Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2013

Open Access 01-12-2013 | Review

The mastermind approach to CNS drug therapy: translational prediction of human brain distribution, target site kinetics, and therapeutic effects

Author: Elizabeth CM de Lange

Published in: Fluids and Barriers of the CNS | Issue 1/2013

Login to get access

Abstract

Despite enormous advances in CNS research, CNS disorders remain the world’s leading cause of disability. This accounts for more hospitalizations and prolonged care than almost all other diseases combined, and indicates a high unmet need for good CNS drugs and drug therapies.
Following dosing, not only the chemical properties of the drug and blood–brain barrier (BBB) transport, but also many other processes will ultimately determine brain target site kinetics and consequently the CNS effects. The rate and extent of all these processes are regulated dynamically, and thus condition dependent. Therefore, heterogenious conditions such as species, gender, genetic background, tissue, age, diet, disease, drug treatment etc., result in considerable inter-individual and intra-individual variation, often encountered in CNS drug therapy.
For effective therapy, drugs should access the CNS “at the right place, at the right time, and at the right concentration”. To improve CNS therapies and drug development, details of inter-species and inter-condition variations are needed to enable target site pharmacokinetics and associated CNS effects to be translated between species and between disease states. Specifically, such studies need to include information about unbound drug concentrations which drive the effects. To date the only technique that can obtain unbound drug concentrations in brain is microdialysis. This (minimally) invasive technique cannot be readily applied to humans, and we need to rely on translational approaches to predict human brain distribution, target site kinetics, and therapeutic effects of CNS drugs.
In this review the term “Mastermind approach” is introduced, for strategic and systematic CNS drug research using advanced preclinical experimental designs and mathematical modeling. In this way, knowledge can be obtained about the contributions and variability of individual processes on the causal path between drug dosing and CNS effect in animals that can be translated to the human situation. On the basis of a few advanced preclinical microdialysis based investigations it will be shown that the “Mastermind approach” has a high potential for the prediction of human CNS drug effects.
Appendix
Available only for authorised users
Literature
1.
go back to reference World Health Organization: “Neurological Disorders: Public Health Challenges”. 2007 World Health Organization: “Neurological Disorders: Public Health Challenges”. 2007
2.
go back to reference Neuwelt EA, Abbott NJ, Abrey L, Banks WA, Blakley B, Davis T, Engelhardt B, Grammas P, Nedergaard M, Nutt J, Pardridge W, Rosenburg GA, Smith Q, Drewes LR: Strategies to advance translational research into brain barriers. Lancet Neurol. 2008, 7: 84-96. 10.1016/S1474-4422(07)70326-5.PubMedCrossRef Neuwelt EA, Abbott NJ, Abrey L, Banks WA, Blakley B, Davis T, Engelhardt B, Grammas P, Nedergaard M, Nutt J, Pardridge W, Rosenburg GA, Smith Q, Drewes LR: Strategies to advance translational research into brain barriers. Lancet Neurol. 2008, 7: 84-96. 10.1016/S1474-4422(07)70326-5.PubMedCrossRef
3.
go back to reference Pardridge WM: Blood–brain barrier delivery. Drug Disc Today. 2007, 12: 54-61. 10.1016/j.drudis.2006.10.013.CrossRef Pardridge WM: Blood–brain barrier delivery. Drug Disc Today. 2007, 12: 54-61. 10.1016/j.drudis.2006.10.013.CrossRef
4.
go back to reference Jeffrey P, Summerfield S: Assessment of the blood–brain barrier in CNS drug discovery. Neurobiol Dis. 2010, 37: 33-37. 10.1016/j.nbd.2009.07.033.PubMedCrossRef Jeffrey P, Summerfield S: Assessment of the blood–brain barrier in CNS drug discovery. Neurobiol Dis. 2010, 37: 33-37. 10.1016/j.nbd.2009.07.033.PubMedCrossRef
5.
go back to reference De Lange ECM, Danhof M: Considerations in the use of cerebrospinal fluid pharmacokinetic to predict brain target concentrations in the clinical setting. Implications of the barriers between blood and brain. Clin Pharmacokinet. 2002, 41: 691-703. 10.2165/00003088-200241100-00001.PubMedCrossRef De Lange ECM, Danhof M: Considerations in the use of cerebrospinal fluid pharmacokinetic to predict brain target concentrations in the clinical setting. Implications of the barriers between blood and brain. Clin Pharmacokinet. 2002, 41: 691-703. 10.2165/00003088-200241100-00001.PubMedCrossRef
6.
go back to reference Hammarlund-Udenaes M, Fridén M, Syvänen S, Gupta A: On the rate and extent of drug delivery to the brain. Pharm Res. 2008, 25: 1737-1750. 10.1007/s11095-007-9502-2.PubMedCentralPubMedCrossRef Hammarlund-Udenaes M, Fridén M, Syvänen S, Gupta A: On the rate and extent of drug delivery to the brain. Pharm Res. 2008, 25: 1737-1750. 10.1007/s11095-007-9502-2.PubMedCentralPubMedCrossRef
7.
go back to reference Syvänen S, Lindhe O, Palner M, Kornum BR, Rahman O, Långström B, Knudsen GM, Hammarlund-Udenaes M: Species differences in blood–brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos. 2009, 37: 635-643. 10.1124/dmd.108.024745.PubMedCrossRef Syvänen S, Lindhe O, Palner M, Kornum BR, Rahman O, Långström B, Knudsen GM, Hammarlund-Udenaes M: Species differences in blood–brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos. 2009, 37: 635-643. 10.1124/dmd.108.024745.PubMedCrossRef
8.
go back to reference Eyal S, Ke B, Muzi M, Link JM, Mankoff DA, Collier AC, Unadkat JD: Regional P-glycoprotein activity and inhibition at the human blood–brain barrier as imaged by positron emission tomography. Clin Pharmacol Ther. 2010, 87: 579-585. 10.1038/clpt.2010.11.PubMedCentralPubMedCrossRef Eyal S, Ke B, Muzi M, Link JM, Mankoff DA, Collier AC, Unadkat JD: Regional P-glycoprotein activity and inhibition at the human blood–brain barrier as imaged by positron emission tomography. Clin Pharmacol Ther. 2010, 87: 579-585. 10.1038/clpt.2010.11.PubMedCentralPubMedCrossRef
9.
go back to reference DeLorenzo C, Kumar JS, Mann JJ, Parsey RV: In vivo variation in metabotropic glutamate receptor subtype 5 binding using positron emission tomography and [11C]ABP688. J Cereb Blood Flow Metab. 2011, 31: 2169-2180. 10.1038/jcbfm.2011.105.PubMedCentralPubMedCrossRef DeLorenzo C, Kumar JS, Mann JJ, Parsey RV: In vivo variation in metabotropic glutamate receptor subtype 5 binding using positron emission tomography and [11C]ABP688. J Cereb Blood Flow Metab. 2011, 31: 2169-2180. 10.1038/jcbfm.2011.105.PubMedCentralPubMedCrossRef
10.
go back to reference Brašić JR, Cascella N, Kumar A, Zhou Y, Hilton J, Raymont V, Crabb A, Guevara MR, Horti AG, Wong DF: Positron emission tomography experience with 2-[18 F]fluoro-3-(2(S)-azetidinyl-methoxy)-pyridine (2-[18 F]FA) in the living human brain of smokers with paranoid schizophrenia. Synapse. 2012, 66: 352-368. 10.1002/syn.21520.PubMedCentralPubMedCrossRef Brašić JR, Cascella N, Kumar A, Zhou Y, Hilton J, Raymont V, Crabb A, Guevara MR, Horti AG, Wong DF: Positron emission tomography experience with 2-[18 F]fluoro-3-(2(S)-azetidinyl-methoxy)-pyridine (2-[18 F]FA) in the living human brain of smokers with paranoid schizophrenia. Synapse. 2012, 66: 352-368. 10.1002/syn.21520.PubMedCentralPubMedCrossRef
11.
go back to reference Atlas LY, Whittington RA, Lindquist MA, Wielgosz J, Sonty N, Wager TD: Dissociable influences of opiates and expectations on pain. J Neurosci. 2012, 32: 8053-8064. 10.1523/JNEUROSCI.0383-12.2012.PubMedCentralPubMedCrossRef Atlas LY, Whittington RA, Lindquist MA, Wielgosz J, Sonty N, Wager TD: Dissociable influences of opiates and expectations on pain. J Neurosci. 2012, 32: 8053-8064. 10.1523/JNEUROSCI.0383-12.2012.PubMedCentralPubMedCrossRef
12.
go back to reference Upadhyay J, Anderson J, Baumgartner R, Coimbra A, Schwarz AJ, Pendse G, Wallin D, Nutile L, Bishop J, George E, Elman I, Sunkaraneni S, Maier G, Iyengar S, Evelhoch JL, Bleakman D, Hargreaves R, Becerra L, Borsook D: Modulation of CNS pain circuitry by intravenous and sublingual doses of buprenorphine. Neuroimage. 2012, 59: 3762-3773. 10.1016/j.neuroimage.2011.11.034.PubMedCrossRef Upadhyay J, Anderson J, Baumgartner R, Coimbra A, Schwarz AJ, Pendse G, Wallin D, Nutile L, Bishop J, George E, Elman I, Sunkaraneni S, Maier G, Iyengar S, Evelhoch JL, Bleakman D, Hargreaves R, Becerra L, Borsook D: Modulation of CNS pain circuitry by intravenous and sublingual doses of buprenorphine. Neuroimage. 2012, 59: 3762-3773. 10.1016/j.neuroimage.2011.11.034.PubMedCrossRef
13.
go back to reference Bruce JN, Oldfield EH: Method for sequential sampling of cerebrospinal fluid in humans. Neurosurgery. 1988, 23: 788-790. 10.1227/00006123-198812000-00024.PubMedCrossRef Bruce JN, Oldfield EH: Method for sequential sampling of cerebrospinal fluid in humans. Neurosurgery. 1988, 23: 788-790. 10.1227/00006123-198812000-00024.PubMedCrossRef
14.
go back to reference Lin JH: CSF as a surrogate for assessing CNS exposure: An industrial perspective. Curr Drug Metab. 2008, 9: 46-59. 10.2174/138920008783331077.PubMedCrossRef Lin JH: CSF as a surrogate for assessing CNS exposure: An industrial perspective. Curr Drug Metab. 2008, 9: 46-59. 10.2174/138920008783331077.PubMedCrossRef
15.
go back to reference Liu X, Van Natta K, Yeo H, Vilenski O, Weller PE, Worboys PD, Monshouwer M: Unbound drug concentration in brain homogenate and cerebral spinal fluid at steady state as a surrogate for unbound concentration in brain interstitial fluid. Drug Metab Dispos. 2009, 37: 787-793. 10.1124/dmd.108.024125.PubMedCrossRef Liu X, Van Natta K, Yeo H, Vilenski O, Weller PE, Worboys PD, Monshouwer M: Unbound drug concentration in brain homogenate and cerebral spinal fluid at steady state as a surrogate for unbound concentration in brain interstitial fluid. Drug Metab Dispos. 2009, 37: 787-793. 10.1124/dmd.108.024125.PubMedCrossRef
16.
go back to reference Fridén M, Winiwarter S, Jerndal G, Bengtsson O, Wan H, Bredberg U, Hammarlund-Udenaes M, Antonsson M: Structure—Brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. J Med Chem. 2009, 52: 6233-6243. 10.1021/jm901036q.PubMedCrossRef Fridén M, Winiwarter S, Jerndal G, Bengtsson O, Wan H, Bredberg U, Hammarlund-Udenaes M, Antonsson M: Structure—Brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. J Med Chem. 2009, 52: 6233-6243. 10.1021/jm901036q.PubMedCrossRef
17.
go back to reference Westerhout J, Danhof M, de Lange ECM: Preclinical prediction of human brain target site concentrations: Considerations in extrapolating to the clinical setting. J Pharm Sci. 2011, 100: 3577-3593. 10.1002/jps.22604.PubMedCrossRef Westerhout J, Danhof M, de Lange ECM: Preclinical prediction of human brain target site concentrations: Considerations in extrapolating to the clinical setting. J Pharm Sci. 2011, 100: 3577-3593. 10.1002/jps.22604.PubMedCrossRef
18.
go back to reference De Lange ECM, Danhof M, De Boer AG, Breimer DD: Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on blood–brain barrier transport of drugs. Brain Res Rev. 1997, 25: 27-49. 10.1016/S0165-0173(97)00014-3.PubMedCrossRef De Lange ECM, Danhof M, De Boer AG, Breimer DD: Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on blood–brain barrier transport of drugs. Brain Res Rev. 1997, 25: 27-49. 10.1016/S0165-0173(97)00014-3.PubMedCrossRef
19.
go back to reference Hillered L, Persson L, Nilsson P, Ronne-Engstrom E, Enblad P: Continuous monitoring of cerebral metabolism in traumatic brain injury: a focus on cerebral microdialysis. Curr Opin Crit Care. 2006, 12: 112-118. 10.1097/01.ccx.0000216576.11439.df.PubMedCrossRef Hillered L, Persson L, Nilsson P, Ronne-Engstrom E, Enblad P: Continuous monitoring of cerebral metabolism in traumatic brain injury: a focus on cerebral microdialysis. Curr Opin Crit Care. 2006, 12: 112-118. 10.1097/01.ccx.0000216576.11439.df.PubMedCrossRef
20.
go back to reference Ederoth P, Tunblad K, Bouw R, Lundberg CJ, Ungerstedt U, Nordström CH, Hammarlund-Udenaes M: Blood–brain barrier transport of morphine in patients with severe brain trauma. Br J Clin Pharmacol. 2004, 57: 427-435. 10.1046/j.1365-2125.2003.02032.x.PubMedCentralPubMedCrossRef Ederoth P, Tunblad K, Bouw R, Lundberg CJ, Ungerstedt U, Nordström CH, Hammarlund-Udenaes M: Blood–brain barrier transport of morphine in patients with severe brain trauma. Br J Clin Pharmacol. 2004, 57: 427-435. 10.1046/j.1365-2125.2003.02032.x.PubMedCentralPubMedCrossRef
21.
go back to reference Fenstermacher JD, Patlak CS, Blasberg RG: Transport of material between brain extracellular fluid, brain cells and blood. Fed Proc. 1974, 33: 2070-2074.PubMed Fenstermacher JD, Patlak CS, Blasberg RG: Transport of material between brain extracellular fluid, brain cells and blood. Fed Proc. 1974, 33: 2070-2074.PubMed
22.
go back to reference Collins JM, Dedrick LD: Distributed model for drug delivery to CSF and brain tissue. J Am Physiol. 1983, 14: R303-R310. Collins JM, Dedrick LD: Distributed model for drug delivery to CSF and brain tissue. J Am Physiol. 1983, 14: R303-R310.
24.
go back to reference Bodor N, Brewster ME: Problems of drug delivery of drugs to the brain. Pharmacol Ther. 1982, 19: 337-386. 10.1016/0163-7258(82)90073-0.PubMedCrossRef Bodor N, Brewster ME: Problems of drug delivery of drugs to the brain. Pharmacol Ther. 1982, 19: 337-386. 10.1016/0163-7258(82)90073-0.PubMedCrossRef
25.
go back to reference Segal MB: Extracellular and cerebrospinal fluids. J Inher Metab Dis. 1993, 16: 617-638. 10.1007/BF00711896.PubMedCrossRef Segal MB: Extracellular and cerebrospinal fluids. J Inher Metab Dis. 1993, 16: 617-638. 10.1007/BF00711896.PubMedCrossRef
26.
go back to reference Betz AL, Goldstein GW: Specialized properties and solute transport in brain capillaries. Annu Rev Physiol. 1986, 48: 241-250. 10.1146/annurev.ph.48.030186.001325.PubMedCrossRef Betz AL, Goldstein GW: Specialized properties and solute transport in brain capillaries. Annu Rev Physiol. 1986, 48: 241-250. 10.1146/annurev.ph.48.030186.001325.PubMedCrossRef
27.
go back to reference Mayer S, Maickel RP, Brodie BB: Kinetics of penetration of drugs and other foreign compounds into cerebrospinal fluid and brain. J Pharmacol Exp Ther. 1959, 127: 205-211. Mayer S, Maickel RP, Brodie BB: Kinetics of penetration of drugs and other foreign compounds into cerebrospinal fluid and brain. J Pharmacol Exp Ther. 1959, 127: 205-211.
28.
go back to reference Oldendorf WH: Lipid solubility and drug penetration of the blood–brain barrier. Proc Soc Exp Biol Med. 1974, 174: 813-815.CrossRef Oldendorf WH: Lipid solubility and drug penetration of the blood–brain barrier. Proc Soc Exp Biol Med. 1974, 174: 813-815.CrossRef
29.
go back to reference Keep RF, Jones HC: A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Dev Brain Res. 1990, 56: 47-53. 10.1016/0165-3806(90)90163-S.CrossRef Keep RF, Jones HC: A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Dev Brain Res. 1990, 56: 47-53. 10.1016/0165-3806(90)90163-S.CrossRef
30.
go back to reference Danhof M, Alvan G, Dahl SG, Kuhlmann J, Paintaud G: Mechanism-based pharmacokinetic-pharmacodynamic modelling – a new classification of biomarkers. Pharm Res. 2005, 22: 1432-1437. 10.1007/s11095-005-5882-3.PubMedCrossRef Danhof M, Alvan G, Dahl SG, Kuhlmann J, Paintaud G: Mechanism-based pharmacokinetic-pharmacodynamic modelling – a new classification of biomarkers. Pharm Res. 2005, 22: 1432-1437. 10.1007/s11095-005-5882-3.PubMedCrossRef
31.
go back to reference Danhof M, de Jongh J, de Lange ECM, Della Pasqua OE, Ploeger BA, Voskuyl RA: Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu Rev Pharmacol Toxicol. 2007, 47: 357-400. 10.1146/annurev.pharmtox.47.120505.105154.PubMedCrossRef Danhof M, de Jongh J, de Lange ECM, Della Pasqua OE, Ploeger BA, Voskuyl RA: Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu Rev Pharmacol Toxicol. 2007, 47: 357-400. 10.1146/annurev.pharmtox.47.120505.105154.PubMedCrossRef
32.
go back to reference Suzuki H, Terasaki T, Sugiyama Y: Role of efflux transport across the blood–brain barrier and blood-cerebrospinal fluid barrier on the disposition of xenobiotics in the central nervous system. Adv Drug Del Rev. 1997, 25: 257-285. 10.1016/S0169-409X(97)00503-6.CrossRef Suzuki H, Terasaki T, Sugiyama Y: Role of efflux transport across the blood–brain barrier and blood-cerebrospinal fluid barrier on the disposition of xenobiotics in the central nervous system. Adv Drug Del Rev. 1997, 25: 257-285. 10.1016/S0169-409X(97)00503-6.CrossRef
33.
go back to reference Urien S, Pinquier JL, Paquette B, Chaumet RP, Kiechel JR, Tillement JP: Effect of the binding of isradipine and darodipine to different plasma proteins on their transfer through the blood–brain barrier. J Pharmacol Exp Ther. 1987, 242: 349-353.PubMed Urien S, Pinquier JL, Paquette B, Chaumet RP, Kiechel JR, Tillement JP: Effect of the binding of isradipine and darodipine to different plasma proteins on their transfer through the blood–brain barrier. J Pharmacol Exp Ther. 1987, 242: 349-353.PubMed
34.
go back to reference Jolliet P, Simon N, Bree F, Urien S, Pagliara A, Carrupt P-A, Testa B, Tillement JP: Blood-to-brain transfer of various oxicams: effects of plasma binding on their brain delivery. Pharm Res. 1997, 14: 650-656. 10.1023/A:1012165414610.PubMedCrossRef Jolliet P, Simon N, Bree F, Urien S, Pagliara A, Carrupt P-A, Testa B, Tillement JP: Blood-to-brain transfer of various oxicams: effects of plasma binding on their brain delivery. Pharm Res. 1997, 14: 650-656. 10.1023/A:1012165414610.PubMedCrossRef
35.
go back to reference Tanaka H, Mizojiri K: Drug-protein binding and blood–brain barrier permeability. J Pharmacol Exp Ther. 1999, 288: 912-918.PubMed Tanaka H, Mizojiri K: Drug-protein binding and blood–brain barrier permeability. J Pharmacol Exp Ther. 1999, 288: 912-918.PubMed
36.
go back to reference Mandula H, Parepally JM, Feng R, Smith QR: Role of site-specific binding to plasma albumin in drug availability to brain. J Pharmacol Exp Ther. 2006, 317: 667-675. 10.1124/jpet.105.097402.PubMedCrossRef Mandula H, Parepally JM, Feng R, Smith QR: Role of site-specific binding to plasma albumin in drug availability to brain. J Pharmacol Exp Ther. 2006, 317: 667-675. 10.1124/jpet.105.097402.PubMedCrossRef
37.
go back to reference Schmidt S, Gonzalez D, Derendorf H: Significance of protein binding in pharmacokinetics and pharmacodynamics. J Pharm Sci. 2010, 99: 1107-1122. 10.1002/jps.21916.PubMedCrossRef Schmidt S, Gonzalez D, Derendorf H: Significance of protein binding in pharmacokinetics and pharmacodynamics. J Pharm Sci. 2010, 99: 1107-1122. 10.1002/jps.21916.PubMedCrossRef
38.
go back to reference Summerfield SG, Jeffrey P: In vitro prediction of brain penetration – a case for unbound thinking?. Expert Opin Drug Discov. 2006, 1: 595-607. 10.1517/17460441.1.6.595.PubMedCrossRef Summerfield SG, Jeffrey P: In vitro prediction of brain penetration – a case for unbound thinking?. Expert Opin Drug Discov. 2006, 1: 595-607. 10.1517/17460441.1.6.595.PubMedCrossRef
39.
go back to reference Watson J, Wright S, Lucas A, Clarke KL, Viggers J, Cheetham S, Jeffrey P, Porter R, Read KD: Receptor occupancy and brain unbound fraction. Drug Metab Dispos. 2009, 37: 753-760. 10.1124/dmd.108.022814.PubMedCrossRef Watson J, Wright S, Lucas A, Clarke KL, Viggers J, Cheetham S, Jeffrey P, Porter R, Read KD: Receptor occupancy and brain unbound fraction. Drug Metab Dispos. 2009, 37: 753-760. 10.1124/dmd.108.022814.PubMedCrossRef
40.
go back to reference Abbott NJ, Rönnbäck L, Hansson E: Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006, 7: 41-53. 10.1038/nrn1824.PubMedCrossRef Abbott NJ, Rönnbäck L, Hansson E: Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006, 7: 41-53. 10.1038/nrn1824.PubMedCrossRef
41.
go back to reference Bernacki J, Dobrowolska A, Nierwińska K, Małecki A: Physiology and pharmacological role of the blood–brain barrier. Pharmacol Rep. 2008, 60: 600-622.PubMed Bernacki J, Dobrowolska A, Nierwińska K, Małecki A: Physiology and pharmacological role of the blood–brain barrier. Pharmacol Rep. 2008, 60: 600-622.PubMed
42.
go back to reference Cserr HF: Convection of brain interstitial fluid. Hydrocephalus. Edited by: Shapiro K, Marmarou A, Portnoy H. 1984, New York: Raven Press, 59-68. Cserr HF: Convection of brain interstitial fluid. Hydrocephalus. Edited by: Shapiro K, Marmarou A, Portnoy H. 1984, New York: Raven Press, 59-68.
43.
go back to reference Cserr HF, Bundgaard M: Blood–brain interfaces in vertebrates: a comparative approach. Am J Physiol. 1984, 246: R277-R288.PubMed Cserr HF, Bundgaard M: Blood–brain interfaces in vertebrates: a comparative approach. Am J Physiol. 1984, 246: R277-R288.PubMed
44.
go back to reference Davson H, Segal MB: Physiology of the CSF and blood–brain barriers. 1996, Boca Raton, FL: CRC Press Davson H, Segal MB: Physiology of the CSF and blood–brain barriers. 1996, Boca Raton, FL: CRC Press
45.
go back to reference Wijnholds J, de Lange ECM, Scheffer GL, van den Berg D-J, Mol CAAM, van der Valk M, Schinkel AH, Scheper RJ, Breimer DD, Borst P: Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood-cerebrospinal fluid barrier. J Clin Invest. 2000, 105: 279-285. 10.1172/JCI8267.PubMedCentralPubMedCrossRef Wijnholds J, de Lange ECM, Scheffer GL, van den Berg D-J, Mol CAAM, van der Valk M, Schinkel AH, Scheper RJ, Breimer DD, Borst P: Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood-cerebrospinal fluid barrier. J Clin Invest. 2000, 105: 279-285. 10.1172/JCI8267.PubMedCentralPubMedCrossRef
46.
go back to reference Choudhuri S, Cherrington NJ, Li N, Klaassen CD: Constitutive expression of various xenobiotic and endobiotic transporter mRNAs in the choroid plexus of rats. Drug Metab Dispos. 2003, 31: 1337-1345. 10.1124/dmd.31.11.1337.PubMedCrossRef Choudhuri S, Cherrington NJ, Li N, Klaassen CD: Constitutive expression of various xenobiotic and endobiotic transporter mRNAs in the choroid plexus of rats. Drug Metab Dispos. 2003, 31: 1337-1345. 10.1124/dmd.31.11.1337.PubMedCrossRef
47.
go back to reference De Lange ECM: Potential role of ABC transporters as a detoxification system at the blood-cerebrospinal fluid-barrier. Adv Drug Del Rev. 2004, 56: 1793-1809. 10.1016/j.addr.2004.07.009.CrossRef De Lange ECM: Potential role of ABC transporters as a detoxification system at the blood-cerebrospinal fluid-barrier. Adv Drug Del Rev. 2004, 56: 1793-1809. 10.1016/j.addr.2004.07.009.CrossRef
48.
go back to reference Johanson CE, Stopa EG, McMillan PN: The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol. 2011, 686: 101-131. 10.1007/978-1-60761-938-3_4.PubMedCrossRef Johanson CE, Stopa EG, McMillan PN: The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol. 2011, 686: 101-131. 10.1007/978-1-60761-938-3_4.PubMedCrossRef
49.
go back to reference Graff CL, Pollack G: Drug transport at the blood–brain barrier and the choroid plexus. Curr Drug Metab. 2004, 5: 95-108. 10.2174/1389200043489126.PubMedCrossRef Graff CL, Pollack G: Drug transport at the blood–brain barrier and the choroid plexus. Curr Drug Metab. 2004, 5: 95-108. 10.2174/1389200043489126.PubMedCrossRef
50.
go back to reference De Lange ECM: The physiological characteristics and transcytosis mechanisms of the blood–brain barrier. Curr Pharmaceutical Biotechnol. 2012, 13: 2319-2327. 10.2174/138920112803341860.CrossRef De Lange ECM: The physiological characteristics and transcytosis mechanisms of the blood–brain barrier. Curr Pharmaceutical Biotechnol. 2012, 13: 2319-2327. 10.2174/138920112803341860.CrossRef
51.
go back to reference Levin VA: Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem. 1980, 23: 682-684. 10.1021/jm00180a022.PubMedCrossRef Levin VA: Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem. 1980, 23: 682-684. 10.1021/jm00180a022.PubMedCrossRef
52.
go back to reference Greig NH, Momma S, Sweeney DJ, Smith QR, Rapoport SI: Facilitated transport of melphalan at the rat blood–brain barrier by the large neutral amino acid carrier system. Cancer Res. 1987, 47: 1571-1576.PubMed Greig NH, Momma S, Sweeney DJ, Smith QR, Rapoport SI: Facilitated transport of melphalan at the rat blood–brain barrier by the large neutral amino acid carrier system. Cancer Res. 1987, 47: 1571-1576.PubMed
53.
go back to reference Tsuji A, Tamai I: Carrier-mediated or specialized transport of drugs across the blood–brain barrier. Adv Drug Deliv Rev. 1999, 36: 277-290. 10.1016/S0169-409X(98)00084-2.PubMedCrossRef Tsuji A, Tamai I: Carrier-mediated or specialized transport of drugs across the blood–brain barrier. Adv Drug Deliv Rev. 1999, 36: 277-290. 10.1016/S0169-409X(98)00084-2.PubMedCrossRef
54.
go back to reference Gjedde A, Crone C: Biochemical modulation of blood–brain barrier permeability. Acta Neuropathol Suppl. 1983, 8: 59-74. 10.1007/978-3-642-68970-3_5.PubMedCrossRef Gjedde A, Crone C: Biochemical modulation of blood–brain barrier permeability. Acta Neuropathol Suppl. 1983, 8: 59-74. 10.1007/978-3-642-68970-3_5.PubMedCrossRef
55.
go back to reference Guillot FL, Audus KL, Raub TJ: Fluid-phase endocytosis by primary cultures of bovine brain microvessel endothelial cell monolayers. Microvasc Res. 1990, 39: 1-14. 10.1016/0026-2862(90)90055-V.PubMedCrossRef Guillot FL, Audus KL, Raub TJ: Fluid-phase endocytosis by primary cultures of bovine brain microvessel endothelial cell monolayers. Microvasc Res. 1990, 39: 1-14. 10.1016/0026-2862(90)90055-V.PubMedCrossRef
56.
go back to reference Gonatas JA, Steiber S, Olsnes Q, Gonatas NK: Pathways involved in fluid phase and adsorptive endocytosis in neuroblastoma. J Cell Biol. 1980, 87: 3579-3588.CrossRef Gonatas JA, Steiber S, Olsnes Q, Gonatas NK: Pathways involved in fluid phase and adsorptive endocytosis in neuroblastoma. J Cell Biol. 1980, 87: 3579-3588.CrossRef
57.
go back to reference Broadwell RD: Transcytosis of macromolecules through the blood–brain barrier: a cell biological perspective and critical appraisal. Acta Neuropathol Berlin. 1989, 79: 117-128. 10.1007/BF00294368.CrossRef Broadwell RD: Transcytosis of macromolecules through the blood–brain barrier: a cell biological perspective and critical appraisal. Acta Neuropathol Berlin. 1989, 79: 117-128. 10.1007/BF00294368.CrossRef
58.
59.
go back to reference Gonatas NK, Stieber A, Hickey WF, Herbert SH, Gonatas JO: Endosomes and Golgi vesicles in adsorptive and fluid phase endocytosis. J Cell Biol. 1984, 99: 1379-1390. 10.1083/jcb.99.4.1379.PubMedCrossRef Gonatas NK, Stieber A, Hickey WF, Herbert SH, Gonatas JO: Endosomes and Golgi vesicles in adsorptive and fluid phase endocytosis. J Cell Biol. 1984, 99: 1379-1390. 10.1083/jcb.99.4.1379.PubMedCrossRef
61.
go back to reference Pardridge WM: Receptor-mediated peptide transport through the blood–brain barrier. Endocrine Rev. 1986, 7: 314-330. 10.1210/edrv-7-3-314.CrossRef Pardridge WM: Receptor-mediated peptide transport through the blood–brain barrier. Endocrine Rev. 1986, 7: 314-330. 10.1210/edrv-7-3-314.CrossRef
62.
go back to reference Giacomini KM, Huang S-M, Tweedie DJ, Benet LZ, Brouwer KLR, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Wah Yee S, Zamek-Gliszczyncski MJ, Zhang L: Membrane transporters in drug development. Nat Rev Drug Discov. 2010, 9: 215-236. 10.1038/nrd3028.PubMedCrossRef Giacomini KM, Huang S-M, Tweedie DJ, Benet LZ, Brouwer KLR, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Wah Yee S, Zamek-Gliszczyncski MJ, Zhang L: Membrane transporters in drug development. Nat Rev Drug Discov. 2010, 9: 215-236. 10.1038/nrd3028.PubMedCrossRef
63.
go back to reference Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, Terasaki T: Quantitative targeted absolute proteomics of human blood–brain barrier transporters and receptors. J Neurochem. 2011, 117: 333-345. 10.1111/j.1471-4159.2011.07208.x.PubMedCrossRef Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, Terasaki T: Quantitative targeted absolute proteomics of human blood–brain barrier transporters and receptors. J Neurochem. 2011, 117: 333-345. 10.1111/j.1471-4159.2011.07208.x.PubMedCrossRef
64.
go back to reference Begley DJ: ABC transporters and the blood–brain barrier. Curr Pharm Des. 2004, 10: 1295-1312. 10.2174/1381612043384844.PubMedCrossRef Begley DJ: ABC transporters and the blood–brain barrier. Curr Pharm Des. 2004, 10: 1295-1312. 10.2174/1381612043384844.PubMedCrossRef
65.
go back to reference De Boer AG, van der Sandt I, Gaillard PJ: The role of drug transporters at the blood–brain barrier. Annu Rev Pharmacol Toxicol. 2003, 43: 629-656. 10.1146/annurev.pharmtox.43.100901.140204.PubMedCrossRef De Boer AG, van der Sandt I, Gaillard PJ: The role of drug transporters at the blood–brain barrier. Annu Rev Pharmacol Toxicol. 2003, 43: 629-656. 10.1146/annurev.pharmtox.43.100901.140204.PubMedCrossRef
66.
go back to reference Kusuhara H, Sugiyama Y: Efflux transport systems for organic anions and cations at the blood-CSF barrier. Adv Drug Del Rev. 2004, 56: 1741-1763. 10.1016/j.addr.2004.07.007.CrossRef Kusuhara H, Sugiyama Y: Efflux transport systems for organic anions and cations at the blood-CSF barrier. Adv Drug Del Rev. 2004, 56: 1741-1763. 10.1016/j.addr.2004.07.007.CrossRef
67.
go back to reference Kusuhara H, Sugiyama Y: Active efflux across the blood–brain barrier: role of the solute carrier family. NeuroRx. 2005, 2: 73-85. 10.1602/neurorx.2.1.73.PubMedCentralPubMedCrossRef Kusuhara H, Sugiyama Y: Active efflux across the blood–brain barrier: role of the solute carrier family. NeuroRx. 2005, 2: 73-85. 10.1602/neurorx.2.1.73.PubMedCentralPubMedCrossRef
68.
go back to reference Lee G, Dallas S, Hong M, Bendayan R: Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev. 2001, 53: 569-596.PubMedCrossRef Lee G, Dallas S, Hong M, Bendayan R: Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev. 2001, 53: 569-596.PubMedCrossRef
69.
go back to reference Löscher W, Potschka H: Blood–brain barrier active efflux transporters: ATP-binding cassette gene family. Nat Rev Neurosci. 2005, 6: 591-602.PubMedCrossRef Löscher W, Potschka H: Blood–brain barrier active efflux transporters: ATP-binding cassette gene family. Nat Rev Neurosci. 2005, 6: 591-602.PubMedCrossRef
70.
go back to reference Girardin F: Membrane transporter proteins: a challenge for CNS drug development. Dialogues Clin Neurosci. 2006, 8: 311-321.PubMedCentralPubMed Girardin F: Membrane transporter proteins: a challenge for CNS drug development. Dialogues Clin Neurosci. 2006, 8: 311-321.PubMedCentralPubMed
71.
go back to reference Schinkel AH, Smit JJM, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, Mol CAAM, van der Valk MA, Robanus-Maandag EC, te Riele HPJ, Berns AJM, Borst P: Disruption of the Mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood–brain barrier and to increased sensitivity to drugs. Cell. 1994, 77: 491-502. 10.1016/0092-8674(94)90212-7.PubMedCrossRef Schinkel AH, Smit JJM, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, Mol CAAM, van der Valk MA, Robanus-Maandag EC, te Riele HPJ, Berns AJM, Borst P: Disruption of the Mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood–brain barrier and to increased sensitivity to drugs. Cell. 1994, 77: 491-502. 10.1016/0092-8674(94)90212-7.PubMedCrossRef
72.
go back to reference Uchida Y, Ohtsuki S, Kamiie J, Terasaki T: Blood–brain barrier [BBB] pharmacoproteomics [PPx]: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice. J Pharmacol Exp Ther. 2012, 339: 579-588.CrossRef Uchida Y, Ohtsuki S, Kamiie J, Terasaki T: Blood–brain barrier [BBB] pharmacoproteomics [PPx]: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice. J Pharmacol Exp Ther. 2012, 339: 579-588.CrossRef
73.
go back to reference Borst P, Evers R, Kool M, Wijnholds J: A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst. 2000, 92: 1295-1302. 10.1093/jnci/92.16.1295.PubMedCrossRef Borst P, Evers R, Kool M, Wijnholds J: A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst. 2000, 92: 1295-1302. 10.1093/jnci/92.16.1295.PubMedCrossRef
74.
go back to reference Enokizono J, Kusuhara H, Ose A, Schinkel AH, Sugiyama Y: Quantitative investigation of the role of breast cancer resistance protein [bcrp/Abcg2] in limiting brain and testis penetration of xenobiotic compounds. Drug Metab. Disp. 2008, 36: 995-1002. 10.1124/dmd.107.019257.CrossRef Enokizono J, Kusuhara H, Ose A, Schinkel AH, Sugiyama Y: Quantitative investigation of the role of breast cancer resistance protein [bcrp/Abcg2] in limiting brain and testis penetration of xenobiotic compounds. Drug Metab. Disp. 2008, 36: 995-1002. 10.1124/dmd.107.019257.CrossRef
75.
go back to reference Borst P, Elferink RO: Mammalian ABC transporters in health and disease. Annu Rev Biochem. 2002, 71: 537-592. 10.1146/annurev.biochem.71.102301.093055.PubMedCrossRef Borst P, Elferink RO: Mammalian ABC transporters in health and disease. Annu Rev Biochem. 2002, 71: 537-592. 10.1146/annurev.biochem.71.102301.093055.PubMedCrossRef
76.
go back to reference Fenstermacher JD, Wei L, Acuff V, Lin SZ, Chen JL, Bereczki D, Otsuka T, Nakata H, Tajima A, Hans FJ, Ghersi-Egea JF, Finnegan W, Richardson G, Haspel H, Patlak C: The dependency of influx across the blood–brain barrier on blood flow and the apparent flow-independence of glucose influx during stress. New Concepts of a Blood–Brain Barrier. Edited by: Greenwood J, Begley DJ, Segal MB. 1995, New York, London: Plenum Press, 89-101.CrossRef Fenstermacher JD, Wei L, Acuff V, Lin SZ, Chen JL, Bereczki D, Otsuka T, Nakata H, Tajima A, Hans FJ, Ghersi-Egea JF, Finnegan W, Richardson G, Haspel H, Patlak C: The dependency of influx across the blood–brain barrier on blood flow and the apparent flow-independence of glucose influx during stress. New Concepts of a Blood–Brain Barrier. Edited by: Greenwood J, Begley DJ, Segal MB. 1995, New York, London: Plenum Press, 89-101.CrossRef
77.
go back to reference Faraci FM: Endothelium-derived vasoactive factors and regulation of the cerebral circulation. Neurosurg. 1993, 33: 648-659. 10.1227/00006123-199310000-00014.CrossRef Faraci FM: Endothelium-derived vasoactive factors and regulation of the cerebral circulation. Neurosurg. 1993, 33: 648-659. 10.1227/00006123-199310000-00014.CrossRef
78.
go back to reference Brown PD, Davies SL, Speake T, Millar ID: Molecular mechanisms of cerebrospinal fluid production. Neurosci. 2004, 129: 957-970.CrossRef Brown PD, Davies SL, Speake T, Millar ID: Molecular mechanisms of cerebrospinal fluid production. Neurosci. 2004, 129: 957-970.CrossRef
79.
go back to reference Davson H, Segal MB: The effects of some inhibitors and accelerators of sodium transport on the turnover of 22Na in the cerebrospinal fluid and the brain. J Physiol. 1970, 209: 139-153.CrossRef Davson H, Segal MB: The effects of some inhibitors and accelerators of sodium transport on the turnover of 22Na in the cerebrospinal fluid and the brain. J Physiol. 1970, 209: 139-153.CrossRef
80.
go back to reference Proescholdt MG, Hutto B, Brady LS, Herkenham M: Studies of cerebrospinal fluid flow and penetration into brain following lateral ventricle and cisterna magna injections of the tracer [14C]inulin in rat. Neurosci. 2000, 95: 577-592.CrossRef Proescholdt MG, Hutto B, Brady LS, Herkenham M: Studies of cerebrospinal fluid flow and penetration into brain following lateral ventricle and cisterna magna injections of the tracer [14C]inulin in rat. Neurosci. 2000, 95: 577-592.CrossRef
81.
go back to reference Abbott NJ: Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004, 45: 545-552. 10.1016/j.neuint.2003.11.006.PubMedCrossRef Abbott NJ: Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004, 45: 545-552. 10.1016/j.neuint.2003.11.006.PubMedCrossRef
82.
go back to reference Del Bigio MR: The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia. 1995, 14: 1-13. 10.1002/glia.440140102.PubMedCrossRef Del Bigio MR: The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia. 1995, 14: 1-13. 10.1002/glia.440140102.PubMedCrossRef
83.
go back to reference Kalvass JC, Maurer TS: Influence of nonspecific brain and plasma binding of CNS exposure: implications for rational drug discovery. Biopharm Drug Dispos. 2002, 23: 327-338. 10.1002/bdd.325.PubMedCrossRef Kalvass JC, Maurer TS: Influence of nonspecific brain and plasma binding of CNS exposure: implications for rational drug discovery. Biopharm Drug Dispos. 2002, 23: 327-338. 10.1002/bdd.325.PubMedCrossRef
84.
go back to reference Marroni M, Marchi N, Cucullo L, Abbott NJ, Signorelli K, Janigro D: Vascular and parenchymal mechanisms in multiple drug resistance: a lesson from human epilepsy. Curr Drug Targets. 2003, 4: 297-304. 10.2174/1389450033491109.PubMedCrossRef Marroni M, Marchi N, Cucullo L, Abbott NJ, Signorelli K, Janigro D: Vascular and parenchymal mechanisms in multiple drug resistance: a lesson from human epilepsy. Curr Drug Targets. 2003, 4: 297-304. 10.2174/1389450033491109.PubMedCrossRef
85.
go back to reference Hammarlund-Udenaes M: Active-site concentrations of chemicals – are they a better predictor of effect than plasma/organ/tissue concentrations?. Basic Clin Pharmacol Toxicol. 2009, 106: 215-220.PubMedCrossRef Hammarlund-Udenaes M: Active-site concentrations of chemicals – are they a better predictor of effect than plasma/organ/tissue concentrations?. Basic Clin Pharmacol Toxicol. 2009, 106: 215-220.PubMedCrossRef
86.
go back to reference Minn A, Ghersi-Egea JF, Perrin R, Leininger B, Siest G: Drug metabolizing enzymes in the brain and cerebral microvessels. Brain Res. 1991, 16: 65-82. 10.1016/0165-0173(91)90020-9.CrossRef Minn A, Ghersi-Egea JF, Perrin R, Leininger B, Siest G: Drug metabolizing enzymes in the brain and cerebral microvessels. Brain Res. 1991, 16: 65-82. 10.1016/0165-0173(91)90020-9.CrossRef
87.
go back to reference Ghersi-Egea J-F, Perrin R, Leininger-Muller B, Grassiot M-C, Jeandel C, Floquet J, Cuny G, Siest G, Minn A: Subcellular localization of cytochrome P450, and activities of several enzymes responsible for drug metabolism in the human brain. Biochem Pharmacol. 1993, 45: 647-658.PubMedCrossRef Ghersi-Egea J-F, Perrin R, Leininger-Muller B, Grassiot M-C, Jeandel C, Floquet J, Cuny G, Siest G, Minn A: Subcellular localization of cytochrome P450, and activities of several enzymes responsible for drug metabolism in the human brain. Biochem Pharmacol. 1993, 45: 647-658.PubMedCrossRef
88.
go back to reference Ghersi-Egea JF, Leininger-Muller B, Suleman G, Siest G, Minn A: Localization of drug-metabolizing enzyme activities to blood–brain interfaces and circumventricular organs. J Neurochem. 1994, 62: 1089-1096.PubMedCrossRef Ghersi-Egea JF, Leininger-Muller B, Suleman G, Siest G, Minn A: Localization of drug-metabolizing enzyme activities to blood–brain interfaces and circumventricular organs. J Neurochem. 1994, 62: 1089-1096.PubMedCrossRef
89.
go back to reference Shawahna R, Uchida Y, Declèves X, Ohtsuki S, Yousif S, Dauchy S, Jacob A, Chassoux F, Daumas-Duport C, Couraud PO, Terasaki T, Scherrmann JM: Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm. 2011, 8: 1332-1341. 10.1021/mp200129p.PubMedCrossRef Shawahna R, Uchida Y, Declèves X, Ohtsuki S, Yousif S, Dauchy S, Jacob A, Chassoux F, Daumas-Duport C, Couraud PO, Terasaki T, Scherrmann JM: Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm. 2011, 8: 1332-1341. 10.1021/mp200129p.PubMedCrossRef
90.
go back to reference Yassen A, Olofsen E, van Dorp E, Sarton E, Teppema L, Danhof M, Dahan A: Mechanism-based pharmacokinetic-pharmacodynamic modelling of the reversal of buprenorphine-induced respiratory depression by naloxone: a study in healthy volunteers. Clin Pharmacokinet. 2007, 46: 965-980. 10.2165/00003088-200746110-00004.PubMedCrossRef Yassen A, Olofsen E, van Dorp E, Sarton E, Teppema L, Danhof M, Dahan A: Mechanism-based pharmacokinetic-pharmacodynamic modelling of the reversal of buprenorphine-induced respiratory depression by naloxone: a study in healthy volunteers. Clin Pharmacokinet. 2007, 46: 965-980. 10.2165/00003088-200746110-00004.PubMedCrossRef
91.
go back to reference Castañeda-Hernández G, Granados-Soto V: Considerations on pharmacodynamics and pharmacokinetics: can everything be explained by the extent of drug binding to its receptor?. Can J Physiol Pharmacol. 2000, 78: 199-207. 10.1139/y99-134.PubMedCrossRef Castañeda-Hernández G, Granados-Soto V: Considerations on pharmacodynamics and pharmacokinetics: can everything be explained by the extent of drug binding to its receptor?. Can J Physiol Pharmacol. 2000, 78: 199-207. 10.1139/y99-134.PubMedCrossRef
92.
go back to reference Karssen AM, Meijer OC, van der Sandt IC, Lucassen PJ, de Lange EC, de Boer AG, de Kloet ER: Multidrug resistance P-glycoprotein hampers the access of cortisol but not of corticosterone to mouse and human brain. Endocrinol. 2001, 142: 2686-2694. 10.1210/en.142.6.2686.CrossRef Karssen AM, Meijer OC, van der Sandt IC, Lucassen PJ, de Lange EC, de Boer AG, de Kloet ER: Multidrug resistance P-glycoprotein hampers the access of cortisol but not of corticosterone to mouse and human brain. Endocrinol. 2001, 142: 2686-2694. 10.1210/en.142.6.2686.CrossRef
93.
go back to reference Marzolini C, Paus E, Buclin T, Kim RB: Polymorphisms in human MDR1 [P-glycoprotein]: recent advances and clinical relevance. Clin Pharmacol Ther. 2004, 75: 13-33. 10.1016/j.clpt.2003.09.012.PubMedCrossRef Marzolini C, Paus E, Buclin T, Kim RB: Polymorphisms in human MDR1 [P-glycoprotein]: recent advances and clinical relevance. Clin Pharmacol Ther. 2004, 75: 13-33. 10.1016/j.clpt.2003.09.012.PubMedCrossRef
94.
go back to reference Lee MS: Role of genetic polymorphisms related to neurotransmitters and cytochrome P-450 enzymes in response to antidepressants. Drugs Today (Barc). 2007, 43: 569-581. 10.1358/dot.2007.43.8.1130447.CrossRef Lee MS: Role of genetic polymorphisms related to neurotransmitters and cytochrome P-450 enzymes in response to antidepressants. Drugs Today (Barc). 2007, 43: 569-581. 10.1358/dot.2007.43.8.1130447.CrossRef
95.
go back to reference Swan GE, Lessov-Schlaggar CN, Krasnow RE, Wilhelmsen KC, Jacob P, Benowitz NL: Genetic and environmental sources of variation in heart rate response to infused nicotine in twins. Cancer Epidemiol Biomarkers Prev. 2007, 16: 1057-1064. 10.1158/1055-9965.EPI-06-1093.PubMedCrossRef Swan GE, Lessov-Schlaggar CN, Krasnow RE, Wilhelmsen KC, Jacob P, Benowitz NL: Genetic and environmental sources of variation in heart rate response to infused nicotine in twins. Cancer Epidemiol Biomarkers Prev. 2007, 16: 1057-1064. 10.1158/1055-9965.EPI-06-1093.PubMedCrossRef
96.
go back to reference Xia CQ, Xiao G, Liu N, Pimprale S, Fox L, Patten CJ, Crespi CL, Miwa G, Gan LS: Comparison of species differences of P-glycoproteins in beagle dog, rhesus monkey, and human using Atpase activity assays. Mol Pharm. 2006, 3: 78-86. 10.1021/mp050034j.PubMedCrossRef Xia CQ, Xiao G, Liu N, Pimprale S, Fox L, Patten CJ, Crespi CL, Miwa G, Gan LS: Comparison of species differences of P-glycoproteins in beagle dog, rhesus monkey, and human using Atpase activity assays. Mol Pharm. 2006, 3: 78-86. 10.1021/mp050034j.PubMedCrossRef
97.
go back to reference Suzuyama N, Katoh M, Takeuchi T, Yoshitomi S, Higuchi T, Asashi S, Yokoi T: Species differences of inhibitory effects on P-glycoprotein-mediated drug transport. J Pharm Sci. 2007, 96: 1609-1618. 10.1002/jps.20787.PubMedCrossRef Suzuyama N, Katoh M, Takeuchi T, Yoshitomi S, Higuchi T, Asashi S, Yokoi T: Species differences of inhibitory effects on P-glycoprotein-mediated drug transport. J Pharm Sci. 2007, 96: 1609-1618. 10.1002/jps.20787.PubMedCrossRef
98.
go back to reference Krause DN, Duckles SP, Pelligrino DA: Influence of sex steroid hormones on cerebrovascular function. J Appl Physiol. 2006, 101: 1252-1261. 10.1152/japplphysiol.01095.2005.PubMedCrossRef Krause DN, Duckles SP, Pelligrino DA: Influence of sex steroid hormones on cerebrovascular function. J Appl Physiol. 2006, 101: 1252-1261. 10.1152/japplphysiol.01095.2005.PubMedCrossRef
99.
go back to reference Shulman LM: Gender differences in Parkinson’s disease. Gend Med. 2007, 4: 8-18. 10.1016/S1550-8579(07)80003-9.PubMedCrossRef Shulman LM: Gender differences in Parkinson’s disease. Gend Med. 2007, 4: 8-18. 10.1016/S1550-8579(07)80003-9.PubMedCrossRef
100.
go back to reference Gründer G, Wetzel H, Schlösser R, Anghelescu I, Hillert A, Lange K, Hiemke C, Benkert O: Neuroendocrine response to antipsychotics: effects of drug type and gender. Biol Psychiat. 1999, 45: 89-97. 10.1016/S0006-3223(98)00125-5.PubMedCrossRef Gründer G, Wetzel H, Schlösser R, Anghelescu I, Hillert A, Lange K, Hiemke C, Benkert O: Neuroendocrine response to antipsychotics: effects of drug type and gender. Biol Psychiat. 1999, 45: 89-97. 10.1016/S0006-3223(98)00125-5.PubMedCrossRef
101.
go back to reference Pleym H, Spigset O, Kharasch ED, Dale O: Gender differences in drug effects: implications for anesthesiologists. Acta Anaesthesiol Scand. 2003, 47: 241-259. 10.1034/j.1399-6576.2003.00036.x.PubMedCrossRef Pleym H, Spigset O, Kharasch ED, Dale O: Gender differences in drug effects: implications for anesthesiologists. Acta Anaesthesiol Scand. 2003, 47: 241-259. 10.1034/j.1399-6576.2003.00036.x.PubMedCrossRef
102.
go back to reference Bauer M, Karch R, Neumann F, Abrahim A, Wagner CC, Kletter K, Müller M, Zeitlinger M, Langer O: Age dependency of cerebral P-gp function measured with [R]-[11C]verapamil and PET. Eur J Clin Pharmacol. 2009, 65: 941-946. 10.1007/s00228-009-0709-5.PubMedCentralPubMedCrossRef Bauer M, Karch R, Neumann F, Abrahim A, Wagner CC, Kletter K, Müller M, Zeitlinger M, Langer O: Age dependency of cerebral P-gp function measured with [R]-[11C]verapamil and PET. Eur J Clin Pharmacol. 2009, 65: 941-946. 10.1007/s00228-009-0709-5.PubMedCentralPubMedCrossRef
103.
go back to reference Sharma R, Timiras PS: Age-dependent activation of glucocorticoid receptors in the cerebral hemispheres of male rats. Brain Res. 1987, 433: 285-287.PubMedCrossRef Sharma R, Timiras PS: Age-dependent activation of glucocorticoid receptors in the cerebral hemispheres of male rats. Brain Res. 1987, 433: 285-287.PubMedCrossRef
104.
go back to reference Magnusson KR, Brim BL, Das SR: Selective vulnerabilities of N-methyl-D-aspartate (NMDA) receptors during brain aging. Front Aging Neurosci. 2010, 19 (2): 11- Magnusson KR, Brim BL, Das SR: Selective vulnerabilities of N-methyl-D-aspartate (NMDA) receptors during brain aging. Front Aging Neurosci. 2010, 19 (2): 11-
105.
go back to reference Gagliese L, Melzack R: Age differences in nociception and pain behaviours in the rat. Neurosci Biobehav Rev. 2000, 24: 843-854. 10.1016/S0149-7634(00)00041-5.PubMedCrossRef Gagliese L, Melzack R: Age differences in nociception and pain behaviours in the rat. Neurosci Biobehav Rev. 2000, 24: 843-854. 10.1016/S0149-7634(00)00041-5.PubMedCrossRef
106.
go back to reference Strong R: Neurochemical changes in the aging human brain: implications for behavioral impairment and neurodegenerative disease. Geriatrics. 1998, 53 (Suppl 1): S9-S12.PubMed Strong R: Neurochemical changes in the aging human brain: implications for behavioral impairment and neurodegenerative disease. Geriatrics. 1998, 53 (Suppl 1): S9-S12.PubMed
107.
go back to reference Mulder M, Blokland A, van den Berg DJ, Schulten H, Bakker AH, Terwel D, Honig W, de Kloet ER, Havekes LM, Steinbusch HW, de Lange EC: Apolipoprotein E protects against neuropathology induced by a high-fat diet and maintains the integrity of the blood–brain barrier during aging. Lab Invest. 2001, 81: 953-960. 10.1038/labinvest.3780307.PubMedCrossRef Mulder M, Blokland A, van den Berg DJ, Schulten H, Bakker AH, Terwel D, Honig W, de Kloet ER, Havekes LM, Steinbusch HW, de Lange EC: Apolipoprotein E protects against neuropathology induced by a high-fat diet and maintains the integrity of the blood–brain barrier during aging. Lab Invest. 2001, 81: 953-960. 10.1038/labinvest.3780307.PubMedCrossRef
108.
go back to reference Ho L, Chen LH, Wang J, Zhao W, Talcott ST, Ono K, Teplow D, Humala N, Cheng A, Percival SS, Ferruzzi M, Janle E, Dickstein DL, Pasinetti GM: Heterogeneity in red wine polyphenolic contents differentially influences Alzheimer’s disease-type neuropathology and cognitive deterioration. J Alzheimers Dis. 2009, 16: 59-72.PubMedCentralPubMed Ho L, Chen LH, Wang J, Zhao W, Talcott ST, Ono K, Teplow D, Humala N, Cheng A, Percival SS, Ferruzzi M, Janle E, Dickstein DL, Pasinetti GM: Heterogeneity in red wine polyphenolic contents differentially influences Alzheimer’s disease-type neuropathology and cognitive deterioration. J Alzheimers Dis. 2009, 16: 59-72.PubMedCentralPubMed
109.
go back to reference Clinckers R, Smolders I, Michotte Y, Ebinger G, Danhof M, Voskuyl RA, Della Pasqua O: Impact of efflux transporters and of seizures on the pharmacokinetics of oxcarbazepine metabolite in the rat brain. Br J Pharmacol. 2008, 155: 1127-1138.PubMedCentralPubMedCrossRef Clinckers R, Smolders I, Michotte Y, Ebinger G, Danhof M, Voskuyl RA, Della Pasqua O: Impact of efflux transporters and of seizures on the pharmacokinetics of oxcarbazepine metabolite in the rat brain. Br J Pharmacol. 2008, 155: 1127-1138.PubMedCentralPubMedCrossRef
110.
go back to reference Bolwig TG, Hertz MM, Paulson OB, Spotoft H, Rafaelsen OJ: The permeability of the blood–brain barrier during electrically induced seizures in man. Eur J Clin Invest. 1977, 7: 87-93. 10.1111/j.1365-2362.1977.tb01578.x.PubMedCrossRef Bolwig TG, Hertz MM, Paulson OB, Spotoft H, Rafaelsen OJ: The permeability of the blood–brain barrier during electrically induced seizures in man. Eur J Clin Invest. 1977, 7: 87-93. 10.1111/j.1365-2362.1977.tb01578.x.PubMedCrossRef
111.
go back to reference Langford D, Grigorian A, Hurford R, Adame A, Ellis RJ, Hansen L, Masliah E: Altered P-gp expression in AIDS patients with HIV encephalitis. J Neuropathol Exp Neurol. 2004, 63: 1038-1047.PubMedCrossRef Langford D, Grigorian A, Hurford R, Adame A, Ellis RJ, Hansen L, Masliah E: Altered P-gp expression in AIDS patients with HIV encephalitis. J Neuropathol Exp Neurol. 2004, 63: 1038-1047.PubMedCrossRef
112.
go back to reference Tunblad K, Ederoth P, Gardenfors A, Hammarlund-Udenaes M, Nordstrom CH: Altered brain exposure of morphine in experimental meningitis studied with microdialysis. Acta Anaesthesiol Scand. 2004, 48: 294-301. 10.1111/j.0001-5172.2003.0311.x.PubMedCrossRef Tunblad K, Ederoth P, Gardenfors A, Hammarlund-Udenaes M, Nordstrom CH: Altered brain exposure of morphine in experimental meningitis studied with microdialysis. Acta Anaesthesiol Scand. 2004, 48: 294-301. 10.1111/j.0001-5172.2003.0311.x.PubMedCrossRef
113.
go back to reference Ravenstijn PG, Merlini M, Hameetman M, Murray TK, Ward MA, Lewis H, Ball G, Mottart C, de Ville de Goyet C, Lemarchand T, van Belle K, O’Neill MJ, Danhof M, De Lange EC: The exploration of rotenone as a toxin for inducing Parkinson’s disease in rats, for application in BBB transport and PK-PD experiments. J Pharmacol Toxicol Meth. 2007, 57: 114-130.CrossRef Ravenstijn PG, Merlini M, Hameetman M, Murray TK, Ward MA, Lewis H, Ball G, Mottart C, de Ville de Goyet C, Lemarchand T, van Belle K, O’Neill MJ, Danhof M, De Lange EC: The exploration of rotenone as a toxin for inducing Parkinson’s disease in rats, for application in BBB transport and PK-PD experiments. J Pharmacol Toxicol Meth. 2007, 57: 114-130.CrossRef
114.
go back to reference Ravenstijn PGM, Drenth H, Baatje MS, O’Neill MJ, Danhof M, de Lange ECM: Evaluation of BBB transport and CNS drug metabolism in diseased and control brain after intravenous L-DOPA in a unilateral rat model of Parkinson’s disease. Fluids Barriers CNS. 2012, 9: 4-10.1186/2045-8118-9-4.PubMedCentralPubMedCrossRef Ravenstijn PGM, Drenth H, Baatje MS, O’Neill MJ, Danhof M, de Lange ECM: Evaluation of BBB transport and CNS drug metabolism in diseased and control brain after intravenous L-DOPA in a unilateral rat model of Parkinson’s disease. Fluids Barriers CNS. 2012, 9: 4-10.1186/2045-8118-9-4.PubMedCentralPubMedCrossRef
115.
go back to reference Cleton A, Odman J, Van der Graaf PH, Ghijsen W, Voskuyl R, Danhof M: Mechanism-based modeling of functional adaptation upon chronic treatment with midazolam. Pharm Res. 2000, 17: 321-327. 10.1023/A:1007505223519.PubMedCrossRef Cleton A, Odman J, Van der Graaf PH, Ghijsen W, Voskuyl R, Danhof M: Mechanism-based modeling of functional adaptation upon chronic treatment with midazolam. Pharm Res. 2000, 17: 321-327. 10.1023/A:1007505223519.PubMedCrossRef
116.
go back to reference Tel BC, Zeng BY, Cannizzaro C, Pearce RK, Rose S, Jenner P: Alterations in striatal neuropeptide mRNA produced by repeated administration of L-DOPA, ropinirole or bromocriptine correlate with dyskinesia induction in MPTP-treated common marmosets. Neurosci. 2002, 115: 1047-1058. 10.1016/S0306-4522(02)00535-3.CrossRef Tel BC, Zeng BY, Cannizzaro C, Pearce RK, Rose S, Jenner P: Alterations in striatal neuropeptide mRNA produced by repeated administration of L-DOPA, ropinirole or bromocriptine correlate with dyskinesia induction in MPTP-treated common marmosets. Neurosci. 2002, 115: 1047-1058. 10.1016/S0306-4522(02)00535-3.CrossRef
117.
go back to reference Vinkers CH, van Oorschot R, Nielsen EØ, Cook JM, Hansen HH, Groenink L, Olivier B, Mirza NR: GABA(A) receptor α subunits differentially contribute to diazepam tolerance after chronic treatment. PLoS One. 2012, 7: e43054-10.1371/journal.pone.0043054.PubMedCentralPubMedCrossRef Vinkers CH, van Oorschot R, Nielsen EØ, Cook JM, Hansen HH, Groenink L, Olivier B, Mirza NR: GABA(A) receptor α subunits differentially contribute to diazepam tolerance after chronic treatment. PLoS One. 2012, 7: e43054-10.1371/journal.pone.0043054.PubMedCentralPubMedCrossRef
118.
go back to reference Lee M, Silverman SM, Hansen H, Patel VB, Manchikanti L: A comprehensive review of opioid-induced hyperalgesia. Pain Physician. 2011, 14: 145-161.PubMed Lee M, Silverman SM, Hansen H, Patel VB, Manchikanti L: A comprehensive review of opioid-induced hyperalgesia. Pain Physician. 2011, 14: 145-161.PubMed
119.
go back to reference Boxenbaum H: Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokin Biopharm. 1982, 10: 201-227. 10.1007/BF01062336.CrossRef Boxenbaum H: Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokin Biopharm. 1982, 10: 201-227. 10.1007/BF01062336.CrossRef
120.
go back to reference Ings RMJ: Interspecies scaling and comparisons in drug development and toxicogenetics. Xenobiotica. 1990, 20: 1201-1231. 10.3109/00498259009046839.PubMedCrossRef Ings RMJ: Interspecies scaling and comparisons in drug development and toxicogenetics. Xenobiotica. 1990, 20: 1201-1231. 10.3109/00498259009046839.PubMedCrossRef
121.
go back to reference Mahmood I, Balian JD: The pharmacokinetic principles behind scaling from preclinical results to phase I protocols. Clin Pharmacokin. 1999, 36: 1-11.CrossRef Mahmood I, Balian JD: The pharmacokinetic principles behind scaling from preclinical results to phase I protocols. Clin Pharmacokin. 1999, 36: 1-11.CrossRef
122.
go back to reference Bonati M, Latini R, Tognini G, Young JF, Garattini S: Interspecies comparison of in vivo caffeine pharmacokinetics in man, monkey, rabbit, rat and mouse. Drug Metab Rev. 1984, 15: 1355-1383. 10.3109/03602538409029964.PubMedCrossRef Bonati M, Latini R, Tognini G, Young JF, Garattini S: Interspecies comparison of in vivo caffeine pharmacokinetics in man, monkey, rabbit, rat and mouse. Drug Metab Rev. 1984, 15: 1355-1383. 10.3109/03602538409029964.PubMedCrossRef
123.
go back to reference Van Steeg T, Krekels EHJ, Danhof M, de Lange ECM: Experimental alteration of serum AGP and albumin concentrations in the Rat, an approach to assess the impact of changes in serum protein binding on pharmacodynamics. J Pharmacol Toxicol Meth. 2007, 56: 72-78. 10.1016/j.vascn.2007.02.002.CrossRef Van Steeg T, Krekels EHJ, Danhof M, de Lange ECM: Experimental alteration of serum AGP and albumin concentrations in the Rat, an approach to assess the impact of changes in serum protein binding on pharmacodynamics. J Pharmacol Toxicol Meth. 2007, 56: 72-78. 10.1016/j.vascn.2007.02.002.CrossRef
124.
go back to reference Van Steeg T, Krekels EHJ, Freijer J, Danhof M, de Lange ECM: Effect of altered AGP plasma binding on heart rate changes by S[−]-propranolol in rats using mechanism-based estimations of in vivo receptor affinity [KB, vivo]. J Pharm Sci. 2010, 99: 2511-2520.PubMedCrossRef Van Steeg T, Krekels EHJ, Freijer J, Danhof M, de Lange ECM: Effect of altered AGP plasma binding on heart rate changes by S[−]-propranolol in rats using mechanism-based estimations of in vivo receptor affinity [KB, vivo]. J Pharm Sci. 2010, 99: 2511-2520.PubMedCrossRef
125.
go back to reference Fox E, Bates SE: Tariquidar [XR9576]: a P-glycoprotein drug efflux pump inhibitor. Expert Rev Anticancer Ther. 2007, 7: 447-459. 10.1586/14737140.7.4.447.PubMedCrossRef Fox E, Bates SE: Tariquidar [XR9576]: a P-glycoprotein drug efflux pump inhibitor. Expert Rev Anticancer Ther. 2007, 7: 447-459. 10.1586/14737140.7.4.447.PubMedCrossRef
126.
go back to reference Furchgott RF: The use of β-haloalkylamines in the differentiation of receptors and in the determination of dissociation constants of receptor-agonist complexes. Adv Drug Res. 1966, 3: 21-55. Furchgott RF: The use of β-haloalkylamines in the differentiation of receptors and in the determination of dissociation constants of receptor-agonist complexes. Adv Drug Res. 1966, 3: 21-55.
127.
go back to reference Garrido M, Gubbens-Stibbe J, Tukker E, Cox E, von Frijtag J, Künzel D, IJzerman A, Danhof M, van der Graaf PH: Pharmacokinetic-pharmacodynamic analysis of the EEG effect of alfentanil in rats following beta-funaltrexamine-induced mu-opioid receptor “knockdown” in vivo. Pharm Res. 2000, 17: 653-659. 10.1023/A:1007513812018.PubMedCrossRef Garrido M, Gubbens-Stibbe J, Tukker E, Cox E, von Frijtag J, Künzel D, IJzerman A, Danhof M, van der Graaf PH: Pharmacokinetic-pharmacodynamic analysis of the EEG effect of alfentanil in rats following beta-funaltrexamine-induced mu-opioid receptor “knockdown” in vivo. Pharm Res. 2000, 17: 653-659. 10.1023/A:1007513812018.PubMedCrossRef
128.
go back to reference Syvänen S, Schenke M, van den Berg D-J, Voskuyl RA, de Lange ECM: Alteration in P-glycoprotein functionality affects intrabrain distribution of quinidine more than brain entry – a study in rats subjected to status epilepticus by kainate. AAPS J. 2012, 14: 87-96. 10.1208/s12248-011-9318-1.PubMedCentralPubMedCrossRef Syvänen S, Schenke M, van den Berg D-J, Voskuyl RA, de Lange ECM: Alteration in P-glycoprotein functionality affects intrabrain distribution of quinidine more than brain entry – a study in rats subjected to status epilepticus by kainate. AAPS J. 2012, 14: 87-96. 10.1208/s12248-011-9318-1.PubMedCentralPubMedCrossRef
129.
go back to reference Gabrielsson J, Green AR: Quantitative pharmacology or pharmacokinetic pharmacodynamic integration should Be a vital component in integrative pharmacology. J Pharmacol Exp Ther. 2009, 331: 767-774. 10.1124/jpet.109.157172.PubMedCrossRef Gabrielsson J, Green AR: Quantitative pharmacology or pharmacokinetic pharmacodynamic integration should Be a vital component in integrative pharmacology. J Pharmacol Exp Ther. 2009, 331: 767-774. 10.1124/jpet.109.157172.PubMedCrossRef
130.
go back to reference Breimer DD, Danhof M: Relevance of the application of pharmacokinetic-pharmacodynamic modelling concepts in drug development. The ‘wooden shoe’ paradigm. Clin Pharmacokin. 1997, 32: 259-267. 10.2165/00003088-199732040-00001.CrossRef Breimer DD, Danhof M: Relevance of the application of pharmacokinetic-pharmacodynamic modelling concepts in drug development. The ‘wooden shoe’ paradigm. Clin Pharmacokin. 1997, 32: 259-267. 10.2165/00003088-199732040-00001.CrossRef
131.
go back to reference Danhof M, de Lange EC, Della Pasqua OE, Ploeger BA, Voskuyl RA: Mechanism-based pharmacokinetic-pharmacodynamic (PKPD) modeling in translational drug research. Trends Pharmacol Sci. 2008, 29: 186-191. 10.1016/j.tips.2008.01.007.PubMedCrossRef Danhof M, de Lange EC, Della Pasqua OE, Ploeger BA, Voskuyl RA: Mechanism-based pharmacokinetic-pharmacodynamic (PKPD) modeling in translational drug research. Trends Pharmacol Sci. 2008, 29: 186-191. 10.1016/j.tips.2008.01.007.PubMedCrossRef
132.
go back to reference Ploeger BA, van der Graaf PH, Danhof M: Incorporating receptor theory in mechanism-based pharmacokinetic-pharmacodynamic [PK-PD] modeling. Drug Metab Pharmacokinet. 2009, 24: 3-15. 10.2133/dmpk.24.3.PubMedCrossRef Ploeger BA, van der Graaf PH, Danhof M: Incorporating receptor theory in mechanism-based pharmacokinetic-pharmacodynamic [PK-PD] modeling. Drug Metab Pharmacokinet. 2009, 24: 3-15. 10.2133/dmpk.24.3.PubMedCrossRef
133.
go back to reference Rowland M, Peck C, Tucker G: Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol. 2011, 51: 45-73. 10.1146/annurev-pharmtox-010510-100540.PubMedCrossRef Rowland M, Peck C, Tucker G: Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol. 2011, 51: 45-73. 10.1146/annurev-pharmtox-010510-100540.PubMedCrossRef
134.
go back to reference Shen DD, Artru AA, Adkison KK: Principles and applicability of CSF sampling for the assessment of CNS drug delivery and pharmacodynamics. Adv Drug Del Rev. 2004, 56: 1825-1857. 10.1016/j.addr.2004.07.011.CrossRef Shen DD, Artru AA, Adkison KK: Principles and applicability of CSF sampling for the assessment of CNS drug delivery and pharmacodynamics. Adv Drug Del Rev. 2004, 56: 1825-1857. 10.1016/j.addr.2004.07.011.CrossRef
135.
go back to reference Westerhout J, Ploeger B, Smeets J, Danhof M, de Lange ECM: Physiologically based pharmacokinetic modeling to investigate regional brain distribution kinetics in rats. AAPS J. 2012, 14: 543-553. 10.1208/s12248-012-9366-1.PubMedCentralPubMedCrossRef Westerhout J, Ploeger B, Smeets J, Danhof M, de Lange ECM: Physiologically based pharmacokinetic modeling to investigate regional brain distribution kinetics in rats. AAPS J. 2012, 14: 543-553. 10.1208/s12248-012-9366-1.PubMedCentralPubMedCrossRef
136.
go back to reference Paxinos G, Watson C: The Rat Brain in Stereotaxic Coordinate. 1998, New York: Academic Press, Spiral Bound, Fourth Paxinos G, Watson C: The Rat Brain in Stereotaxic Coordinate. 1998, New York: Academic Press, Spiral Bound, Fourth
137.
go back to reference Bannwarth B, Netter P, Lapicque F, Gillet P, Péré P, Boccard E, Royer RJ, Gaucher A: Plasma and cerebrospinal fluid concentrations of paracetamol after a single intravenous dose of propacetamol. Br J Clin Pharmacol. 1992, 34: 79-81. 10.1111/j.1365-2125.1992.tb04112.x.PubMedCentralPubMedCrossRef Bannwarth B, Netter P, Lapicque F, Gillet P, Péré P, Boccard E, Royer RJ, Gaucher A: Plasma and cerebrospinal fluid concentrations of paracetamol after a single intravenous dose of propacetamol. Br J Clin Pharmacol. 1992, 34: 79-81. 10.1111/j.1365-2125.1992.tb04112.x.PubMedCentralPubMedCrossRef
138.
go back to reference Dhuria SV, Hanson LR, Frey WH: Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. J Pharm Sci. 2009, 99: 1654-1673.CrossRef Dhuria SV, Hanson LR, Frey WH: Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. J Pharm Sci. 2009, 99: 1654-1673.CrossRef
139.
go back to reference Frey WH: Intranasal delivery: bypassing the blood-brain barrier to deliver therapeutic agents to the brain and spinal cord. Drug Deliv Technol. 2002, 2: 46-49. Frey WH: Intranasal delivery: bypassing the blood-brain barrier to deliver therapeutic agents to the brain and spinal cord. Drug Deliv Technol. 2002, 2: 46-49.
140.
go back to reference Bagger M, Bechgaard E: A microdialysis model to examine nasal drug delivery and olfactory absorption in rats using lidocaine hydrochloride as a model drug. Int J Pharm. 2004, 269: 311-322. 10.1016/j.ijpharm.2003.09.017.PubMedCrossRef Bagger M, Bechgaard E: A microdialysis model to examine nasal drug delivery and olfactory absorption in rats using lidocaine hydrochloride as a model drug. Int J Pharm. 2004, 269: 311-322. 10.1016/j.ijpharm.2003.09.017.PubMedCrossRef
141.
go back to reference Illum L: Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000, 11: 1-18. 10.1016/S0928-0987(00)00087-7.PubMedCrossRef Illum L: Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000, 11: 1-18. 10.1016/S0928-0987(00)00087-7.PubMedCrossRef
142.
go back to reference Illum L: Is nose-to-brain transport of drugs in man a reality?. J Pharm Pharmacol. 2004, 56: 3-17. 10.1211/0022357022539.PubMedCrossRef Illum L: Is nose-to-brain transport of drugs in man a reality?. J Pharm Pharmacol. 2004, 56: 3-17. 10.1211/0022357022539.PubMedCrossRef
143.
go back to reference Stevens J, Suidgeest E, van der Graaf PH, Danhof M, de Lange ECM: A new minimal-stress freely-moving rat model for preclinical studies on intranasal administration of CNS drugs. Pharm Res. 2009, 26: 1911-1917. 10.1007/s11095-009-9907-1.PubMedCentralPubMedCrossRef Stevens J, Suidgeest E, van der Graaf PH, Danhof M, de Lange ECM: A new minimal-stress freely-moving rat model for preclinical studies on intranasal administration of CNS drugs. Pharm Res. 2009, 26: 1911-1917. 10.1007/s11095-009-9907-1.PubMedCentralPubMedCrossRef
144.
go back to reference Stevens J, Ploeger B, van der Graaf PH, Danhof M, de Lange ECM: Systemic- and direct nose-to-brain transport in the rat, a mechanistic pharmacokinetic model for remoxipride after intravenous and intranasal administration. Drug Metab Disp. 2011, 39: 2275-2282. 10.1124/dmd.111.040782.CrossRef Stevens J, Ploeger B, van der Graaf PH, Danhof M, de Lange ECM: Systemic- and direct nose-to-brain transport in the rat, a mechanistic pharmacokinetic model for remoxipride after intravenous and intranasal administration. Drug Metab Disp. 2011, 39: 2275-2282. 10.1124/dmd.111.040782.CrossRef
145.
go back to reference Freeman ME, Kanyicska B, Lerant A, Nagy G: Prolactin: structure, function, and regulation of secretion. Physiol Rev. 2000, 80: 1523-1631.PubMed Freeman ME, Kanyicska B, Lerant A, Nagy G: Prolactin: structure, function, and regulation of secretion. Physiol Rev. 2000, 80: 1523-1631.PubMed
146.
go back to reference Fitzgerald P, Dinan TG: Prolactin and dopamine: What is the connection? A Review Article. J Psychopharmacol. 2008, 22 (suppl): 12-19. 10.1177/0269216307087148.PubMedCrossRef Fitzgerald P, Dinan TG: Prolactin and dopamine: What is the connection? A Review Article. J Psychopharmacol. 2008, 22 (suppl): 12-19. 10.1177/0269216307087148.PubMedCrossRef
147.
go back to reference Stevens J, Ploeger BA, Hammarlund-Udenaes M, Osswald G, van der Graaf PH, Danhof M, de Lange EC: Mechanism-based PK-PD model for the prolactin biological system response following an acute dopamine inhibition challenge: quantitative extrapolation to humans. J Pharmacokinet Pharmacodyn. 2012, 39: 463-477. 10.1007/s10928-012-9262-4.PubMedCrossRef Stevens J, Ploeger BA, Hammarlund-Udenaes M, Osswald G, van der Graaf PH, Danhof M, de Lange EC: Mechanism-based PK-PD model for the prolactin biological system response following an acute dopamine inhibition challenge: quantitative extrapolation to humans. J Pharmacokinet Pharmacodyn. 2012, 39: 463-477. 10.1007/s10928-012-9262-4.PubMedCrossRef
148.
go back to reference Friberg LE, Vermeulen AM, Petersson KJF, Karlsson MO: An Agonist-Antagonist Interaction Model for Prolactin Release Following Risperidone and Paliperidone Treatment. Clin Pharmacol Ther. 2008, 85: 409-417.PubMedCrossRef Friberg LE, Vermeulen AM, Petersson KJF, Karlsson MO: An Agonist-Antagonist Interaction Model for Prolactin Release Following Risperidone and Paliperidone Treatment. Clin Pharmacol Ther. 2008, 85: 409-417.PubMedCrossRef
149.
go back to reference Movin-Osswald G, Hammarlund-Udenaes M, Von Bahr C, Eneroth P, Walton-Bowen K: Influence of the dosing interval on prolactin release after remoxipride. Br J Clin Pharmacol. 1995, 39: 503-510. 10.1111/j.1365-2125.1995.tb04487.x.PubMedCentralPubMedCrossRef Movin-Osswald G, Hammarlund-Udenaes M, Von Bahr C, Eneroth P, Walton-Bowen K: Influence of the dosing interval on prolactin release after remoxipride. Br J Clin Pharmacol. 1995, 39: 503-510. 10.1111/j.1365-2125.1995.tb04487.x.PubMedCentralPubMedCrossRef
150.
go back to reference Movin-Osswald G, Hammarlund-Udenaes M: Prolactin release after remoxipride by an integrated pharmacokinetic-pharmacodynamic model with intra- and interindividual aspects. J Pharmaco Exp Ther. 1995, 274: 921-927. Movin-Osswald G, Hammarlund-Udenaes M: Prolactin release after remoxipride by an integrated pharmacokinetic-pharmacodynamic model with intra- and interindividual aspects. J Pharmaco Exp Ther. 1995, 274: 921-927.
151.
go back to reference Lavé T, Portmann R, Schenker G, Gianni A, Guenzi A, Girometta MA, Schmitt M: Interspecies pharmacokinetic comparisons and allometric scaling of napsagatran, a low molecular weight thrombin inhibitor. J Pharm Pharmacol. 1999, 49: 178-183. Lavé T, Portmann R, Schenker G, Gianni A, Guenzi A, Girometta MA, Schmitt M: Interspecies pharmacokinetic comparisons and allometric scaling of napsagatran, a low molecular weight thrombin inhibitor. J Pharm Pharmacol. 1999, 49: 178-183.
152.
go back to reference Kielbasa W, Kalvass JC, Stratford RE: Microdialysis evaluation of atomoxetine brain penetration and central nervous system pharmacokinetics in rats. Drug Metab Dispos. 2009, 37: 137-142. 10.1124/dmd.108.023119.PubMedCrossRef Kielbasa W, Kalvass JC, Stratford RE: Microdialysis evaluation of atomoxetine brain penetration and central nervous system pharmacokinetics in rats. Drug Metab Dispos. 2009, 37: 137-142. 10.1124/dmd.108.023119.PubMedCrossRef
153.
go back to reference Kielbasa W, Stratford RE: Exploratory translational modeling approach in drug development to predict human brain pharmacokinetics and pharmacologically relevant clinical doses. Drug Metab Dispos. 2012, 40: 877-883. 10.1124/dmd.111.043554.PubMedCrossRef Kielbasa W, Stratford RE: Exploratory translational modeling approach in drug development to predict human brain pharmacokinetics and pharmacologically relevant clinical doses. Drug Metab Dispos. 2012, 40: 877-883. 10.1124/dmd.111.043554.PubMedCrossRef
154.
go back to reference Yassen A, Olofsen E, Kan J, Dahan A, Danhof M: Animal-to-human extrapolation of the pharmacokinetic and pharmacodynamic properties of buprenorphine. Clin Pharmacokin. 2007, 46: 433-447. 10.2165/00003088-200746050-00005.CrossRef Yassen A, Olofsen E, Kan J, Dahan A, Danhof M: Animal-to-human extrapolation of the pharmacokinetic and pharmacodynamic properties of buprenorphine. Clin Pharmacokin. 2007, 46: 433-447. 10.2165/00003088-200746050-00005.CrossRef
155.
go back to reference Zuideveld KP, van der Graaf PH, Peletier LA, Danhof M: Allometric scaling of pharmacodynamic response: application to 5-HT1A receptor mediated responses from rat to man. Pharm Res. 2007, 24: 2031-2039. 10.1007/s11095-007-9336-y.PubMedCrossRef Zuideveld KP, van der Graaf PH, Peletier LA, Danhof M: Allometric scaling of pharmacodynamic response: application to 5-HT1A receptor mediated responses from rat to man. Pharm Res. 2007, 24: 2031-2039. 10.1007/s11095-007-9336-y.PubMedCrossRef
156.
go back to reference Mager DE, Woo S, Jusko WJ: Scaling pharmacodynamics from in vitro and preclinical animal studies to humans. Drug Metab Pharmacokin. 2009, 24: 16-24. 10.2133/dmpk.24.16.CrossRef Mager DE, Woo S, Jusko WJ: Scaling pharmacodynamics from in vitro and preclinical animal studies to humans. Drug Metab Pharmacokin. 2009, 24: 16-24. 10.2133/dmpk.24.16.CrossRef
157.
go back to reference Obach RS, Baxter JG, Liston TE, Silber BM, Jones BC, MacIntyre F, Rance DJ, Wastall P: The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther. 1997, 283: 46-58.PubMed Obach RS, Baxter JG, Liston TE, Silber BM, Jones BC, MacIntyre F, Rance DJ, Wastall P: The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther. 1997, 283: 46-58.PubMed
158.
go back to reference Ito H, Inoue K, Goto R, Kinomura S, Taki Y, Okada K, Sato K, Sato T, Kanno I, Fukuda H: Database of normal human cerebral blood flow measured by SPECT: I. Comparison between I-123-IMP, Tc-99m-HMPAO, and Tc-99m-ECD as referred with O-15 labeled water PET and voxel-based morphometry. Ann Nucl Med. 2006, 20: 131-138. 10.1007/BF02985625.PubMedCrossRef Ito H, Inoue K, Goto R, Kinomura S, Taki Y, Okada K, Sato K, Sato T, Kanno I, Fukuda H: Database of normal human cerebral blood flow measured by SPECT: I. Comparison between I-123-IMP, Tc-99m-HMPAO, and Tc-99m-ECD as referred with O-15 labeled water PET and voxel-based morphometry. Ann Nucl Med. 2006, 20: 131-138. 10.1007/BF02985625.PubMedCrossRef
159.
go back to reference Kvernmo T, Hartter S, Burger E: A review of the receptor-binding and pharmacokinetic properties of dopamine agonists. Clin Therapeutics. 2006, 28: 1065-1078. 10.1016/j.clinthera.2006.08.004.CrossRef Kvernmo T, Hartter S, Burger E: A review of the receptor-binding and pharmacokinetic properties of dopamine agonists. Clin Therapeutics. 2006, 28: 1065-1078. 10.1016/j.clinthera.2006.08.004.CrossRef
160.
go back to reference Kvernmo T, Houben J, Sylte I: Receptor-binding and pharmacokinetic properties of dopaminergic agonists. Curr Top Med Chem. 2008, 8: 1049-1067. 10.2174/156802608785161457.PubMedCrossRef Kvernmo T, Houben J, Sylte I: Receptor-binding and pharmacokinetic properties of dopaminergic agonists. Curr Top Med Chem. 2008, 8: 1049-1067. 10.2174/156802608785161457.PubMedCrossRef
161.
go back to reference Mamo D, Kapur S, Shammi CM, Papatheodorou G, Mann S, Therrien F, Remington G: A PET study of dopamine D2 and serotonin 5-HT2 receptor occupancy in patients with schizophrenia treated with therapeutic doses of ziprasidone. Am J Psych. 2004, 161: 818-825. 10.1176/appi.ajp.161.5.818.CrossRef Mamo D, Kapur S, Shammi CM, Papatheodorou G, Mann S, Therrien F, Remington G: A PET study of dopamine D2 and serotonin 5-HT2 receptor occupancy in patients with schizophrenia treated with therapeutic doses of ziprasidone. Am J Psych. 2004, 161: 818-825. 10.1176/appi.ajp.161.5.818.CrossRef
Metadata
Title
The mastermind approach to CNS drug therapy: translational prediction of human brain distribution, target site kinetics, and therapeutic effects
Author
Elizabeth CM de Lange
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2013
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/2045-8118-10-12

Other articles of this Issue 1/2013

Fluids and Barriers of the CNS 1/2013 Go to the issue