Skip to main content
Top
Published in: Familial Cancer 2/2013

01-06-2013 | Original Article

The mechanism of mismatch repair and the functional analysis of mismatch repair defects in Lynch syndrome

Authors: Juana V. Martín-López, Richard Fishel

Published in: Familial Cancer | Issue 2/2013

Login to get access

Abstract

The majority of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer (HNPCC), has been linked to heterozygous defects in DNA mismatch repair (MMR). MMR is a highly conserved pathway that recognizes and repairs polymerase misincorporation errors and nucleotide damage as well as functioning as a damage sensor that signals apoptosis. Loss-of-heterozygosity (LOH) that retains the mutant MMR allele and epigenetic silencing of MMR genes are associated with an increased mutation rate that drives carcinogenesis as well as microsatellite instability that is a hallmark of LS/HNPCC. Understanding the biophysical functions of the MMR components is crucial to elucidating the role of MMR in human tumorigenesis and determining the pathogenetic consequences of patients that present in the clinic with an uncharacterized variant of the MMR genes. We summarize the historical association between LS/HNPCC and MMR, discuss the mechanism of the MMR and finally examine the functional analysis of MMR defects found in LS/HNPCC patients and their relationship with the severity of the disease.
Literature
1.
go back to reference Lynch HT (1985) Classics in oncology. Aldred Scott Warthin, M.D., Ph.D. (1866–1931). CA Cancer J Clin 35(6): 345–7 Lynch HT (1985) Classics in oncology. Aldred Scott Warthin, M.D., Ph.D. (1866–1931). CA Cancer J Clin 35(6): 345–7
2.
go back to reference Classics in oncology. Heredity with reference to carcinoma as shown by the study of the cases examined in the pathological laboratory of the University of Michigan, 1895–1913. By Aldred Scott Warthin. 1913. CA Cancer J Clin 1985 Nov–Dec; 35(6): 348–59 Classics in oncology. Heredity with reference to carcinoma as shown by the study of the cases examined in the pathological laboratory of the University of Michigan, 1895–1913. By Aldred Scott Warthin. 1913. CA Cancer J Clin 1985 Nov–Dec; 35(6): 348–59
3.
go back to reference Lynch HT, Smyrk T (1996) Hereditary nonpolyposis colorectal cancer (Lynch syndrome). An updated review. Cancer 78(6):1149–1167PubMedCrossRef Lynch HT, Smyrk T (1996) Hereditary nonpolyposis colorectal cancer (Lynch syndrome). An updated review. Cancer 78(6):1149–1167PubMedCrossRef
4.
go back to reference Peltomaki P, Sistonen P, Mecklin JP et al (1992) Evidence that the MCC-APC gene region in 5q21 is not the site for susceptibility to hereditary nonpolyposis colorectal carcinoma. Cancer Res 52(16):4530–4533PubMed Peltomaki P, Sistonen P, Mecklin JP et al (1992) Evidence that the MCC-APC gene region in 5q21 is not the site for susceptibility to hereditary nonpolyposis colorectal carcinoma. Cancer Res 52(16):4530–4533PubMed
5.
go back to reference Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363(6429):558–561PubMedCrossRef Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363(6429):558–561PubMedCrossRef
6.
go back to reference Peltomaki P, Lothe RA, Aaltonen LA et al (1993) Microsatellite instability is associated with tumors that characterize the hereditary non-polyposis colorectal carcinoma syndrome. Cancer Res 53(24):5853–5855PubMed Peltomaki P, Lothe RA, Aaltonen LA et al (1993) Microsatellite instability is associated with tumors that characterize the hereditary non-polyposis colorectal carcinoma syndrome. Cancer Res 53(24):5853–5855PubMed
7.
go back to reference Aaltonen LA, Peltomaki P, Leach FS et al (1993) Clues to the pathogenesis of familial colorectal cancer. Science 260(5109):812–816PubMedCrossRef Aaltonen LA, Peltomaki P, Leach FS et al (1993) Clues to the pathogenesis of familial colorectal cancer. Science 260(5109):812–816PubMedCrossRef
8.
go back to reference Levinson G, Gutman GA (1987) High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucleic Acids Res 15(13):5323–5338PubMedCrossRef Levinson G, Gutman GA (1987) High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucleic Acids Res 15(13):5323–5338PubMedCrossRef
9.
go back to reference Reenan RA, Kolodner RD (1992) Isolation and characterization of two Saccharomyces cerevisiae genes encoding homologs of the bacterial HexA and MutS mismatch repair proteins. Genetics 132(4):963–973PubMed Reenan RA, Kolodner RD (1992) Isolation and characterization of two Saccharomyces cerevisiae genes encoding homologs of the bacterial HexA and MutS mismatch repair proteins. Genetics 132(4):963–973PubMed
10.
go back to reference Strand M, Prolla TA, Liskay RM, Petes TD (1993) Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365(6443):274–276PubMedCrossRef Strand M, Prolla TA, Liskay RM, Petes TD (1993) Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365(6443):274–276PubMedCrossRef
11.
go back to reference Fishel R, Kolodner RD (1995) Identification of mismatch repair genes and their role in the development of cancer. [Review] [158 refs]. Curr Opin Genet Dev 5(3):382–395PubMedCrossRef Fishel R, Kolodner RD (1995) Identification of mismatch repair genes and their role in the development of cancer. [Review] [158 refs]. Curr Opin Genet Dev 5(3):382–395PubMedCrossRef
12.
go back to reference Kolodner R (1996) Biochemistry and genetics of eukaryotic mismatch repair. [Review] [85 refs]. Genes Dev 10(12):1433–1442PubMedCrossRef Kolodner R (1996) Biochemistry and genetics of eukaryotic mismatch repair. [Review] [85 refs]. Genes Dev 10(12):1433–1442PubMedCrossRef
13.
go back to reference Modrich P, Lahue R (1996) Mismatch repair in replication fidelity, genetic recombination, and cancer biology. [Review] [225 refs]. Annu Rev Biochem 65:101–133PubMedCrossRef Modrich P, Lahue R (1996) Mismatch repair in replication fidelity, genetic recombination, and cancer biology. [Review] [225 refs]. Annu Rev Biochem 65:101–133PubMedCrossRef
14.
go back to reference Dietmaier W, Wallinger S, Bocker T, Kullmann F, Fishel R, Ruschoff J (1997) Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res 57(21):4749–4756PubMed Dietmaier W, Wallinger S, Bocker T, Kullmann F, Fishel R, Ruschoff J (1997) Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res 57(21):4749–4756PubMed
15.
go back to reference Fishel R, Lescoe MK, Rao MR et al (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75(5):1027–1038PubMedCrossRef Fishel R, Lescoe MK, Rao MR et al (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75(5):1027–1038PubMedCrossRef
16.
go back to reference Leach FS, Nicolaides NC, Papadopoulos N et al (1993) Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75(6):1215–1225PubMedCrossRef Leach FS, Nicolaides NC, Papadopoulos N et al (1993) Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75(6):1215–1225PubMedCrossRef
17.
go back to reference Bronner CE, Baker SM, Morrison PT et al (1994) Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368(6468):258–261PubMedCrossRef Bronner CE, Baker SM, Morrison PT et al (1994) Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368(6468):258–261PubMedCrossRef
18.
go back to reference Papadopoulos N, Nicolaides NC, Wei YF et al (1994) Mutation of a mutL homolog in hereditary colon cancer. Science 263(5153):1625–1629PubMedCrossRef Papadopoulos N, Nicolaides NC, Wei YF et al (1994) Mutation of a mutL homolog in hereditary colon cancer. Science 263(5153):1625–1629PubMedCrossRef
19.
go back to reference Nicolaides NC, Papadopoulos N, Liu B et al (1994) Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371(6492):75–80PubMedCrossRef Nicolaides NC, Papadopoulos N, Liu B et al (1994) Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371(6492):75–80PubMedCrossRef
20.
go back to reference Papadopoulos N, Nicolaides NC, Liu B et al (1995) Mutations of GTBP in genetically unstable cells. Science 268:1915–1917PubMedCrossRef Papadopoulos N, Nicolaides NC, Liu B et al (1995) Mutations of GTBP in genetically unstable cells. Science 268:1915–1917PubMedCrossRef
21.
go back to reference Lipkin SM, Wang V, Jacoby R et al (2000) MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability. Nat Genet 24(1):27–35PubMedCrossRef Lipkin SM, Wang V, Jacoby R et al (2000) MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability. Nat Genet 24(1):27–35PubMedCrossRef
22.
go back to reference Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. [Review] [63 refs]. Cancer Res 51(12):3075–3079PubMed Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. [Review] [63 refs]. Cancer Res 51(12):3075–3079PubMed
23.
go back to reference Shibata D, Peinado MA, Ionov Y, Malkhosyan S, Perucho M (1994) Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nat Genet 6(3):273–281PubMedCrossRef Shibata D, Peinado MA, Ionov Y, Malkhosyan S, Perucho M (1994) Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nat Genet 6(3):273–281PubMedCrossRef
24.
go back to reference Zhang H, Richards B, Wilson T et al (1999) Apoptosis induced by overexpression of hMSH2 or hMLH1. Cancer Res 59(13):3021–3027PubMed Zhang H, Richards B, Wilson T et al (1999) Apoptosis induced by overexpression of hMSH2 or hMLH1. Cancer Res 59(13):3021–3027PubMed
25.
go back to reference Duval A, Hamelin R (2002) Genetic instability in human mismatch repair deficient cancers. Ann Genet 45(2):71–75PubMedCrossRef Duval A, Hamelin R (2002) Genetic instability in human mismatch repair deficient cancers. Ann Genet 45(2):71–75PubMedCrossRef
26.
go back to reference Duval A, Hamelin R (2002) Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res 62(9):2447–2454PubMed Duval A, Hamelin R (2002) Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res 62(9):2447–2454PubMed
27.
go back to reference Markowitz S, Wang J, Myeroff L et al (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268(5215):1336–1338PubMedCrossRef Markowitz S, Wang J, Myeroff L et al (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268(5215):1336–1338PubMedCrossRef
28.
go back to reference Souza RF, Appel R, Yin J et al (1996) Microsatellite instability in the insulin-like growth factor II receptor gene in gastrointestinal tumours. Nat Genet 14(3):255–257PubMedCrossRef Souza RF, Appel R, Yin J et al (1996) Microsatellite instability in the insulin-like growth factor II receptor gene in gastrointestinal tumours. Nat Genet 14(3):255–257PubMedCrossRef
29.
go back to reference Rampino N, Yamamoto H, Ionov Y et al (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275(5302):967–969PubMedCrossRef Rampino N, Yamamoto H, Ionov Y et al (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275(5302):967–969PubMedCrossRef
30.
go back to reference Boland CR, Thibodeau SN, Hamilton SR et al (1998) A national cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58(22):5248–5257PubMed Boland CR, Thibodeau SN, Hamilton SR et al (1998) A national cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58(22):5248–5257PubMed
32.
go back to reference Baudhuin LM, Burgart LJ, Leontovich O, Thibodeau SN (2005) Use of microsatellite instability and immunohistochemistry testing for the identification of individuals at risk for Lynch syndrome. Fam Cancer 4(3):255–265PubMedCrossRef Baudhuin LM, Burgart LJ, Leontovich O, Thibodeau SN (2005) Use of microsatellite instability and immunohistochemistry testing for the identification of individuals at risk for Lynch syndrome. Fam Cancer 4(3):255–265PubMedCrossRef
33.
go back to reference Umar A, Boland CR, Terdiman JP et al (2004) Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96(4):261–268PubMedCrossRef Umar A, Boland CR, Terdiman JP et al (2004) Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96(4):261–268PubMedCrossRef
34.
go back to reference Bocker T, Diermann J, Friedl W et al (1997) Microsatellite instability analysis: a multicenter study for reliability and quality control. Cancer Res 57(21):4739–4743PubMed Bocker T, Diermann J, Friedl W et al (1997) Microsatellite instability analysis: a multicenter study for reliability and quality control. Cancer Res 57(21):4739–4743PubMed
35.
go back to reference Roger M (1972) Evidence for conversion of heteroduplex transforming DNAs to homoduplex by recipient pneumococcal cells. Proc Nat Acad Sci USA 69:466–470PubMedCrossRef Roger M (1972) Evidence for conversion of heteroduplex transforming DNAs to homoduplex by recipient pneumococcal cells. Proc Nat Acad Sci USA 69:466–470PubMedCrossRef
36.
go back to reference Tiraby J-G, Fox MS (1973) Marker discrimination in transformation and mutation of pneumococcus. Proc Natl Acad Sci USA 70:3541–3545PubMedCrossRef Tiraby J-G, Fox MS (1973) Marker discrimination in transformation and mutation of pneumococcus. Proc Natl Acad Sci USA 70:3541–3545PubMedCrossRef
37.
go back to reference Wildenberg J, Meselson M (1975) Mismatch repair in heteroduplex DNA. Proc Natl Acad Sci USA 72(6):2202–2206PubMedCrossRef Wildenberg J, Meselson M (1975) Mismatch repair in heteroduplex DNA. Proc Natl Acad Sci USA 72(6):2202–2206PubMedCrossRef
38.
go back to reference Marinus MG (1976) Adenine methylation of Okazaki fragments in Escherichia coli. J Bacteriol 128(3):853–854PubMed Marinus MG (1976) Adenine methylation of Okazaki fragments in Escherichia coli. J Bacteriol 128(3):853–854PubMed
39.
go back to reference Radman M, Wagner RE, Glickman BW, Meselson M (1980) DNA methylation, mismatch correction and genetic stability. In: Alacevic M (ed) Progress in environmental mutagenesis. Elsevier/North Holland Biomedical Press, Amsterdam, pp 121–130 Radman M, Wagner RE, Glickman BW, Meselson M (1980) DNA methylation, mismatch correction and genetic stability. In: Alacevic M (ed) Progress in environmental mutagenesis. Elsevier/North Holland Biomedical Press, Amsterdam, pp 121–130
40.
go back to reference Siegel EC, Bryson V (1967) Mutator gene of Escherichia coli B. J Bacteriol 94:38–47PubMed Siegel EC, Bryson V (1967) Mutator gene of Escherichia coli B. J Bacteriol 94:38–47PubMed
41.
go back to reference Goldstein A, Smoot JS (1955) A strain of Escherichia coli with an unusually high rate of auxotrophic mutation. J Bacteriol 70:588–595PubMed Goldstein A, Smoot JS (1955) A strain of Escherichia coli with an unusually high rate of auxotrophic mutation. J Bacteriol 70:588–595PubMed
42.
go back to reference Hill RF (1970) Location of genes controlling excision repair of UV damage and mutator activity in Escherichia coli WP2. Mutat Res 9(3):341–344PubMedCrossRef Hill RF (1970) Location of genes controlling excision repair of UV damage and mutator activity in Escherichia coli WP2. Mutat Res 9(3):341–344PubMedCrossRef
43.
go back to reference Marinus MG (1973) Location of DNA methylation genes on the Escherichia coli K-12 genetic map. Mol Gen Genet 127(1):47–55PubMedCrossRef Marinus MG (1973) Location of DNA methylation genes on the Escherichia coli K-12 genetic map. Mol Gen Genet 127(1):47–55PubMedCrossRef
44.
go back to reference Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis, 2nd edn. American Society of Microbiology, Washington Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis, 2nd edn. American Society of Microbiology, Washington
45.
go back to reference Iyer RR, Pluciennik A, Burdett V, Modrich PL (2006) DNA mismatch repair: functions, mechanisms. Chem Rev 106(2):302–323PubMedCrossRef Iyer RR, Pluciennik A, Burdett V, Modrich PL (2006) DNA mismatch repair: functions, mechanisms. Chem Rev 106(2):302–323PubMedCrossRef
46.
go back to reference Jascur T, Boland CR (2006) Structure and function of the components of the human DNA mismatch repair system. Int J Cancer 119(9):2030–2035PubMedCrossRef Jascur T, Boland CR (2006) Structure and function of the components of the human DNA mismatch repair system. Int J Cancer 119(9):2030–2035PubMedCrossRef
47.
48.
go back to reference Welsh KM, Lu AL, Clark S, Modrich P (1987) Isolation and characterization of the Escherichia coli mutH gene product. J Biol Chem 262(32):15624–15629PubMed Welsh KM, Lu AL, Clark S, Modrich P (1987) Isolation and characterization of the Escherichia coli mutH gene product. J Biol Chem 262(32):15624–15629PubMed
49.
go back to reference Constantin N, Dzantiev L, Kadyrov FA, Modrich P (2005) Human mismatch repair: reconstitution of a nick-directed bidirectional reaction. J Biol Chem 280(48):39752–39761PubMedCrossRef Constantin N, Dzantiev L, Kadyrov FA, Modrich P (2005) Human mismatch repair: reconstitution of a nick-directed bidirectional reaction. J Biol Chem 280(48):39752–39761PubMedCrossRef
50.
go back to reference Grilley M, Griffith J, Modrich P (1993) Bidirectional excision in methyl-directed mismatch repair. J Biol Chem 268(16):11830–11837PubMed Grilley M, Griffith J, Modrich P (1993) Bidirectional excision in methyl-directed mismatch repair. J Biol Chem 268(16):11830–11837PubMed
51.
go back to reference Kolodner RD, Mendillo ML, Putnam CD (2007) Coupling distant sites in DNA during DNA mismatch repair. Proc Natl Acad Sci USA 104(32):12953–12954PubMedCrossRef Kolodner RD, Mendillo ML, Putnam CD (2007) Coupling distant sites in DNA during DNA mismatch repair. Proc Natl Acad Sci USA 104(32):12953–12954PubMedCrossRef
52.
go back to reference Junop MS, Obmolova G, Rausch K, Hsieh P, Yang W (2001) Composite active site of an ABC ATPase: MutS uses ATP to verify mismatch recognition and authorize DNA repair. Mol Cell 7(1):1–12PubMedCrossRef Junop MS, Obmolova G, Rausch K, Hsieh P, Yang W (2001) Composite active site of an ABC ATPase: MutS uses ATP to verify mismatch recognition and authorize DNA repair. Mol Cell 7(1):1–12PubMedCrossRef
53.
go back to reference Allen DJ, Makhov A, Grilley M et al (1997) MutS mediates heteroduplex loop formation by a translocation mechanism. EMBO J 16(14):4467–4476PubMedCrossRef Allen DJ, Makhov A, Grilley M et al (1997) MutS mediates heteroduplex loop formation by a translocation mechanism. EMBO J 16(14):4467–4476PubMedCrossRef
54.
go back to reference Blackwell LJ, Bjornson KP, Modrich P (1998) DNA-dependent activation of the hMutS alpha ATPase. J Biol Chem 273(48):32049–32054PubMedCrossRef Blackwell LJ, Bjornson KP, Modrich P (1998) DNA-dependent activation of the hMutS alpha ATPase. J Biol Chem 273(48):32049–32054PubMedCrossRef
55.
go back to reference Acharya S, Foster PL, Brooks P, Fishel R (2003) The coordinated functions of the E coli MutS and MutL proteins in mismatch repair. Mol Cell 12(1):233–246PubMedCrossRef Acharya S, Foster PL, Brooks P, Fishel R (2003) The coordinated functions of the E coli MutS and MutL proteins in mismatch repair. Mol Cell 12(1):233–246PubMedCrossRef
57.
go back to reference Gradia S, Acharya S, Fishel R (1997) The human mismatch recognition complex hMSH2–hMSH6 functions as a novel molecular switch. Cell 91(7):995–1005PubMedCrossRef Gradia S, Acharya S, Fishel R (1997) The human mismatch recognition complex hMSH2–hMSH6 functions as a novel molecular switch. Cell 91(7):995–1005PubMedCrossRef
58.
go back to reference Gradia S, Subramanian D, Wilson T et al (1999) hMSH2–hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. Mol Cell 3(2):255–261PubMedCrossRef Gradia S, Subramanian D, Wilson T et al (1999) hMSH2–hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. Mol Cell 3(2):255–261PubMedCrossRef
59.
go back to reference Pluciennik A, Modrich P (2007) Protein roadblocks and helix discontinuities are barriers to the initiation of mismatch repair. Proc Natl Acad Sci USA 104(31):12709–12713PubMedCrossRef Pluciennik A, Modrich P (2007) Protein roadblocks and helix discontinuities are barriers to the initiation of mismatch repair. Proc Natl Acad Sci USA 104(31):12709–12713PubMedCrossRef
60.
go back to reference Cho WK, Jeong C, Kim D et al (2012) ATP alters the diffusion mechanics of MutS on mismatched DNA. Structure 20(7):1264–1274PubMedCrossRef Cho WK, Jeong C, Kim D et al (2012) ATP alters the diffusion mechanics of MutS on mismatched DNA. Structure 20(7):1264–1274PubMedCrossRef
61.
go back to reference Jeong C, Cho WK, Song KM et al (2011) MutS switches between two fundamentally distinct clamps during mismatch repair. Nat Struct Mol Biol 18(3):379–385PubMedCrossRef Jeong C, Cho WK, Song KM et al (2011) MutS switches between two fundamentally distinct clamps during mismatch repair. Nat Struct Mol Biol 18(3):379–385PubMedCrossRef
62.
go back to reference Fishel R, Acharya S, Berardini M et al (2000) Signaling mismatch repair: the mechanics of an adenosine-nucleotide molecular switch. Cold Spring Harb Symp Quant Biol 65:217–224PubMedCrossRef Fishel R, Acharya S, Berardini M et al (2000) Signaling mismatch repair: the mechanics of an adenosine-nucleotide molecular switch. Cold Spring Harb Symp Quant Biol 65:217–224PubMedCrossRef
63.
go back to reference Guerrette S, Wilson T, Gradia S, Fishel R (1998) Interactions of human hMSH2 with hMSH3 and hMSH2 with hMSH6: examination of mutations found in hereditary nonpolyposis colorectal cancer. Mol Cell Biol 18(11):6616–6623PubMed Guerrette S, Wilson T, Gradia S, Fishel R (1998) Interactions of human hMSH2 with hMSH3 and hMSH2 with hMSH6: examination of mutations found in hereditary nonpolyposis colorectal cancer. Mol Cell Biol 18(11):6616–6623PubMed
64.
go back to reference Fishel R, Wilson T (1997) MutS homologs in mammalian cells. [Review] [84 refs]. Curr Opin Genet Dev 7(1):105–113PubMedCrossRef Fishel R, Wilson T (1997) MutS homologs in mammalian cells. [Review] [84 refs]. Curr Opin Genet Dev 7(1):105–113PubMedCrossRef
65.
go back to reference Antony E, Hingorani MM (2004) Asymmetric ATP binding and hydrolysis activity of the Thermus aquaticus MutS dimer is key to modulation of its interactions with mismatched DNA. Biochemistry 43:13115–13128PubMedCrossRef Antony E, Hingorani MM (2004) Asymmetric ATP binding and hydrolysis activity of the Thermus aquaticus MutS dimer is key to modulation of its interactions with mismatched DNA. Biochemistry 43:13115–13128PubMedCrossRef
66.
go back to reference Antony E, Khubchandani S, Chen S, Hingorani MM (2006) Contribution of Msh2 and Msh6 subunits to the asymmetric ATPase and DNA mismatch binding activities of Saccharomyces cerevisiae Msh2–Msh6 mismatch repair protein. DNA Repair (Amst) 5(2):153–162CrossRef Antony E, Khubchandani S, Chen S, Hingorani MM (2006) Contribution of Msh2 and Msh6 subunits to the asymmetric ATPase and DNA mismatch binding activities of Saccharomyces cerevisiae Msh2–Msh6 mismatch repair protein. DNA Repair (Amst) 5(2):153–162CrossRef
67.
go back to reference Heinen CD, Cyr JL, Cook C et al (2011) Human MSH2 (hMSH2) protein controls ATP processing by hMSH2–hMSH6. J Biol Chem 286(46):40287–40295PubMedCrossRef Heinen CD, Cyr JL, Cook C et al (2011) Human MSH2 (hMSH2) protein controls ATP processing by hMSH2–hMSH6. J Biol Chem 286(46):40287–40295PubMedCrossRef
68.
go back to reference Mazur DJ, Mendillo ML, Kolodner RD (2006) Inhibition of Msh6 ATPase activity by mispaired DNA induces a Msh2(ATP)-Msh6(ATP) state capable of hydrolysis-independent movement along DNA. Mol Cell 22(1):39–49PubMedCrossRef Mazur DJ, Mendillo ML, Kolodner RD (2006) Inhibition of Msh6 ATPase activity by mispaired DNA induces a Msh2(ATP)-Msh6(ATP) state capable of hydrolysis-independent movement along DNA. Mol Cell 22(1):39–49PubMedCrossRef
69.
go back to reference Fishel R (1998) Mismatch repair, molecular switches, and signal transduction. [Review] [56 refs]. Genes Dev 12(14):2096–2101PubMedCrossRef Fishel R (1998) Mismatch repair, molecular switches, and signal transduction. [Review] [56 refs]. Genes Dev 12(14):2096–2101PubMedCrossRef
70.
go back to reference Gradia S, Acharya S, Fishel R (2000) The role of mismatched nucleotides in activating the hMSH2–hMSH6 molecular switch. J Biol Chem 275:3922–3930PubMedCrossRef Gradia S, Acharya S, Fishel R (2000) The role of mismatched nucleotides in activating the hMSH2–hMSH6 molecular switch. J Biol Chem 275:3922–3930PubMedCrossRef
71.
go back to reference Snowden T, Acharya S, Butz C, Berardini M, Fishel R (2004) hMSH4–hMSH5 recognizes holliday junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes. Mol Cell 15(3):437–451PubMedCrossRef Snowden T, Acharya S, Butz C, Berardini M, Fishel R (2004) hMSH4–hMSH5 recognizes holliday junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes. Mol Cell 15(3):437–451PubMedCrossRef
72.
go back to reference Gorman J, Chowdhury A, Surtees JA et al (2007) Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2–Msh6. Mol Cell 28(3):359–370PubMedCrossRef Gorman J, Chowdhury A, Surtees JA et al (2007) Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2–Msh6. Mol Cell 28(3):359–370PubMedCrossRef
73.
go back to reference Gorman J, Plys AJ, Visnapuu ML, Alani E, Greene EC (2010) Visualizing one-dimensional diffusion of eukaryotic DNA repair factors along a chromatin lattice. Nat Struct Mol Biol 17(8):932–938PubMedCrossRef Gorman J, Plys AJ, Visnapuu ML, Alani E, Greene EC (2010) Visualizing one-dimensional diffusion of eukaryotic DNA repair factors along a chromatin lattice. Nat Struct Mol Biol 17(8):932–938PubMedCrossRef
74.
go back to reference Li F, Tian L, Gu L, Li GM (2009) Evidence that nucleosomes inhibit mismatch repair in eukaryotic cells. J Biol Chem 284(48):33056–33061PubMedCrossRef Li F, Tian L, Gu L, Li GM (2009) Evidence that nucleosomes inhibit mismatch repair in eukaryotic cells. J Biol Chem 284(48):33056–33061PubMedCrossRef
76.
go back to reference Sass LE, Lanyi C, Weninger K, Erie DA (2011) Single-molecule FRET TACKLE reveals highly dynamic mismatched DNA-MutS complexes. Biochemistry 49(14):3174–3190CrossRef Sass LE, Lanyi C, Weninger K, Erie DA (2011) Single-molecule FRET TACKLE reveals highly dynamic mismatched DNA-MutS complexes. Biochemistry 49(14):3174–3190CrossRef
77.
go back to reference Mazurek A, Johnson CN, Germann MW, Fishel R (2009) Sequence context effect for hMSH2–hMSH6 mismatch-dependent activation. Proc Natl Acad Sci USA 106(11):4177–4182PubMedCrossRef Mazurek A, Johnson CN, Germann MW, Fishel R (2009) Sequence context effect for hMSH2–hMSH6 mismatch-dependent activation. Proc Natl Acad Sci USA 106(11):4177–4182PubMedCrossRef
78.
go back to reference Obmolova G, Ban C, Hsieh P, Yang W (2000) Crystal structures of mismatch repair protein MutS, its complex with a substrate DNA [see comments]. Nature 407(6805):703–710PubMedCrossRef Obmolova G, Ban C, Hsieh P, Yang W (2000) Crystal structures of mismatch repair protein MutS, its complex with a substrate DNA [see comments]. Nature 407(6805):703–710PubMedCrossRef
79.
go back to reference Lamers MH, Perrakis A, Enzlin JH, Winterwerp HH, de Wind N, Sixma TK (2000) The crystal structure of DNA mismatch repair protein MutS binding to a G x T mismatch. [see comments]. Nature 407(6805):711–717PubMedCrossRef Lamers MH, Perrakis A, Enzlin JH, Winterwerp HH, de Wind N, Sixma TK (2000) The crystal structure of DNA mismatch repair protein MutS binding to a G x T mismatch. [see comments]. Nature 407(6805):711–717PubMedCrossRef
80.
go back to reference Warren JJ, Pohlhaus TJ, Changela A, Iyer RR, Modrich PL, Beese LS (2007) Structure of the human MutSalpha DNA lesion recognition complex. Mol Cell 26(4):579–592PubMedCrossRef Warren JJ, Pohlhaus TJ, Changela A, Iyer RR, Modrich PL, Beese LS (2007) Structure of the human MutSalpha DNA lesion recognition complex. Mol Cell 26(4):579–592PubMedCrossRef
81.
go back to reference Javaid S, Manohar M, Punja N et al (2009) Nucleosome remodeling by hMSH2–hMSH6. Mol Cell 36(6):1086–1094PubMedCrossRef Javaid S, Manohar M, Punja N et al (2009) Nucleosome remodeling by hMSH2–hMSH6. Mol Cell 36(6):1086–1094PubMedCrossRef
82.
go back to reference Guerrette S, Acharya S, Fishel R (1999) The interaction of the human MutL homologues in hereditary nonpolyposis colon cancer. J Biol Chem 274(10):6336–6341PubMedCrossRef Guerrette S, Acharya S, Fishel R (1999) The interaction of the human MutL homologues in hereditary nonpolyposis colon cancer. J Biol Chem 274(10):6336–6341PubMedCrossRef
83.
go back to reference Dutta R, Inouye M (2000) GHKL, An emergent ATPase/kinase superfamily. Trends Biochem Sci 25(1):24–28PubMedCrossRef Dutta R, Inouye M (2000) GHKL, An emergent ATPase/kinase superfamily. Trends Biochem Sci 25(1):24–28PubMedCrossRef
84.
go back to reference Ban C, Yang W (1998) Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis. Cell 95(4):541–552PubMedCrossRef Ban C, Yang W (1998) Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis. Cell 95(4):541–552PubMedCrossRef
85.
go back to reference Sacho EJ, Kadyrov FA, Modrich P, Kunkel TA, Erie DA (2008) Direct visualization of asymmetric adenine nucleotide-induced conformational changes in Mutlalpha. Mol Cell 29(1):112–121PubMedCrossRef Sacho EJ, Kadyrov FA, Modrich P, Kunkel TA, Erie DA (2008) Direct visualization of asymmetric adenine nucleotide-induced conformational changes in Mutlalpha. Mol Cell 29(1):112–121PubMedCrossRef
86.
go back to reference Bende SM, Grafstrom RH (1991) The DNA binding properties of the MutL protein isolated from Escherichia coli. Nucleic Acids Res 19:1549–1555PubMedCrossRef Bende SM, Grafstrom RH (1991) The DNA binding properties of the MutL protein isolated from Escherichia coli. Nucleic Acids Res 19:1549–1555PubMedCrossRef
87.
go back to reference Drotschmann K, Hall MC, Shcherbakova PV et al (2002) DNA binding properties of the yeast Msh2–Msh6, Mlh1-Pms1 heterodimers. Biol Chem 383(6):969–975PubMedCrossRef Drotschmann K, Hall MC, Shcherbakova PV et al (2002) DNA binding properties of the yeast Msh2–Msh6, Mlh1-Pms1 heterodimers. Biol Chem 383(6):969–975PubMedCrossRef
88.
go back to reference Park J, Jeon Y, In D, Fishel R, Ban C, Lee JB (2010) Single-molecule analysis reveals the kinetics and physiological relevance of MutL-ssDNA binding. PLoS ONE 5(11):e15496PubMedCrossRef Park J, Jeon Y, In D, Fishel R, Ban C, Lee JB (2010) Single-molecule analysis reveals the kinetics and physiological relevance of MutL-ssDNA binding. PLoS ONE 5(11):e15496PubMedCrossRef
89.
go back to reference Kadyrov FA, Dzantiev L, Constantin N, Modrich P (2006) Endonucleolytic function of MutLalpha in human mismatch repair. Cell 126(2):297–308PubMedCrossRef Kadyrov FA, Dzantiev L, Constantin N, Modrich P (2006) Endonucleolytic function of MutLalpha in human mismatch repair. Cell 126(2):297–308PubMedCrossRef
90.
go back to reference Kadyrov FA, Holmes SF, Arana ME et al (2007) Saccharomyces cerevisiae MutLalpha is a mismatch repair endonuclease. J Biol Chem 282(51):37181–37190PubMedCrossRef Kadyrov FA, Holmes SF, Arana ME et al (2007) Saccharomyces cerevisiae MutLalpha is a mismatch repair endonuclease. J Biol Chem 282(51):37181–37190PubMedCrossRef
91.
go back to reference Kosinski J, Plotz G, Guarne A, Bujnicki JM, Friedhoff P (2008) The PMS2 subunit of human MutLalpha contains a metal ion binding domain of the iron-dependent repressor protein family. J Mol Biol 382(3):610–627PubMedCrossRef Kosinski J, Plotz G, Guarne A, Bujnicki JM, Friedhoff P (2008) The PMS2 subunit of human MutLalpha contains a metal ion binding domain of the iron-dependent repressor protein family. J Mol Biol 382(3):610–627PubMedCrossRef
92.
go back to reference Pillon MC, Lorenowicz JJ, Uckelmann M et al (2010) Structure of the endonuclease domain of MutL: unlicensed to cut. Mol Cell 39(1):145–151PubMedCrossRef Pillon MC, Lorenowicz JJ, Uckelmann M et al (2010) Structure of the endonuclease domain of MutL: unlicensed to cut. Mol Cell 39(1):145–151PubMedCrossRef
93.
go back to reference Pillon MC, Miller JH, Guarne A (2010) The endonuclease domain of MutL interacts with the beta sliding clamp. DNA Repair (Amst) 10(1):87–93CrossRef Pillon MC, Miller JH, Guarne A (2010) The endonuclease domain of MutL interacts with the beta sliding clamp. DNA Repair (Amst) 10(1):87–93CrossRef
94.
go back to reference Grilley M, Welsh KM, Su SS, Modrich P (1989) Isolation and characterization of the Escherichia coli mutL gene product. J Biol Chem 264(2):1000–1004PubMed Grilley M, Welsh KM, Su SS, Modrich P (1989) Isolation and characterization of the Escherichia coli mutL gene product. J Biol Chem 264(2):1000–1004PubMed
95.
go back to reference Mendillo ML, Mazur DJ, Kolodner RD (2005) Analysis of the interaction between the Saccharomyces cerevisiae MSH2–MSH6 and MLH1–PMS1 complexes with DNA using a reversible DNA end-blocking system. J Biol Chem 280(23):22245–22257PubMedCrossRef Mendillo ML, Mazur DJ, Kolodner RD (2005) Analysis of the interaction between the Saccharomyces cerevisiae MSH2–MSH6 and MLH1–PMS1 complexes with DNA using a reversible DNA end-blocking system. J Biol Chem 280(23):22245–22257PubMedCrossRef
96.
go back to reference Schofield MJ, Nayak S, Scott TH, Du C, Hsieh P (2001) Interaction of Escherichia coli MutS and MutL at a DNA mismatch. J Biol Chem 276(30):28291–28299PubMedCrossRef Schofield MJ, Nayak S, Scott TH, Du C, Hsieh P (2001) Interaction of Escherichia coli MutS and MutL at a DNA mismatch. J Biol Chem 276(30):28291–28299PubMedCrossRef
97.
go back to reference Hombauer H, Campbell CS, Smith CE, Desai A, Kolodner RD (2011) Visualization of eukaryotic DNA mismatch repair reveals distinct recognition and repair intermediates. Cell 147(5):1040–1053PubMedCrossRef Hombauer H, Campbell CS, Smith CE, Desai A, Kolodner RD (2011) Visualization of eukaryotic DNA mismatch repair reveals distinct recognition and repair intermediates. Cell 147(5):1040–1053PubMedCrossRef
98.
go back to reference Lopez de Saro FJ, Marinus MG, Modrich P, O’Donnell M (2006) The beta sliding clamp binds to multiple sites within MutL and MutS. J Biol Chem 281(20):14340–14349PubMedCrossRef Lopez de Saro FJ, Marinus MG, Modrich P, O’Donnell M (2006) The beta sliding clamp binds to multiple sites within MutL and MutS. J Biol Chem 281(20):14340–14349PubMedCrossRef
99.
go back to reference Viswanathan M, Lovett ST (1998) Single-strand DNA-specific exonucleases in Escherichia coli—roles in repair and mutation avoidance. Genetics 149(1):7–16PubMed Viswanathan M, Lovett ST (1998) Single-strand DNA-specific exonucleases in Escherichia coli—roles in repair and mutation avoidance. Genetics 149(1):7–16PubMed
100.
go back to reference Pluciennik A, Burdett V, Lukianova O, O’Donnell M, Modrich P (2009) Involvement of the beta clamp in methyl-directed mismatch repair in vitro. J Biol Chem 284(47):32782–32791PubMedCrossRef Pluciennik A, Burdett V, Lukianova O, O’Donnell M, Modrich P (2009) Involvement of the beta clamp in methyl-directed mismatch repair in vitro. J Biol Chem 284(47):32782–32791PubMedCrossRef
101.
go back to reference Ramilo C, Gu L, Guo S et al (2002) Partial reconstitution of human DNA mismatch repair in vitro: characterization of the role of human replication protein A. Mol Cell Biol 22(7):2037–2046PubMedCrossRef Ramilo C, Gu L, Guo S et al (2002) Partial reconstitution of human DNA mismatch repair in vitro: characterization of the role of human replication protein A. Mol Cell Biol 22(7):2037–2046PubMedCrossRef
102.
go back to reference Pluciennik A, Dzantiev L, Iyer RR, Constantin N, Kadyrov FA, Modrich P (2010) PCNA function in the activation and strand direction of MutLalpha endonuclease in mismatch repair. Proc Natl Acad Sci USA 107(37):16066–16071PubMedCrossRef Pluciennik A, Dzantiev L, Iyer RR, Constantin N, Kadyrov FA, Modrich P (2010) PCNA function in the activation and strand direction of MutLalpha endonuclease in mismatch repair. Proc Natl Acad Sci USA 107(37):16066–16071PubMedCrossRef
103.
go back to reference Zhang Y, Yuan F, Presnell SR et al (2005) Reconstitution of 5′-directed human mismatch repair in a purified system. Cell 122(5):693–705PubMedCrossRef Zhang Y, Yuan F, Presnell SR et al (2005) Reconstitution of 5′-directed human mismatch repair in a purified system. Cell 122(5):693–705PubMedCrossRef
104.
go back to reference Belvederesi L, Bianchi F, Galizia E et al (2008) MSH2 missense mutations, HNPCC syndrome: pathogenicity assessment in a human expression system. Hum Mutat 29(11):E296–E309PubMedCrossRef Belvederesi L, Bianchi F, Galizia E et al (2008) MSH2 missense mutations, HNPCC syndrome: pathogenicity assessment in a human expression system. Hum Mutat 29(11):E296–E309PubMedCrossRef
105.
go back to reference Hardt K, Heick SB, Betz B et al (2011) Missense variants in hMLH1 identified in patients from the German HNPCC consortium, functional studies. Fam Cancer 10(2):273–284PubMedCrossRef Hardt K, Heick SB, Betz B et al (2011) Missense variants in hMLH1 identified in patients from the German HNPCC consortium, functional studies. Fam Cancer 10(2):273–284PubMedCrossRef
106.
go back to reference Kondo E, Suzuki H, Horii A, Fukushige S (2003) A yeast two-hybrid assay provides a simple way to evaluate the vast majority of hMLH1 germ-line mutations. Cancer Res 63(12):3302–3308PubMed Kondo E, Suzuki H, Horii A, Fukushige S (2003) A yeast two-hybrid assay provides a simple way to evaluate the vast majority of hMLH1 germ-line mutations. Cancer Res 63(12):3302–3308PubMed
107.
go back to reference Schmutte C, Marinescu RC, Sadoff MM, Guerrette S, Overhauser J, Fishel R (1998) Human exonuclease I interacts with the mismatch repair protein hMSH2. Cancer Res 58(20):4537–4542PubMed Schmutte C, Marinescu RC, Sadoff MM, Guerrette S, Overhauser J, Fishel R (1998) Human exonuclease I interacts with the mismatch repair protein hMSH2. Cancer Res 58(20):4537–4542PubMed
108.
go back to reference Schmutte C, Sadoff MM, Shim KS, Acharya S, Fishel R (2001) The interaction of DNA mismatch repair proteins with human exonuclease I. J Biol Chem 276(35):33011–33018PubMedCrossRef Schmutte C, Sadoff MM, Shim KS, Acharya S, Fishel R (2001) The interaction of DNA mismatch repair proteins with human exonuclease I. J Biol Chem 276(35):33011–33018PubMedCrossRef
109.
go back to reference Raevaara TE, Korhonen MK, Lohi H et al (2005) Functional significance, clinical phenotype of nontruncating mismatch repair variants of MLH1. Gastroenterology 129(2):537–549PubMed Raevaara TE, Korhonen MK, Lohi H et al (2005) Functional significance, clinical phenotype of nontruncating mismatch repair variants of MLH1. Gastroenterology 129(2):537–549PubMed
110.
go back to reference Takahashi M, Shimodaira H, Andreutti-Zaugg C, Iggo R, Kolodner RD, Ishioka C (2007) Functional analysis of human MLH1 variants using yeast and in vitro mismatch repair assays. Cancer Res 67(10):4595–4604PubMedCrossRef Takahashi M, Shimodaira H, Andreutti-Zaugg C, Iggo R, Kolodner RD, Ishioka C (2007) Functional analysis of human MLH1 variants using yeast and in vitro mismatch repair assays. Cancer Res 67(10):4595–4604PubMedCrossRef
111.
go back to reference Heinen CD, Wilson T, Mazurek A, Berardini M, Butz C, Fishel R (2002) HNPCC mutations in hMSH2 result in reduced hMSH2–hMSH6 molecular switch functions. Cancer Cell 1:469–478PubMedCrossRef Heinen CD, Wilson T, Mazurek A, Berardini M, Butz C, Fishel R (2002) HNPCC mutations in hMSH2 result in reduced hMSH2–hMSH6 molecular switch functions. Cancer Cell 1:469–478PubMedCrossRef
112.
go back to reference Brieger A, Plotz G, Raedle J et al (2005) Characterization of the nuclear import of human MutLalpha. Mol Carcinog 43(1):51–58PubMedCrossRef Brieger A, Plotz G, Raedle J et al (2005) Characterization of the nuclear import of human MutLalpha. Mol Carcinog 43(1):51–58PubMedCrossRef
113.
go back to reference Lei X, Zhu Y, Tomkinson A, Sun L (2004) Measurement of DNA mismatch repair activity in live cells. Nucleic Acids Res 32(12):e100PubMedCrossRef Lei X, Zhu Y, Tomkinson A, Sun L (2004) Measurement of DNA mismatch repair activity in live cells. Nucleic Acids Res 32(12):e100PubMedCrossRef
114.
go back to reference Ollila S, Dermadi Bebek D, Jiricny J, Nystrom M (2008) Mechanisms of pathogenicity in human MSH2 missense mutants. Hum Mutat 29(11):1355–1363PubMedCrossRef Ollila S, Dermadi Bebek D, Jiricny J, Nystrom M (2008) Mechanisms of pathogenicity in human MSH2 missense mutants. Hum Mutat 29(11):1355–1363PubMedCrossRef
115.
go back to reference Trojan J, Zeuzem S, Randolph A et al (2002) Functional analysis of hMLH1 variants, HNPCC-related mutations using a human expression system. Gastroenterology 122(1):211–219PubMedCrossRef Trojan J, Zeuzem S, Randolph A et al (2002) Functional analysis of hMLH1 variants, HNPCC-related mutations using a human expression system. Gastroenterology 122(1):211–219PubMedCrossRef
116.
go back to reference Naruse H, Ikawa N, Yamaguchi K et al (2009) Determination of splice-site mutations in Lynch syndrome (hereditary non-polyposis colorectal cancer) patients using functional splicing assay. Fam Cancer 8(4):509–517PubMedCrossRef Naruse H, Ikawa N, Yamaguchi K et al (2009) Determination of splice-site mutations in Lynch syndrome (hereditary non-polyposis colorectal cancer) patients using functional splicing assay. Fam Cancer 8(4):509–517PubMedCrossRef
117.
go back to reference Tournier I, Vezain M, Martins A et al (2008) A large fraction of unclassified variants of the mismatch repair genes MLH1, MSH2 is associated with splicing defects. Hum Mutat 29(12):1412–1424PubMedCrossRef Tournier I, Vezain M, Martins A et al (2008) A large fraction of unclassified variants of the mismatch repair genes MLH1, MSH2 is associated with splicing defects. Hum Mutat 29(12):1412–1424PubMedCrossRef
118.
go back to reference Fishel R (2001) The selection for mismatch repair defects in hereditary nonpolyposis colorectal cancer: revising the mutator hypothesis. Cancer Res 61(20):7369–7374PubMed Fishel R (2001) The selection for mismatch repair defects in hereditary nonpolyposis colorectal cancer: revising the mutator hypothesis. Cancer Res 61(20):7369–7374PubMed
119.
go back to reference Gong JG, Costanzo A, Yang HQ et al (1999) The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage [see comments]. Nature 399(6738):806–809PubMedCrossRef Gong JG, Costanzo A, Yang HQ et al (1999) The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage [see comments]. Nature 399(6738):806–809PubMedCrossRef
120.
go back to reference Jain A, Liu R, Ramani B et al (2011) Probing cellular protein complexes using single-molecule pull-down. Nature 473(7348):484–488PubMedCrossRef Jain A, Liu R, Ramani B et al (2011) Probing cellular protein complexes using single-molecule pull-down. Nature 473(7348):484–488PubMedCrossRef
121.
go back to reference Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76PubMedCrossRef Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76PubMedCrossRef
122.
123.
go back to reference Yoshioka K, Yoshioka Y, Hsieh P (2006) ATR kinase activation mediated by MutSalpha and MutLalpha in response to cytotoxic O6-methylguanine adducts. Mol Cell 22(4):501–510PubMedCrossRef Yoshioka K, Yoshioka Y, Hsieh P (2006) ATR kinase activation mediated by MutSalpha and MutLalpha in response to cytotoxic O6-methylguanine adducts. Mol Cell 22(4):501–510PubMedCrossRef
Metadata
Title
The mechanism of mismatch repair and the functional analysis of mismatch repair defects in Lynch syndrome
Authors
Juana V. Martín-López
Richard Fishel
Publication date
01-06-2013
Publisher
Springer Netherlands
Published in
Familial Cancer / Issue 2/2013
Print ISSN: 1389-9600
Electronic ISSN: 1573-7292
DOI
https://doi.org/10.1007/s10689-013-9635-x

Other articles of this Issue 2/2013

Familial Cancer 2/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine