997) Acoustics of echolocating dolphins and small whales. Mar Freshw Behav Physiol 29:127–162CrossRef
go back to reference Au WW, Branstetter BK, Benoit-Bird KJ, Kastelein RA (2009) Acoustic basis for fish prey discrimination by echolocating dolphins and porpoises. J Acoust Soc Am 126:460PubMedCrossRef Au WW, Branstetter BK, Benoit-Bird KJ, Kastelein RA (2009) Acoustic basis for fish prey discrimination by echolocating dolphins and porpoises. J Acoust Soc Am 126:460PubMedCrossRef
go back to reference Barasa A (1960) Form, size and density of the neurons in the cerebral cortex of mammals of different body sizes. Z Zellforsch Mikrosk Anat 53:69–89PubMedCrossRef Barasa A (1960) Form, size and density of the neurons in the cerebral cortex of mammals of different body sizes. Z Zellforsch Mikrosk Anat 53:69–89PubMedCrossRef
go back to reference Betz W (1881) Ueber die feinere Structur der Gehirnrinde des Menschen. Zentralbl Med Wiss 19:193–195 Betz W (1881) Ueber die feinere Structur der Gehirnrinde des Menschen. Zentralbl Med Wiss 19:193–195
go back to reference Bianchi S, Bauernfeind AL, Gupta K, Stimpson CD, Spocter MA, Bonar CJ, Manger PR, Hof PR, Jacobs B, Sherwood CC (2011) Neocortical neuron morphology in Afrotheria: comparing the rock hyrax with the African elephant. Ann N Y Acad Sci 1225:37–46PubMedCrossRef Bianchi S, Bauernfeind AL, Gupta K, Stimpson CD, Spocter MA, Bonar CJ, Manger PR, Hof PR, Jacobs B, Sherwood CC (2011) Neocortical neuron morphology in Afrotheria: comparing the rock hyrax with the African elephant. Ann N Y Acad Sci 1225:37–46PubMedCrossRef
go back to reference Bok S (1959) Histonomy of the cerebral cortex. Histonomy of the cerebral cortex, Amsterdam Bok S (1959) Histonomy of the cerebral cortex. Histonomy of the cerebral cortex, Amsterdam
go back to reference Boothe RG, Greenough WT, Lund JS, Wrege K (1979) A quantitative investigation of spine and dendrite development of neurons in visual cortex (area17) of Macaca nemestrina monkeys. J Comp Neurol 186:473–489PubMedCrossRef Boothe RG, Greenough WT, Lund JS, Wrege K (1979) A quantitative investigation of spine and dendrite development of neurons in visual cortex (area17) of Macaca nemestrina monkeys. J Comp Neurol 186:473–489PubMedCrossRef
go back to reference Braak H, Braak E (1976) The pyramidal cells of Betz within the cingulate and precentral gigantopyramidal field in the human brain: a Golgi and pigmentarchitectonic study. Cell Tissue Res 172:103–119PubMedCrossRef Braak H, Braak E (1976) The pyramidal cells of Betz within the cingulate and precentral gigantopyramidal field in the human brain: a Golgi and pigmentarchitectonic study. Cell Tissue Res 172:103–119PubMedCrossRef
go back to reference Buell S (1982) Golgi–Cox and rapid Golgi methods as applied to autopsied human brain tissue: widely disparate results. J Neuropathol Exp Neurol 41:500–507PubMedCrossRef Buell S (1982) Golgi–Cox and rapid Golgi methods as applied to autopsied human brain tissue: widely disparate results. J Neuropathol Exp Neurol 41:500–507PubMedCrossRef
go back to reference Butti C, Hof PR (2010) The insular cortex: a comparative perspective. Brain Struct Funct 214:477–493PubMedCrossRef Butti C, Hof PR (2010) The insular cortex: a comparative perspective. Brain Struct Funct 214:477–493PubMedCrossRef
go back to reference Butti C, Sherwood CC, Hakeem AY, Allman JM, Hof PR (2009) Total number and volume of von Economo neurons in the cerebral cortex of cetaceans. J Comp Neurol 515:243–259PubMedCrossRef Butti C, Sherwood CC, Hakeem AY, Allman JM, Hof PR (2009) Total number and volume of von Economo neurons in the cerebral cortex of cetaceans. J Comp Neurol 515:243–259PubMedCrossRef
go back to reference Butti C, Raghanti MA, Sherwood CC, Hof PR (2011) The neocortex of cetaceans: cytoarchitecture and comparison with other aquatic and terrestrial species. Ann N Y Acad Sci 1225:47–58PubMedCrossRef Butti C, Raghanti MA, Sherwood CC, Hof PR (2011) The neocortex of cetaceans: cytoarchitecture and comparison with other aquatic and terrestrial species. Ann N Y Acad Sci 1225:47–58PubMedCrossRef
go back to reference Butti C, Ewan Fordyce R, Ann Raghanti M, Gu X, Bonar CJ, Wicinski BA, Wong EW, Roman J, Brake A, Eaves E, Spocter MA, Tang CY, Jacobs B, Sherwood CC, Hof PR (2014) The cerebral cortex of the pygmy hippopotamus, Hexaprotodon liberiensis (Cetartiodactyla, Hippopotamidae): MRI, cytoarchitecture, and neuronal morphology. Anat Rec 297:670–700CrossRef Butti C, Ewan Fordyce R, Ann Raghanti M, Gu X, Bonar CJ, Wicinski BA, Wong EW, Roman J, Brake A, Eaves E, Spocter MA, Tang CY, Jacobs B, Sherwood CC, Hof PR (2014) The cerebral cortex of the pygmy hippopotamus, Hexaprotodon liberiensis (Cetartiodactyla, Hippopotamidae): MRI, cytoarchitecture, and neuronal morphology. Anat Rec 297:670–700CrossRef
go back to reference Chan-Palay V, Palay SL, Billings-Gagliardi SM (1974) Meynert cells in the primate visual cortex. J Neurocytol 3:631–658PubMedCrossRef Chan-Palay V, Palay SL, Billings-Gagliardi SM (1974) Meynert cells in the primate visual cortex. J Neurocytol 3:631–658PubMedCrossRef
go back to reference Chklovskii DB (2004) Synaptic connectivity and neuronal morphology: two sides of the same coin. Neuron 43:609–617PubMed Chklovskii DB (2004) Synaptic connectivity and neuronal morphology: two sides of the same coin. Neuron 43:609–617PubMed
go back to reference Connor RC (2007) Dolphin social intelligence: complex alliance relationships in bottlenose dolphins and a consideration of selective environments for extreme brain size evolution in mammals. Philos Trans R Soc Lond B Biol Sci 362:587–602PubMedCentralPubMedCrossRef Connor RC (2007) Dolphin social intelligence: complex alliance relationships in bottlenose dolphins and a consideration of selective environments for extreme brain size evolution in mammals. Philos Trans R Soc Lond B Biol Sci 362:587–602PubMedCentralPubMedCrossRef
go back to reference Cupp CJ, Uemura E (1980) Age-related changes in the prefrontal cortex of Macaca mulatta: quantitative analysis of dendritic branching patterns. Exp Neurol 69:143–163PubMedCrossRef Cupp CJ, Uemura E (1980) Age-related changes in the prefrontal cortex of Macaca mulatta: quantitative analysis of dendritic branching patterns. Exp Neurol 69:143–163PubMedCrossRef
go back to reference de Lima AD, Voigt T, Morrison JH (1990) Morphology of the cells within the inferior temporal gyrus that project to the prefrontal cortex in the macaque monkey. J Comp Neurol 296:159–172PubMedCrossRef de Lima AD, Voigt T, Morrison JH (1990) Morphology of the cells within the inferior temporal gyrus that project to the prefrontal cortex in the macaque monkey. J Comp Neurol 296:159–172PubMedCrossRef
go back to reference de Ruiter JP (1983) The influence of post-mortem fixation delay on the reliability of the Golgi silver impregnation. Brain Res 266:143–147PubMedCrossRef de Ruiter JP (1983) The influence of post-mortem fixation delay on the reliability of the Golgi silver impregnation. Brain Res 266:143–147PubMedCrossRef
go back to reference Deacon TW (1990) Rethinking mammalian brain evolution. Am Zool 30:629–705CrossRef Deacon TW (1990) Rethinking mammalian brain evolution. Am Zool 30:629–705CrossRef
go back to reference DeFelipe J (1997) Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat 14:1–19PubMedCrossRef DeFelipe J (1997) Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat 14:1–19PubMedCrossRef
go back to reference DeFelipe J, Lopez-Cruz PL, Benavides-Piccione R, Bielza C, Larranaga P, Anderson S, Burkhalter A, Cauli B, Fairen A, Feldmeyer D, Fishell G, Fitzpatrick D, Freund TF, Gonzalez-Burgos G, Hestrin S, Hill S, Hof PR, Huang J, Jones EG, Kawaguchi Y, Kisvarday Z, Kubota Y, Lewis DA, Marin O, Markram H, McBain CJ, Meyer HS, Monyer H, Nelson SB, Rockland K, Rossier J, Rubenstein JL, Rudy B, Scanziani M, Shepherd GM, Sherwood CC, Staiger JF, Tamas G, Thomson A, Wang Y, Yuste R, Ascoli GA (2013) New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci 14:202–216PubMedCentralPubMedCrossRef DeFelipe J, Lopez-Cruz PL, Benavides-Piccione R, Bielza C, Larranaga P, Anderson S, Burkhalter A, Cauli B, Fairen A, Feldmeyer D, Fishell G, Fitzpatrick D, Freund TF, Gonzalez-Burgos G, Hestrin S, Hill S, Hof PR, Huang J, Jones EG, Kawaguchi Y, Kisvarday Z, Kubota Y, Lewis DA, Marin O, Markram H, McBain CJ, Meyer HS, Monyer H, Nelson SB, Rockland K, Rossier J, Rubenstein JL, Rudy B, Scanziani M, Shepherd GM, Sherwood CC, Staiger JF, Tamas G, Thomson A, Wang Y, Yuste R, Ascoli GA (2013) New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci 14:202–216PubMedCentralPubMedCrossRef
go back to reference Druga R (2009) Neocortical inhibitory system. Folia Biol 55:201–217 Druga R (2009) Neocortical inhibitory system. Folia Biol 55:201–217
go back to reference Elias H, Schwartz D (1969) Surface areas of the cerebral cortex of mammals determined by stereological methods. Science 166:111–113PubMedCrossRef Elias H, Schwartz D (1969) Surface areas of the cerebral cortex of mammals determined by stereological methods. Science 166:111–113PubMedCrossRef
go back to reference Elston GN, Rosa MG (1998a) Complex dendritic fields of pyramidal cells in the frontal eye field of the macaque monkey: comparison with parietal areas 7a and LIP. NeuroReport 9:127–131PubMedCrossRef Elston GN, Rosa MG (1998a) Complex dendritic fields of pyramidal cells in the frontal eye field of the macaque monkey: comparison with parietal areas 7a and LIP. NeuroReport 9:127–131PubMedCrossRef
go back to reference Elston GN, Rosa MG (1998b) Morphological variation of layer III pyramidal neurones in the occipitotemporal pathway of the macaque monkey visual cortex. Cereb Cortex 8:278–294PubMedCrossRef Elston GN, Rosa MG (1998b) Morphological variation of layer III pyramidal neurones in the occipitotemporal pathway of the macaque monkey visual cortex. Cereb Cortex 8:278–294PubMedCrossRef
go back to reference Elston GN, Oga T, Fujita I (2009) Spinogenesis and pruning scales across functional hierarchies. J Neurosci 29:3271–3275PubMedCrossRef Elston GN, Oga T, Fujita I (2009) Spinogenesis and pruning scales across functional hierarchies. J Neurosci 29:3271–3275PubMedCrossRef
go back to reference Elston GN, Oga T, Okamoto T, Fujita I (2010a) Spinogenesis and pruning from early visual onset to adulthood: an intracellular injection study of layer III pyramidal cells in the ventral visual cortical pathway of the macaque monkey. Cereb Cortex 20:1398–1408PubMedCrossRef Elston GN, Oga T, Okamoto T, Fujita I (2010a) Spinogenesis and pruning from early visual onset to adulthood: an intracellular injection study of layer III pyramidal cells in the ventral visual cortical pathway of the macaque monkey. Cereb Cortex 20:1398–1408PubMedCrossRef
go back to reference Elston GN, Okamoto T, Oga T, Dornan D, Fujita I (2010b) Spinogenesis and pruning in the primary auditory cortex of the macaque monkey (Macaca fascicularis): an intracellular injection study of layer III pyramidal cells. Brain Res 1316:35–42PubMedCrossRef Elston GN, Okamoto T, Oga T, Dornan D, Fujita I (2010b) Spinogenesis and pruning in the primary auditory cortex of the macaque monkey (Macaca fascicularis): an intracellular injection study of layer III pyramidal cells. Brain Res 1316:35–42PubMedCrossRef
go back to reference Elston GN, Oga T, Okamoto T, Fujita I (2011) Spinogenesis and pruning in the anterior ventral inferiotemporal cortex of the macaque monkey: an intracellular injection study of layer III pyramidal cells. Front Neuroanat 5:42PubMedCentralPubMedCrossRef Elston GN, Oga T, Okamoto T, Fujita I (2011) Spinogenesis and pruning in the anterior ventral inferiotemporal cortex of the macaque monkey: an intracellular injection study of layer III pyramidal cells. Front Neuroanat 5:42PubMedCentralPubMedCrossRef
go back to reference Eriksen N, Pakkenberg B (2007) Total neocortical cell number in the mysticete brain. Anat Rec 290:83–95CrossRef Eriksen N, Pakkenberg B (2007) Total neocortical cell number in the mysticete brain. Anat Rec 290:83–95CrossRef
go back to reference Ferrer I (1987) The basic structure of the neocortex in insectivorous bats (Miniopterus sthreibersi and Pipistrellus pipistrellus). A Golgi study. J Hirnforsch 28:237–243PubMed Ferrer I (1987) The basic structure of the neocortex in insectivorous bats (Miniopterus sthreibersi and Pipistrellus pipistrellus). A Golgi study. J Hirnforsch 28:237–243PubMed
go back to reference Ferrer I, Perera M (1988) Structure and nerve cell organisation in the cerebral cortex of the dolphin Stenella coeruleoalba a Golgi study. With special attention to the primary auditory area. Anat Embryol 178:161–173PubMedCrossRef Ferrer I, Perera M (1988) Structure and nerve cell organisation in the cerebral cortex of the dolphin Stenella coeruleoalba a Golgi study. With special attention to the primary auditory area. Anat Embryol 178:161–173PubMedCrossRef
go back to reference Ferrer I, Fábregues I, Condom E (1986a) A Golgi study of the sixth layer of the cerebral cortex. I. The lissencephalic brain of Rodentia, Lagomorpha, Insectivora and Chiroptera. J Anat 145:217–234PubMedCentralPubMed Ferrer I, Fábregues I, Condom E (1986a) A Golgi study of the sixth layer of the cerebral cortex. I. The lissencephalic brain of Rodentia, Lagomorpha, Insectivora and Chiroptera. J Anat 145:217–234PubMedCentralPubMed
go back to reference Ferrer I, Fábregues I, Condom E (1986b) A Golgi study of the sixth layer of the cerebral cortex. II. The gyrencephalic brain of Carnivora, Artiodactyla and Primates. J Anat 146:87–104PubMedCentralPubMed Ferrer I, Fábregues I, Condom E (1986b) A Golgi study of the sixth layer of the cerebral cortex. II. The gyrencephalic brain of Carnivora, Artiodactyla and Primates. J Anat 146:87–104PubMedCentralPubMed
go back to reference Furutani R (2008) Laminar and cytoarchitectonic features of the cerebral cortex in the Risso’s dolphin (Grampus griseus), striped dolphin (Stenella coeruleoalba), and bottlenose dolphin (Tursiops truncatus). J Anat 213:241–248PubMedCentralPubMedCrossRef Furutani R (2008) Laminar and cytoarchitectonic features of the cerebral cortex in the Risso’s dolphin (Grampus griseus), striped dolphin (Stenella coeruleoalba), and bottlenose dolphin (Tursiops truncatus). J Anat 213:241–248PubMedCentralPubMedCrossRef
go back to reference Gabi M, Collins CE, Wong P, Torres LB, Kaas JH, Herculano-Houzel S (2010) Cellular scaling rules for the brains of an extended number of primate species. Brain Behav Evol 76:32–44PubMedCentralPubMedCrossRef Gabi M, Collins CE, Wong P, Torres LB, Kaas JH, Herculano-Houzel S (2010) Cellular scaling rules for the brains of an extended number of primate species. Brain Behav Evol 76:32–44PubMedCentralPubMedCrossRef
go back to reference Garey LJ, Winkelmann E, Brauer K (1985) Golgi and Nissl studies of the visual cortex of the bottlenose dolphin. J Comp Neurol 240:305–321PubMedCrossRef Garey LJ, Winkelmann E, Brauer K (1985) Golgi and Nissl studies of the visual cortex of the bottlenose dolphin. J Comp Neurol 240:305–321PubMedCrossRef
go back to reference Garey LJ, Takacs J, Revishchin AV, Hamori J (1989) Quantitative distribution of GABA-immunoreactive neurons in cetacean visual cortex is similar to that in land mammals. Brain Res 485:278–284PubMedCrossRef Garey LJ, Takacs J, Revishchin AV, Hamori J (1989) Quantitative distribution of GABA-immunoreactive neurons in cetacean visual cortex is similar to that in land mammals. Brain Res 485:278–284PubMedCrossRef
go back to reference Garland EC, Noad MJ, Goldizen AW, Lilley MS, Rekdahl ML, Garrigue C, Constantine R, Daeschler Hauser N, Poole MM, Robbins J (2013) Quantifying humpback whale song sequences to understand the dynamics of song exchange at the ocean basin scale. J Acoust Soc Am 133:560–569PubMedCrossRef Garland EC, Noad MJ, Goldizen AW, Lilley MS, Rekdahl ML, Garrigue C, Constantine R, Daeschler Hauser N, Poole MM, Robbins J (2013) Quantifying humpback whale song sequences to understand the dynamics of song exchange at the ocean basin scale. J Acoust Soc Am 133:560–569PubMedCrossRef
go back to reference Gatesy J (1997) More DNA support for a Cetacea/Hippopotamidae clade: the blood-clotting protein gene gamma-fibrinogen. Mol Biol Evol 14:537–543PubMedCrossRef Gatesy J (1997) More DNA support for a Cetacea/Hippopotamidae clade: the blood-clotting protein gene gamma-fibrinogen. Mol Biol Evol 14:537–543PubMedCrossRef
go back to reference Geisler G, Uhen MD (2003) Morphological support for a close relationship between hippos and whales. J Vert Paleontol 23:991–996CrossRef Geisler G, Uhen MD (2003) Morphological support for a close relationship between hippos and whales. J Vert Paleontol 23:991–996CrossRef
go back to reference Germroth P, Schwerdtfeger WK, Buhl EH (1989) Morphology of identified entorhinal neurons projecting to the hippocampus. A light microscopical study combining retrograde tracing and intracellular injection. Neuroscience 30:683–691PubMedCrossRef Germroth P, Schwerdtfeger WK, Buhl EH (1989) Morphology of identified entorhinal neurons projecting to the hippocampus. A light microscopical study combining retrograde tracing and intracellular injection. Neuroscience 30:683–691PubMedCrossRef
go back to reference Gingerich PD, Uhen MD (1998) Likelihood estimation of the time of origin of cetacean and the time of divergence of Cetacea and Artiodactyla. Paleo-Electronica 2:1–47 Gingerich PD, Uhen MD (1998) Likelihood estimation of the time of origin of cetacean and the time of divergence of Cetacea and Artiodactyla. Paleo-Electronica 2:1–47
go back to reference Gingerich PD, Haq M, Zalmout IS, Khan IH, Malkani MS (2001) Origin of whales from early artiodactyls: hands and feet of Eocene Protocetidae from Pakistan. Science 293:2239–2242PubMedCrossRef Gingerich PD, Haq M, Zalmout IS, Khan IH, Malkani MS (2001) Origin of whales from early artiodactyls: hands and feet of Eocene Protocetidae from Pakistan. Science 293:2239–2242PubMedCrossRef
go back to reference Glezer I (2002) Neural morphology. In: Hoezel AR (ed) Marine mammal biology: an evolutionary approach. Blackwell Science Ltd, Malden, pp 98–115 Glezer I (2002) Neural morphology. In: Hoezel AR (ed) Marine mammal biology: an evolutionary approach. Blackwell Science Ltd, Malden, pp 98–115
go back to reference Glezer II, Morgane PJ (1990) Ultrastructure of synapses and Golgi analysis of neurons in neocortex of the lateral gyrus (visual cortex) of the dolphin and pilot whale. Brain Res Bull 24:401–427PubMedCrossRef Glezer II, Morgane PJ (1990) Ultrastructure of synapses and Golgi analysis of neurons in neocortex of the lateral gyrus (visual cortex) of the dolphin and pilot whale. Brain Res Bull 24:401–427PubMedCrossRef
go back to reference Glezer II, Jacobs MS, Morgane PJ (1988) Implications of the “initial brain” concept for brain evolution in Cetacea. Behav Brain Sci 11:75–116CrossRef Glezer II, Jacobs MS, Morgane PJ (1988) Implications of the “initial brain” concept for brain evolution in Cetacea. Behav Brain Sci 11:75–116CrossRef
go back to reference Glezer II, Hof PR, Morgane PJ (1992) Calretinin-immunoreactive neurons in the primary visual cortex of dolphin and human brains. Brain Res 595:181–188PubMedCrossRef Glezer II, Hof PR, Morgane PJ (1992) Calretinin-immunoreactive neurons in the primary visual cortex of dolphin and human brains. Brain Res 595:181–188PubMedCrossRef
go back to reference Glezer II, Hof PR, Leranth C, Morgane PJ (1993) Calcium-binding protein-containing neuronal populations in mammalian visual cortex: a comparative study in whales, insectivores, bats, rodents, and primates. Cereb Cortex 3:249–272PubMedCrossRef Glezer II, Hof PR, Leranth C, Morgane PJ (1993) Calcium-binding protein-containing neuronal populations in mammalian visual cortex: a comparative study in whales, insectivores, bats, rodents, and primates. Cereb Cortex 3:249–272PubMedCrossRef
go back to reference Glezer I, Hof PR, Morgane PJ (1995) Cytoarchitectonics and immunocytochemistry of the inferior colliculus of midbrain in cetaceans. FASEB J 9:A247 Glezer I, Hof PR, Morgane PJ (1995) Cytoarchitectonics and immunocytochemistry of the inferior colliculus of midbrain in cetaceans. FASEB J 9:A247
go back to reference Glezer II, Hof PR, Morgane PJ (1998) Comparative analysis of calcium-binding protein-immunoreactive neuronal populations in the auditory and visual systems of the bottlenose dolphin (Tursiops truncatus) and the macaque monkey (Macaca fascicularis). J Chem Neuroanat 15:203–237PubMedCrossRef Glezer II, Hof PR, Morgane PJ (1998) Comparative analysis of calcium-binding protein-immunoreactive neuronal populations in the auditory and visual systems of the bottlenose dolphin (Tursiops truncatus) and the macaque monkey (Macaca fascicularis). J Chem Neuroanat 15:203–237PubMedCrossRef
go back to reference Hanson A, Grisham W, Sheh C, Annese J, Ridgway S (2013) Quantitative examination of the bottlenose dolphin cerebellum. Anat Rec 296:1215–1228CrossRef Hanson A, Grisham W, Sheh C, Annese J, Ridgway S (2013) Quantitative examination of the bottlenose dolphin cerebellum. Anat Rec 296:1215–1228CrossRef
go back to reference Harrison KH, Hof PR, Wang SS (2002) Scaling laws in the mammalian neocortex: does form provide clues to function? J Neurocytol 31:289–298PubMedCrossRef Harrison KH, Hof PR, Wang SS (2002) Scaling laws in the mammalian neocortex: does form provide clues to function? J Neurocytol 31:289–298PubMedCrossRef
go back to reference Hart BL, Hart LA, Pinter-Wollman N (2008) Large brains and cognition: where do elephants fit in? Neurosci Biobehav Rev 32:86–98PubMedCrossRef Hart BL, Hart LA, Pinter-Wollman N (2008) Large brains and cognition: where do elephants fit in? Neurosci Biobehav Rev 32:86–98PubMedCrossRef
go back to reference Hassiotis M, Ashwell KW (2003) Neuronal classes in the isocortex of a monotreme, the Australian echidna (Tachyglossus aculeatus). Brain Behav Evol 61:6–27PubMedCrossRef Hassiotis M, Ashwell KW (2003) Neuronal classes in the isocortex of a monotreme, the Australian echidna (Tachyglossus aculeatus). Brain Behav Evol 61:6–27PubMedCrossRef
go back to reference Herculano-Houzel S (2007) Encephalization, neuronal excess, and neuronal index in rodents. Anat Rec 290:1280–1287CrossRef Herculano-Houzel S (2007) Encephalization, neuronal excess, and neuronal index in rodents. Anat Rec 290:1280–1287CrossRef
go back to reference Herman LM, Tavolga WN (1980) The communication systems of cetaceans. In: Herman LM (ed) Cetacean behavior: mechanisms and functions. Wiley, New York, pp 149–209 Herman LM, Tavolga WN (1980) The communication systems of cetaceans. In: Herman LM (ed) Cetacean behavior: mechanisms and functions. Wiley, New York, pp 149–209
go back to reference Herman LM, Peacock MF, Yunker MP, Madsen CJ (1975) Bottle-nosed dolphin: double-slit pupil yields equivalent aerial and underwater diurnal acuity. Science 189:650–652PubMedCrossRef Herman LM, Peacock MF, Yunker MP, Madsen CJ (1975) Bottle-nosed dolphin: double-slit pupil yields equivalent aerial and underwater diurnal acuity. Science 189:650–652PubMedCrossRef
go back to reference Hof PR, Sherwood CC (2005) Morphomolecular neuronal phenotypes in the neocortex reflect phylogenetic relationships among certain mammalian orders. Anat Rec 287:1153–1163CrossRef Hof PR, Sherwood CC (2005) Morphomolecular neuronal phenotypes in the neocortex reflect phylogenetic relationships among certain mammalian orders. Anat Rec 287:1153–1163CrossRef
go back to reference Hof PR, Van der Gucht E (2007) Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). Anat Rec 290:1–31CrossRef Hof PR, Van der Gucht E (2007) Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). Anat Rec 290:1–31CrossRef
go back to reference Hof PR, Glezer II, Archin N, Janssen WG, Morgane PJ, Morrison JH (1992) The primary auditory cortex in cetacean and human brain: a comparative analysis of neurofilament protein-containing pyramidal neurons. Neurosci Lett 146:91–95PubMedCrossRef Hof PR, Glezer II, Archin N, Janssen WG, Morgane PJ, Morrison JH (1992) The primary auditory cortex in cetacean and human brain: a comparative analysis of neurofilament protein-containing pyramidal neurons. Neurosci Lett 146:91–95PubMedCrossRef
go back to reference Hof PR, Glezer II, Revishchin AV, Bouras C, Charnay Y, Morgane PJ (1995) Distribution of dopaminergic fibers and neurons in visual and auditory cortices of the harbor porpoise and pilot whale. Brain Res Bull 36:275–284PubMedCrossRef Hof PR, Glezer II, Revishchin AV, Bouras C, Charnay Y, Morgane PJ (1995) Distribution of dopaminergic fibers and neurons in visual and auditory cortices of the harbor porpoise and pilot whale. Brain Res Bull 36:275–284PubMedCrossRef
go back to reference Hof PR, Glezer II, Condé F, Flagg RA, Rubin MB, Nimchinsky EA, Vogt Weisenhorn DM (1999) Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J Chem Neuroanat 16:77–116PubMedCrossRef Hof PR, Glezer II, Condé F, Flagg RA, Rubin MB, Nimchinsky EA, Vogt Weisenhorn DM (1999) Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J Chem Neuroanat 16:77–116PubMedCrossRef
go back to reference Hof PR, Glezer II, Nimchinsky EA, Erwin JM (2000a) Neurochemical and cellular specializations in the mammalian neocortex reflect phylogenetic relationships: evidence from primates, cetaceans, and artiodactyls. Brain Behav Evol 55:300–310PubMedCrossRef Hof PR, Glezer II, Nimchinsky EA, Erwin JM (2000a) Neurochemical and cellular specializations in the mammalian neocortex reflect phylogenetic relationships: evidence from primates, cetaceans, and artiodactyls. Brain Behav Evol 55:300–310PubMedCrossRef
go back to reference Hof PR, Nimchinsky EA, Young WG, Morrison JH (2000b) Numbers of Meynert and layer IVB cells in area V1: a stereologic analysis in young and aged macaque monkeys. J Comp Neurol 420:113–126PubMedCrossRef Hof PR, Nimchinsky EA, Young WG, Morrison JH (2000b) Numbers of Meynert and layer IVB cells in area V1: a stereologic analysis in young and aged macaque monkeys. J Comp Neurol 420:113–126PubMedCrossRef
go back to reference Hof PR, Chanis R, Marino L (2005) Cortical complexity in cetacean brains. Anat Rec 287:1142–1152CrossRef Hof PR, Chanis R, Marino L (2005) Cortical complexity in cetacean brains. Anat Rec 287:1142–1152CrossRef
go back to reference Huggenberger S (2008) The size and complexity of dolphin brains—A paradox? J Mar Biol Assoc UK 88:1103–1108CrossRef Huggenberger S (2008) The size and complexity of dolphin brains—A paradox? J Mar Biol Assoc UK 88:1103–1108CrossRef
go back to reference Jacobs B, Scheibel AB (1993) A quantitative dendritic analysis of Wernicke’s area in humans. I. Lifespan changes. J Comp Neurol 327:83–96PubMedCrossRef Jacobs B, Scheibel AB (1993) A quantitative dendritic analysis of Wernicke’s area in humans. I. Lifespan changes. J Comp Neurol 327:83–96PubMedCrossRef
go back to reference Jacobs B, Scheibel AB (2002) Regional dendritic variation in primate cortical pyramidal cells. In: Schuz A, Miller R (eds) Cortical areas: unity and diversity (Conceptual advances in brain research series). Taylor & Francis, London, pp 111–131CrossRef Jacobs B, Scheibel AB (2002) Regional dendritic variation in primate cortical pyramidal cells. In: Schuz A, Miller R (eds) Cortical areas: unity and diversity (Conceptual advances in brain research series). Taylor & Francis, London, pp 111–131CrossRef
go back to reference Jacobs MS, Morgane PJ, McFarland WL (1971) The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Rhinic lobe (rhinencephalon). I. The paleocortex. J Comp Neurol 141:205–271PubMedCrossRef Jacobs MS, Morgane PJ, McFarland WL (1971) The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Rhinic lobe (rhinencephalon). I. The paleocortex. J Comp Neurol 141:205–271PubMedCrossRef
go back to reference Jacobs MS, McFarland WL, Morgane PJ (1979) The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Rhinic lobe (Rhinencephalon): the archicortex. Brain Res Bull 1:1–108CrossRef Jacobs MS, McFarland WL, Morgane PJ (1979) The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Rhinic lobe (Rhinencephalon): the archicortex. Brain Res Bull 1:1–108CrossRef
go back to reference Jacobs MS, Galaburda AM, McFarland WL, Morgane PJ (1984) The insular formations of the dolphin brain: quantitative cytoarchitectonic studies of the insular component of the limbic lobe. J Comp Neurol 225:396–432PubMedCrossRef Jacobs MS, Galaburda AM, McFarland WL, Morgane PJ (1984) The insular formations of the dolphin brain: quantitative cytoarchitectonic studies of the insular component of the limbic lobe. J Comp Neurol 225:396–432PubMedCrossRef
go back to reference Jacobs B, Driscoll L, Schall M (1997) Lifspan dendritic and spine changes in areas 10 and 18 of human cortex: a quantitative Golgi study. J Comp Neurol 386:661–680PubMedCrossRef Jacobs B, Driscoll L, Schall M (1997) Lifspan dendritic and spine changes in areas 10 and 18 of human cortex: a quantitative Golgi study. J Comp Neurol 386:661–680PubMedCrossRef
go back to reference Jacobs B, Schall M, Prather M, Kapler E, Driscoll L, Baca S, Jacobs J, Ford K, Wainwright M, Treml M (2001) Regional dendritic and spine variation in human cerebral cortex: a quantitative Golgi study. Cereb Cortex 11:558–571PubMedCrossRef Jacobs B, Schall M, Prather M, Kapler E, Driscoll L, Baca S, Jacobs J, Ford K, Wainwright M, Treml M (2001) Regional dendritic and spine variation in human cerebral cortex: a quantitative Golgi study. Cereb Cortex 11:558–571PubMedCrossRef
go back to reference Jacobs B, Lubs J, Hannan M, Anderson K, Butti C, Sherwood CC, Hof PR, Manger PR (2011) Neuronal morphology in the African elephant (Loxodonta africana) neocortex. Brain Struct Funct 215:273–298PubMedCrossRef Jacobs B, Lubs J, Hannan M, Anderson K, Butti C, Sherwood CC, Hof PR, Manger PR (2011) Neuronal morphology in the African elephant (Loxodonta africana) neocortex. Brain Struct Funct 215:273–298PubMedCrossRef
go back to reference Jacobs B, Harland T, Kennedy D, Schall M, Wicinski B, Butti C, Hof PR, Sherwood CC, Manger PR (2014a) The neocortex of cetartiodactyls. II. Neuronal morphology of the visual and motor cortices in the giraffe (Giraffa camelopardalis). Brain Struct Funct. doi:10.1007/s00429-014-0830-9 Jacobs B, Harland T, Kennedy D, Schall M, Wicinski B, Butti C, Hof PR, Sherwood CC, Manger PR (2014a) The neocortex of cetartiodactyls. II. Neuronal morphology of the visual and motor cortices in the giraffe (Giraffa camelopardalis). Brain Struct Funct. doi:10.​1007/​s00429-014-0830-9
go back to reference Jacobs B, Johnson NL, Wahl D, Schall M, Maseko BC, Lewandowski A, Raghanti MA, Wicinski B, Butti C, Hopkins WD, Bertelsen MF, Walsh T, Roberts JR, Reep RL, Hof PR, Sherwood CC, Manger PR (2014b) Comparative neuronal morphology of the cerebellar cortex in afrotherians, carnivores, cetartiodactyls, and primates. Front Neuroanat 8:24PubMedCentralPubMed Jacobs B, Johnson NL, Wahl D, Schall M, Maseko BC, Lewandowski A, Raghanti MA, Wicinski B, Butti C, Hopkins WD, Bertelsen MF, Walsh T, Roberts JR, Reep RL, Hof PR, Sherwood CC, Manger PR (2014b) Comparative neuronal morphology of the cerebellar cortex in afrotherians, carnivores, cetartiodactyls, and primates. Front Neuroanat 8:24PubMedCentralPubMed
go back to reference Kawaguchi Y (1995) Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex. J Neurosci 15:2638–2655PubMed Kawaguchi Y (1995) Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex. J Neurosci 15:2638–2655PubMed
go back to reference Kern A, Siebert U, Cozzi B, Hof PR, Oelschläger HH (2011) Stereology of the neocortex in odontocetes: qualitative, quantitative, and functional implications. Brain Behav Evol 77:79–90PubMedCrossRef Kern A, Siebert U, Cozzi B, Hof PR, Oelschläger HH (2011) Stereology of the neocortex in odontocetes: qualitative, quantitative, and functional implications. Brain Behav Evol 77:79–90PubMedCrossRef
go back to reference Kesarev VS (1971) The inferior brain of the dolphin. Soviet Sci Rev 2:52–58 Kesarev VS (1971) The inferior brain of the dolphin. Soviet Sci Rev 2:52–58
go back to reference Kesarev VS (1975) Homologization of the cerebral neocortex in cetaceans. Arkhiv Anat Gistol Embriol 68:5–13 Kesarev VS (1975) Homologization of the cerebral neocortex in cetaceans. Arkhiv Anat Gistol Embriol 68:5–13
go back to reference Kesarev VS, Malofeeva LI (1969) Structural organization of the motor zone of the cerebral cortex in dolphins. Arkh Anat Gistol Embriol 56:48–55PubMed Kesarev VS, Malofeeva LI (1969) Structural organization of the motor zone of the cerebral cortex in dolphins. Arkh Anat Gistol Embriol 56:48–55PubMed
go back to reference Kesarev VS, Malofeeva LI, Trykova OV (1977) Structural organization of the cetacean neocortex. Arkh Anat Gistol Embriol 73:23–30PubMed Kesarev VS, Malofeeva LI, Trykova OV (1977) Structural organization of the cetacean neocortex. Arkh Anat Gistol Embriol 73:23–30PubMed
go back to reference Kisvarday ZF, Gulyas A, Beroukas D, North JB, Chubb IW, Somogyi P (1990) Synapses, axonal and dendritic patterns of GABA-immunoreactive neurons in human cerebral cortex. Brain 113:793–812PubMedCrossRef Kisvarday ZF, Gulyas A, Beroukas D, North JB, Chubb IW, Somogyi P (1990) Synapses, axonal and dendritic patterns of GABA-immunoreactive neurons in human cerebral cortex. Brain 113:793–812PubMedCrossRef
go back to reference Kraus C, Pilleri G (1969a) Quantitative Untersuchungen über die Grosshirnrinde der Cetaceen. Investig Cetacea 1:127–150 Kraus C, Pilleri G (1969a) Quantitative Untersuchungen über die Grosshirnrinde der Cetaceen. Investig Cetacea 1:127–150
go back to reference Kraus C, Pilleri G (1969b) Zur Feinstrucktur der großen Pyramidenzellen in der V Cortexschicht der Cetacean (Delphinus delphis und Balaenoptera borealis. Investig Cetacea 1:89–99 Kraus C, Pilleri G (1969b) Zur Feinstrucktur der großen Pyramidenzellen in der V Cortexschicht der Cetacean (Delphinus delphis und Balaenoptera borealis. Investig Cetacea 1:89–99
go back to reference Kraus C, Pilleri G (1969c) Zur Histologie der Grosshirnrinde von Balaenoptera borealis Lesson (Cetacea, Mysticeti). Investig Cetacea 1:151–170 Kraus C, Pilleri G (1969c) Zur Histologie der Grosshirnrinde von Balaenoptera borealis Lesson (Cetacea, Mysticeti). Investig Cetacea 1:151–170
go back to reference Ladygina TF, Supin A (1977) Localization of the sensory projection areas in the cerebral cortex of the dolphin, Tursiops truncatus. Zh Evol Biokhim Fiziol 13:712–718PubMed Ladygina TF, Supin A (1977) Localization of the sensory projection areas in the cerebral cortex of the dolphin, Tursiops truncatus. Zh Evol Biokhim Fiziol 13:712–718PubMed
go back to reference Ladygina TF, Mass AM, Supin A (1978) Multiple sensory projections in the dolphin cerebral cortex. Zh Vyssh Nerv Deiat Pavl 28:1047–1053 Ladygina TF, Mass AM, Supin A (1978) Multiple sensory projections in the dolphin cerebral cortex. Zh Vyssh Nerv Deiat Pavl 28:1047–1053
go back to reference Lopez-Mascaraque L, De Carlos JA, Valverde F (1986) Structure of the olfactory bulb of the hedgehog (Erinaceus europaeus): description of cell types in the granular layer. J Comp Neurol 253:135–152PubMedCrossRef Lopez-Mascaraque L, De Carlos JA, Valverde F (1986) Structure of the olfactory bulb of the hedgehog (Erinaceus europaeus): description of cell types in the granular layer. J Comp Neurol 253:135–152PubMedCrossRef
go back to reference Lund JS, Lewis DA (1993) Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics. J Comp Neurol 328:282–312PubMedCrossRef Lund JS, Lewis DA (1993) Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics. J Comp Neurol 328:282–312PubMedCrossRef
go back to reference Manger PR (2006) An examination of cetacean brain structure with a novel hypothesis correlating thermogenesis to the evolution of a big brain. Biol Rev Camb Philos Soc 81:293–338PubMedCrossRef Manger PR (2006) An examination of cetacean brain structure with a novel hypothesis correlating thermogenesis to the evolution of a big brain. Biol Rev Camb Philos Soc 81:293–338PubMedCrossRef
go back to reference Manger PR (2013) Questioning the interpretations of behavioral observations of cetaceans: is there really support for a special intellectual status for this mammalian order? Neuroscience 250:664–696PubMedCrossRef Manger PR (2013) Questioning the interpretations of behavioral observations of cetaceans: is there really support for a special intellectual status for this mammalian order? Neuroscience 250:664–696PubMedCrossRef
go back to reference Manger P, Sum M, Szymanski M, Ridgway SH, Krubitzer L (1998) Modular subdivisions of dolphin insular cortex: does evolutionary history repeat itself? J Cogn Neurosci 10:153–166PubMedCrossRef Manger P, Sum M, Szymanski M, Ridgway SH, Krubitzer L (1998) Modular subdivisions of dolphin insular cortex: does evolutionary history repeat itself? J Cogn Neurosci 10:153–166PubMedCrossRef
go back to reference Manger PR, Fuxe K, Ridgway SH, Siegel JM (2004) The distribution and morphological characteristics of catecholaminergic cells in the diencephalon and midbrain of the bottlenose dolphin (Tursiops truncatus). Brain Behav Evol 64:42–60PubMedCrossRef Manger PR, Fuxe K, Ridgway SH, Siegel JM (2004) The distribution and morphological characteristics of catecholaminergic cells in the diencephalon and midbrain of the bottlenose dolphin (Tursiops truncatus). Brain Behav Evol 64:42–60PubMedCrossRef
go back to reference Manger PR, Cort J, Ebrahim N, Goodman A, Henning J, Karolia M, Rodrigues SL, Strkalj G (2008) Is 21st century neuroscience too focussed on the rat/mouse model of brain function and dysfunction? Front Neuroanat 2:5PubMedCentralPubMedCrossRef Manger PR, Cort J, Ebrahim N, Goodman A, Henning J, Karolia M, Rodrigues SL, Strkalj G (2008) Is 21st century neuroscience too focussed on the rat/mouse model of brain function and dysfunction? Front Neuroanat 2:5PubMedCentralPubMedCrossRef
go back to reference Manger PR, Prowse M, Haagensen M, Hemingway J (2012) Quantitative analysis of neocortical gyrencephaly in African elephants (Loxodonta africana) and six species of cetaceans: comparison with other mammals. J Comp Neurol 520:2430–2439PubMedCrossRef Manger PR, Prowse M, Haagensen M, Hemingway J (2012) Quantitative analysis of neocortical gyrencephaly in African elephants (Loxodonta africana) and six species of cetaceans: comparison with other mammals. J Comp Neurol 520:2430–2439PubMedCrossRef
go back to reference Marino L (2002) Convergence of complex cognitive abilities in cetaceans and primates. Brain Behav Evol 59:21–32PubMedCrossRef Marino L (2002) Convergence of complex cognitive abilities in cetaceans and primates. Brain Behav Evol 59:21–32PubMedCrossRef
go back to reference Marino L, Murphy TL, Deweerd AL, Morris JA, Fobbs AJ, Humblot N, Ridgway SH, Johnson JI (2001a) Anatomy and three-dimensional reconstructions of the brain of the white whale (Delphinapterus leucas) from magnetic resonance images. Anat Rec 262:429–439PubMedCrossRef Marino L, Murphy TL, Deweerd AL, Morris JA, Fobbs AJ, Humblot N, Ridgway SH, Johnson JI (2001a) Anatomy and three-dimensional reconstructions of the brain of the white whale (Delphinapterus leucas) from magnetic resonance images. Anat Rec 262:429–439PubMedCrossRef
go back to reference Marino L, Murphy TL, Gozal L, Johnson JI (2001b) Magnetic resonance imaging and three-dimensional reconstructions of the brain of a fetal common dolphin, Delphinus delphis. Anat Embryol 203:393–402PubMedCrossRef Marino L, Murphy TL, Gozal L, Johnson JI (2001b) Magnetic resonance imaging and three-dimensional reconstructions of the brain of a fetal common dolphin, Delphinus delphis. Anat Embryol 203:393–402PubMedCrossRef
go back to reference Marino L, Sudheimer KD, Murphy TL, Davis KK, Pabst DA, McLellan WA, Rilling JK, Johnson JI (2001c) Anatomy and three-dimensional reconstructions of the brain of a bottlenose dolphin (Tursiops truncatus) from magnetic resonance images. Anat Rec 264:397–414PubMedCrossRef Marino L, Sudheimer KD, Murphy TL, Davis KK, Pabst DA, McLellan WA, Rilling JK, Johnson JI (2001c) Anatomy and three-dimensional reconstructions of the brain of a bottlenose dolphin (Tursiops truncatus) from magnetic resonance images. Anat Rec 264:397–414PubMedCrossRef
go back to reference Marino L, Sudheimer KD, Pabst DA, McLellan WA, Filsoof D, Johnson JI (2002) Neuroanatomy of the common dolphin (Delphinus delphis) as revealed by magnetic resonance imaging (MRI). Anat Rec 268:411–429PubMedCrossRef Marino L, Sudheimer KD, Pabst DA, McLellan WA, Filsoof D, Johnson JI (2002) Neuroanatomy of the common dolphin (Delphinus delphis) as revealed by magnetic resonance imaging (MRI). Anat Rec 268:411–429PubMedCrossRef
go back to reference Marino L, Sudheimer K, Pabst DA, McLellan WA, Johnson JI (2003a) Magnetic resonance images of the brain of a dwarf sperm whale (Kogia simus). J Anat 203:57–76PubMedCentralPubMedCrossRef Marino L, Sudheimer K, Pabst DA, McLellan WA, Johnson JI (2003a) Magnetic resonance images of the brain of a dwarf sperm whale (Kogia simus). J Anat 203:57–76PubMedCentralPubMedCrossRef
go back to reference Marino L, Sudheimer K, Sarko D, Sirpenski G, Johnson JI (2003b) Neuroanatomy of the harbor porpoise (Phocoena phocoena) from magnetic resonance images. J Morphol 257:308–347PubMedCrossRef Marino L, Sudheimer K, Sarko D, Sirpenski G, Johnson JI (2003b) Neuroanatomy of the harbor porpoise (Phocoena phocoena) from magnetic resonance images. J Morphol 257:308–347PubMedCrossRef
go back to reference Marino L, Sherwood CC, Delman BN, Tang CY, Naidich TP, Hof PR (2004a) Neuroanatomy of the killer whale (Orcinus orca) from magnetic resonance images. Anat Rec 281:1256–1263CrossRef Marino L, Sherwood CC, Delman BN, Tang CY, Naidich TP, Hof PR (2004a) Neuroanatomy of the killer whale (Orcinus orca) from magnetic resonance images. Anat Rec 281:1256–1263CrossRef
go back to reference Marino L, Sudheimer K, McLellan WA, Johnson JI (2004b) Neuroanatomical structure of the spinner dolphin (Stenella longirostris orientalis) brain from magnetic resonance images. Anat Rec 279:601–610CrossRef Marino L, Sudheimer K, McLellan WA, Johnson JI (2004b) Neuroanatomical structure of the spinner dolphin (Stenella longirostris orientalis) brain from magnetic resonance images. Anat Rec 279:601–610CrossRef
go back to reference Marino L, Connor RC, Fordyce RE, Herman LM, Hof PR, Lefebvre L, Lusseau D, McCowan B, Nimchinsky EA, Pack AA, Rendell L, Reidenberg JS, Reiss D, Uhen MD, Van der Gucht E, Whitehead H (2007) Cetaceans have complex brains for complex cognition. PLoS Biol 5:e139PubMedCentralPubMedCrossRef Marino L, Connor RC, Fordyce RE, Herman LM, Hof PR, Lefebvre L, Lusseau D, McCowan B, Nimchinsky EA, Pack AA, Rendell L, Reidenberg JS, Reiss D, Uhen MD, Van der Gucht E, Whitehead H (2007) Cetaceans have complex brains for complex cognition. PLoS Biol 5:e139PubMedCentralPubMedCrossRef
go back to reference Marino L, Butti C, Connor RC, Fordyce RE, Herman LM, Hof PR, Lefebvre L, Lusseau D, McCowan B, Nimchinsky EA, Pack AA, Reidenberg JS, Reiss D, Rendell L, Uhen MD, Van der Gucht E, Whitehead H (2008) A claim in search of evidence: reply to Manger’s thermogenesis hypothesis of cetacean brain structure. Biol Rev Camb Philos Soc 83:417–440PubMed Marino L, Butti C, Connor RC, Fordyce RE, Herman LM, Hof PR, Lefebvre L, Lusseau D, McCowan B, Nimchinsky EA, Pack AA, Reidenberg JS, Reiss D, Rendell L, Uhen MD, Van der Gucht E, Whitehead H (2008) A claim in search of evidence: reply to Manger’s thermogenesis hypothesis of cetacean brain structure. Biol Rev Camb Philos Soc 83:417–440PubMed
go back to reference Meyer G (1987) Forms and spatial arrangement of neurons in the primary motor cortex of man. J Comp Neurol 262:402–428PubMedCrossRef Meyer G (1987) Forms and spatial arrangement of neurons in the primary motor cortex of man. J Comp Neurol 262:402–428PubMedCrossRef
go back to reference Meynert T (1867) Der Bau der Grosshirnrinde und seine örtlichen Verschiedenheiten nebst einem pathologisch anatomischen Corollarium. Vierteljahrsch Psychiatr 198–217 Meynert T (1867) Der Bau der Grosshirnrinde und seine örtlichen Verschiedenheiten nebst einem pathologisch anatomischen Corollarium. Vierteljahrsch Psychiatr 198–217
go back to reference Milinkovitch M, Bérubé M, Palsboll PJ (1998) Cetaceans are highly derived artiodactyls. In: Thewissen JGM (ed) The emergence of whales. Plenum Press, New York, pp 113–131CrossRef Milinkovitch M, Bérubé M, Palsboll PJ (1998) Cetaceans are highly derived artiodactyls. In: Thewissen JGM (ed) The emergence of whales. Plenum Press, New York, pp 113–131CrossRef
go back to reference Miller MW (1988) Maturation of rat visual cortex: IV. The generation, migration, morphogenesis, and connectivity of atypically oriented pyramidal neurons. J Comp Neurol 274:387–405PubMedCrossRef Miller MW (1988) Maturation of rat visual cortex: IV. The generation, migration, morphogenesis, and connectivity of atypically oriented pyramidal neurons. J Comp Neurol 274:387–405PubMedCrossRef
go back to reference Montie EW, Schneider GE, Ketten DR, Marino L, Touhey KE, Hahn ME (2007) Neuroanatomy of the subadult and fetal brain of the Atlantic white-sided dolphin (Lagenorhynchus acutus) from in situ magnetic resonance images. Anat Rec 290:1459–1479CrossRef Montie EW, Schneider GE, Ketten DR, Marino L, Touhey KE, Hahn ME (2007) Neuroanatomy of the subadult and fetal brain of the Atlantic white-sided dolphin (Lagenorhynchus acutus) from in situ magnetic resonance images. Anat Rec 290:1459–1479CrossRef
go back to reference Montie EW, Schneider G, Ketten DR, Marino L, Touhey KE, Hahn ME (2008) Volumetric neuroimaging of the Atlantic white-sided dolphin (Lagenorhynchus acutus) brain from in situ magnetic resonance images. Anat Rec 291:263–282CrossRef Montie EW, Schneider G, Ketten DR, Marino L, Touhey KE, Hahn ME (2008) Volumetric neuroimaging of the Atlantic white-sided dolphin (Lagenorhynchus acutus) brain from in situ magnetic resonance images. Anat Rec 291:263–282CrossRef
go back to reference Morgane P, Jacobs M, McFarland W (1980) The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Surface configuration of the telencephalon of the bottlenose dolphin with comparative anatomical observations in four other Cetaceans species. Brain Res Bull 5:1–107CrossRef Morgane P, Jacobs M, McFarland W (1980) The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Surface configuration of the telencephalon of the bottlenose dolphin with comparative anatomical observations in four other Cetaceans species. Brain Res Bull 5:1–107CrossRef
go back to reference Morgane PJ, McFarland WL, Jacobs MS (1982) The limbic lobe of the dolphin brain: a quantitative cytoarchitectonic study. J Hirnforsch 23:465–552PubMed Morgane PJ, McFarland WL, Jacobs MS (1982) The limbic lobe of the dolphin brain: a quantitative cytoarchitectonic study. J Hirnforsch 23:465–552PubMed
go back to reference Morgane PJ, Jacobs MS, Galaburda A (1985) Conservative features of neocortical evolution in dolphin brain. Brain Behav Evol 26:176–184PubMedCrossRef Morgane PJ, Jacobs MS, Galaburda A (1985) Conservative features of neocortical evolution in dolphin brain. Brain Behav Evol 26:176–184PubMedCrossRef
go back to reference Morgane PJ, Glezer II, Jacobs MS (1988) Visual cortex of the dolphin: an image analysis study. J Comp Neurol 273:3–25PubMedCrossRef Morgane PJ, Glezer II, Jacobs MS (1988) Visual cortex of the dolphin: an image analysis study. J Comp Neurol 273:3–25PubMedCrossRef
go back to reference Morgane P, Glezer I, Jacobs M (1990) Comparative and evolutionary anatomy of the visual cortex of the dolphin. In: Jones EG, Peters A (eds) Cerebral cortex. Comparative structure and evolution of cerebral cortex, part II, vol 8B. Plenum Press, New York, pp 215–262 Morgane P, Glezer I, Jacobs M (1990) Comparative and evolutionary anatomy of the visual cortex of the dolphin. In: Jones EG, Peters A (eds) Cerebral cortex. Comparative structure and evolution of cerebral cortex, part II, vol 8B. Plenum Press, New York, pp 215–262
go back to reference Neves K, Ferreira FM, Tovar-Moll F, Gravett N, Bennett NC, Kaswera C, Gilissen E, Manger PR, Herculano-Houzel S (2014) Cellular scaling rules for the brain of afrotherians. Front Neuroanat 8:5PubMedCentralPubMedCrossRef Neves K, Ferreira FM, Tovar-Moll F, Gravett N, Bennett NC, Kaswera C, Gilissen E, Manger PR, Herculano-Houzel S (2014) Cellular scaling rules for the brain of afrotherians. Front Neuroanat 8:5PubMedCentralPubMedCrossRef
go back to reference Nikaido M, Rooney AP, Okada N (1999) Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: hippopotamuses are the closest extant relatives of whales. Proc Natl Acad Sci USA 96:10261–10266PubMedCentralPubMedCrossRef Nikaido M, Rooney AP, Okada N (1999) Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: hippopotamuses are the closest extant relatives of whales. Proc Natl Acad Sci USA 96:10261–10266PubMedCentralPubMedCrossRef
go back to reference Nikaido M, Matsuno F, Hamilton H, Brownell RL Jr, Cao Y, Ding W, Zuoyan Z, Shedlock AM, Fordyce RE, Hasegawa M, Okada N (2001) Retroposon analysis of major cetacean lineages: the monophyly of toothed whales and the paraphyly of river dolphins. Proc Natl Acad Sci USA 98:7384–7389PubMedCentralPubMedCrossRef Nikaido M, Matsuno F, Hamilton H, Brownell RL Jr, Cao Y, Ding W, Zuoyan Z, Shedlock AM, Fordyce RE, Hasegawa M, Okada N (2001) Retroposon analysis of major cetacean lineages: the monophyly of toothed whales and the paraphyly of river dolphins. Proc Natl Acad Sci USA 98:7384–7389PubMedCentralPubMedCrossRef
go back to reference Oelschläger HA, Oelschläger JS (2008) Brain. In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of marine mammals. Academic Press, San Diego, pp 134–149 Oelschläger HA, Oelschläger JS (2008) Brain. In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of marine mammals. Academic Press, San Diego, pp 134–149
go back to reference Oelschläger HH, Haas-Rioth M, Fung C, Ridgway SH, Knauth M (2008) Morphology and evolutionary biology of the dolphin (Delphinus sp.) brain—MR imaging and conventional histology. Brain Behav Evol 71:68–86PubMedCrossRef Oelschläger HH, Haas-Rioth M, Fung C, Ridgway SH, Knauth M (2008) Morphology and evolutionary biology of the dolphin (Delphinus sp.) brain—MR imaging and conventional histology. Brain Behav Evol 71:68–86PubMedCrossRef
go back to reference Oelschläger HH, Ridgway SH, Knauth M (2010) Cetacean brain evolution: dwarf sperm whale (Kogia sima) and common dolphin (Delphinus delphis)—an investigation with high-resolution 3D MRI. Brain Behav Evol 75:33–62PubMedCrossRef Oelschläger HH, Ridgway SH, Knauth M (2010) Cetacean brain evolution: dwarf sperm whale (Kogia sima) and common dolphin (Delphinus delphis)—an investigation with high-resolution 3D MRI. Brain Behav Evol 75:33–62PubMedCrossRef
go back to reference Parnavelas JG, Lieberman AR, Webster KE (1977a) Organization of neurons in the visual cortex, area 17, of the rat. J Anat 124:305–322PubMedCentralPubMed Parnavelas JG, Lieberman AR, Webster KE (1977a) Organization of neurons in the visual cortex, area 17, of the rat. J Anat 124:305–322PubMedCentralPubMed
go back to reference Parnavelas JG, Sullivan K, Lieberman AR, Webster KE (1977b) Neurons and their synaptic organization in the visual cortex of the rat. Electron microscopy of Golgi preparations. Cell Tissue Res 183:499–517PubMedCrossRef Parnavelas JG, Sullivan K, Lieberman AR, Webster KE (1977b) Neurons and their synaptic organization in the visual cortex of the rat. Electron microscopy of Golgi preparations. Cell Tissue Res 183:499–517PubMedCrossRef
go back to reference Patzke N, Spocter MA, Karlsson KA, Bertelsen MF, Haagensen M, Chawana R, Streicher S, Kaswera C, Gilissen E, Alagaili AN, Mohammed OB, Reep RL, Bennett NC, Siegel JM, Ihunwo AO, Manger PR (2013) In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis. Brain Struct Funct. doi:10.1007/s00429-013-0660-1 Patzke N, Spocter MA, Karlsson KA, Bertelsen MF, Haagensen M, Chawana R, Streicher S, Kaswera C, Gilissen E, Alagaili AN, Mohammed OB, Reep RL, Bennett NC, Siegel JM, Ihunwo AO, Manger PR (2013) In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis. Brain Struct Funct. doi:10.​1007/​s00429-013-0660-1
go back to reference Peters A, Jones EG (1984) Classification of cortical neurons. In: Peters A, Jones EG (eds) Cerebral cortex: cellular components of the cerebral cortex, vol 1. Plenum Press, New York, pp 107–121 Peters A, Jones EG (1984) Classification of cortical neurons. In: Peters A, Jones EG (eds) Cerebral cortex: cellular components of the cerebral cortex, vol 1. Plenum Press, New York, pp 107–121
go back to reference Peters A, Regidor J (1981) A reassessment of the forms of nonpyramidal neurons in area 17 of cat visual cortex. J Comp Neurol 203:685–716PubMedCrossRef Peters A, Regidor J (1981) A reassessment of the forms of nonpyramidal neurons in area 17 of cat visual cortex. J Comp Neurol 203:685–716PubMedCrossRef
go back to reference Qi HX, Jain N, Preuss TM, Kaas JH (1999) Inverted pyramidal neurons in chimpanzee sensorimotor cortex are revealed by immunostaining with monoclonal antibody SMI-32. Somatosens Mot Res 16:49–56PubMedCrossRef Qi HX, Jain N, Preuss TM, Kaas JH (1999) Inverted pyramidal neurons in chimpanzee sensorimotor cortex are revealed by immunostaining with monoclonal antibody SMI-32. Somatosens Mot Res 16:49–56PubMedCrossRef
go back to reference Revishchin AV, Garey LJ (1989) Sources of thalamic afferent neurons, projecting into the suprasylvian gyrus of the dolphin cerebral cortex. Neirofiziol 21:529–539 Revishchin AV, Garey LJ (1989) Sources of thalamic afferent neurons, projecting into the suprasylvian gyrus of the dolphin cerebral cortex. Neirofiziol 21:529–539
go back to reference Ridgway S, Brownson RH (1984) Relative brain sizes and cortical surface areas in odontocetes. Acta Zool Fenn 172:149–152 Ridgway S, Brownson RH (1984) Relative brain sizes and cortical surface areas in odontocetes. Acta Zool Fenn 172:149–152
go back to reference Sanides F, Sanides D (1972) The “extraverted neurons” of the mammalian cerebral cortex. Z Anat Entwickl-gesch 136:272–293CrossRef Sanides F, Sanides D (1972) The “extraverted neurons” of the mammalian cerebral cortex. Z Anat Entwickl-gesch 136:272–293CrossRef
go back to reference Scheibel ME, Scheibel AB (1978) The methods of Golgi. In: Neuroanatomical research techniques. Academic Press, New York, pp 89–114 Scheibel ME, Scheibel AB (1978) The methods of Golgi. In: Neuroanatomical research techniques. Academic Press, New York, pp 89–114
go back to reference Sherwood CC, Lee PW, Rivara CB, Holloway RL, Gilissen EP, Simmons RM, Hakeem A, Allman JM, Erwin JM, Hof PR (2003) Evolution of specialized pyramidal neurons in primate visual and motor cortex. Brain Behav Evol 61:28–44PubMedCrossRef Sherwood CC, Lee PW, Rivara CB, Holloway RL, Gilissen EP, Simmons RM, Hakeem A, Allman JM, Erwin JM, Hof PR (2003) Evolution of specialized pyramidal neurons in primate visual and motor cortex. Brain Behav Evol 61:28–44PubMedCrossRef
go back to reference Sherwood CC, Stimpson CD, Butti C, Bonar CJ, Newton AL, Allman JM, Hof PR (2009) Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals. Brain Struct Funct 213:301–328PubMedCrossRef Sherwood CC, Stimpson CD, Butti C, Bonar CJ, Newton AL, Allman JM, Hof PR (2009) Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals. Brain Struct Funct 213:301–328PubMedCrossRef
go back to reference Shimamura M, Yasue H, Ohshima K, Abe H, Kato H, Kishiro T, Goto M, Munechika I, Okada N (1997) Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388:666–670PubMedCrossRef Shimamura M, Yasue H, Ohshima K, Abe H, Kato H, Kishiro T, Goto M, Munechika I, Okada N (1997) Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388:666–670PubMedCrossRef
go back to reference Shimamura M, Abe H, Nikaido M, Ohshima K, Okada N (1999) Genealogy of families of SINEs in cetaceans and artiodactyls: the presence of a huge superfamily of tRNA(Glu)-derived families of SINEs. Mol Biol Evol 16:1046–1060PubMedCrossRef Shimamura M, Abe H, Nikaido M, Ohshima K, Okada N (1999) Genealogy of families of SINEs in cetaceans and artiodactyls: the presence of a huge superfamily of tRNA(Glu)-derived families of SINEs. Mol Biol Evol 16:1046–1060PubMedCrossRef
go back to reference Sokolov VE, Ladygina TF, Supin A (1972) Localization of sensory zones in the dolphin cerebral cortex. Proc Acad Sci USSR 202:490–493 Sokolov VE, Ladygina TF, Supin A (1972) Localization of sensory zones in the dolphin cerebral cortex. Proc Acad Sci USSR 202:490–493
go back to reference Somogyi P, Kisvarday ZF, Martin KA, Whitteridge D (1983) Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat. Neuroscience 10:261–294PubMedCrossRef Somogyi P, Kisvarday ZF, Martin KA, Whitteridge D (1983) Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat. Neuroscience 10:261–294PubMedCrossRef
go back to reference Thewissen JG, Williams EM, Roe LJ, Hussain ST (2001) Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls. Nature 413:277–281PubMedCrossRef Thewissen JG, Williams EM, Roe LJ, Hussain ST (2001) Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls. Nature 413:277–281PubMedCrossRef
go back to reference Thewissen JGM, Cooper LN, Clementz MT, Bajpai S, Tiwari BN (2007) Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450:1190–1194PubMedCrossRef Thewissen JGM, Cooper LN, Clementz MT, Bajpai S, Tiwari BN (2007) Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450:1190–1194PubMedCrossRef
go back to reference Travis K, Ford K, Jacobs B (2005) Regional dendritic variation in neonatal human cortex: a quantitative Golgi study. Dev Neurosci 27:277–287PubMedCrossRef Travis K, Ford K, Jacobs B (2005) Regional dendritic variation in neonatal human cortex: a quantitative Golgi study. Dev Neurosci 27:277–287PubMedCrossRef
go back to reference Uylings HB, Ruiz-Marcos A, van Pelt J (1986) The metric analysis of three-dimensional dendritic tree patterns: a methodological review. J Neurosci Methods 18:127–151PubMedCrossRef Uylings HB, Ruiz-Marcos A, van Pelt J (1986) The metric analysis of three-dimensional dendritic tree patterns: a methodological review. J Neurosci Methods 18:127–151PubMedCrossRef
go back to reference Walshe F (1942) The giant cells of Betz, the motor cortex and the pyramidal tract: a critical review. Brain 65:409–461CrossRef Walshe F (1942) The giant cells of Betz, the motor cortex and the pyramidal tract: a critical review. Brain 65:409–461CrossRef
go back to reference Wen Q, Chklovskii DB (2008) A cost–benefit analysis of neuronal morphology. J Neurophysiol 99:2320–2328PubMedCrossRef Wen Q, Chklovskii DB (2008) A cost–benefit analysis of neuronal morphology. J Neurophysiol 99:2320–2328PubMedCrossRef
go back to reference Williams RS, Ferrante RJ, Caviness VS Jr (1978) The Golgi rapid method in clinical neuropathology: the morphologic consequences of suboptimal fixation. J Neuropathol Exp Neurol 37:13–33PubMedCrossRef Williams RS, Ferrante RJ, Caviness VS Jr (1978) The Golgi rapid method in clinical neuropathology: the morphologic consequences of suboptimal fixation. J Neuropathol Exp Neurol 37:13–33PubMedCrossRef
go back to reference Winfield DA, Powell TP (1983) Laminar cell counts and geniculo-cortical boutons in area 17 of cat and monkey. Brain Res 277:223–229PubMedCrossRef Winfield DA, Powell TP (1983) Laminar cell counts and geniculo-cortical boutons in area 17 of cat and monkey. Brain Res 277:223–229PubMedCrossRef
go back to reference Wittenberg GMWS (2008) Evolution and scaling of dendrites. In: Stuart G, Spruston N, Hausser M (eds) Dendrites. Oxford University Press, New York, pp 43–67 Wittenberg GMWS (2008) Evolution and scaling of dendrites. In: Stuart G, Spruston N, Hausser M (eds) Dendrites. Oxford University Press, New York, pp 43–67
go back to reference Zaitsev AV, Povysheva NV, Gonzalez-Burgos G, Rotaru D, Fish KN, Krimer LS, Lewis DA (2009) Interneuron diversity in layers 2–3 of monkey prefrontal cortex. Cereb Cortex 19:1597–1615PubMedCentralPubMedCrossRef Zaitsev AV, Povysheva NV, Gonzalez-Burgos G, Rotaru D, Fish KN, Krimer LS, Lewis DA (2009) Interneuron diversity in layers 2–3 of monkey prefrontal cortex. Cereb Cortex 19:1597–1615PubMedCentralPubMedCrossRef
Metadata
Title
The neocortex of cetartiodactyls: I. A comparative Golgi analysis of neuronal morphology in the bottlenose dolphin (Tursiops truncatus), the minke whale (Balaenoptera acutorostrata), and the humpback whale (Megaptera novaeangliae)
Authors
Camilla Butti
Caroline M. Janeway
Courtney Townshend
Bridget A. Wicinski
Joy S. Reidenberg
Sam H. Ridgway
Chet C. Sherwood
Patrick R. Hof
Bob Jacobs
Publication date
01-11-2015
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 6/2015
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-014-0860-3

Other articles of this Issue 6/2015

Brain Structure and Function 6/2015 Go to the issue