Skip to main content
Top
Published in: Pediatric Radiology 3/2018

01-03-2018 | Original Article

The long-term effect of erythropoiesis stimulating agents given to preterm infants: a proton magnetic resonance spectroscopy study on neurometabolites in early childhood

Authors: Charles Gasparovic, Arvind Caprihan, Ronald A. Yeo, John Phillips, Jean R. Lowe, Richard Campbell, Robin K. Ohls

Published in: Pediatric Radiology | Issue 3/2018

Login to get access

Abstract

Background

Erythropoiesis stimulating agents (ESAs) are neuroprotective in cell and animal models of preterm birth. Prematurity has been shown to alter neurometabolite levels in children in studies using proton magnetic resonance spectroscopy (1H-MRS).

Objective

We hypothesized that ESA treatment in premature infants would tend to normalize neurometabolites by 4–6 years of age.

Materials and methods

Children in a longitudinal study of neurodevelopment underwent MRI and 1H-MRS at approximately 4 years and 6 years of age. Prematurely born children (500–1,250 g birth weight) received ESAs (erythropoietin or darbepoetin) or placebo during their neonatal hospitalization, and these groups were compared to healthy term controls. 1H-MRS spectra were obtained from the anterior cingulate (gray matter) and frontal lobe white matter, assessing combined N-acetylaspartate and N-acetylaspartylglutamate (tNAA), myo-inositol, choline compounds (Cho), combined creatine and phosphocreatine, and combined glutamate and glutamine.

Results

No significant (P≤0.5) group differences were observed for any metabolite level. Significant age-related increases in white-matter tNAA and Cho were observed, as well as a trend for increased gray-matter tNAA.

Conclusion

Neither prematurity nor neonatal ESA treatment was associated with differences in brain metabolite levels in the children of this study at a significance level of 0.05. These findings suggest that earlier differences that might have existed had normalized by 4–6 years of age or were too small to be statistically significant in the current sample.
Literature
1.
go back to reference Craik FI, Bialystok E (2006) Cognition through the lifespan: mechanisms of change. Trends Cogn Sci 10:131–138CrossRefPubMed Craik FI, Bialystok E (2006) Cognition through the lifespan: mechanisms of change. Trends Cogn Sci 10:131–138CrossRefPubMed
3.
4.
go back to reference Huppi PS, Posse S, Lazeyras F et al (1991) Magnetic resonance in preterm and term newborns: 1H-spectroscopy in developing human brain. Pediatr Res 30:574–578CrossRefPubMed Huppi PS, Posse S, Lazeyras F et al (1991) Magnetic resonance in preterm and term newborns: 1H-spectroscopy in developing human brain. Pediatr Res 30:574–578CrossRefPubMed
5.
go back to reference Robertson NJ, Kuint J, Counsell TJ et al (2000) Characterization of cerebral white matter damage in preterm infants using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab 20:1446–1456CrossRefPubMed Robertson NJ, Kuint J, Counsell TJ et al (2000) Characterization of cerebral white matter damage in preterm infants using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab 20:1446–1456CrossRefPubMed
6.
go back to reference Kreis R, Hofmann L, Kuhlmann B et al (2002) Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 48:949–958CrossRefPubMed Kreis R, Hofmann L, Kuhlmann B et al (2002) Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 48:949–958CrossRefPubMed
7.
go back to reference Roelants-van Rijn AM, van der Grond J, Stigter RH et al (2004) Cerebral structure and metabolism and long-term outcome in small-for-gestational-age preterm neonates. Pediatr Res 56:285–290CrossRefPubMed Roelants-van Rijn AM, van der Grond J, Stigter RH et al (2004) Cerebral structure and metabolism and long-term outcome in small-for-gestational-age preterm neonates. Pediatr Res 56:285–290CrossRefPubMed
8.
go back to reference Augustine EM, Spielman DM, Barnes PD et al (2008) Can magnetic resonance spectroscopy predict neurodevelopmental outcome in very low birth weight preterm infants? J Perinatol 28:611–618CrossRefPubMedPubMedCentral Augustine EM, Spielman DM, Barnes PD et al (2008) Can magnetic resonance spectroscopy predict neurodevelopmental outcome in very low birth weight preterm infants? J Perinatol 28:611–618CrossRefPubMedPubMedCentral
9.
go back to reference Van Kooij BJ, Benders MJ, Anbeek P et al (2012) Cerebellar volume and proton magnetic resonance spectroscopy at term, and neurodevelopment at 2 years of age in preterm infants. Dev Med Child Neurol 54:260–266CrossRefPubMed Van Kooij BJ, Benders MJ, Anbeek P et al (2012) Cerebellar volume and proton magnetic resonance spectroscopy at term, and neurodevelopment at 2 years of age in preterm infants. Dev Med Child Neurol 54:260–266CrossRefPubMed
10.
go back to reference Card D, Nossin-Manor R, Moore AM et al (2013) Brain metabolite concentrations are associated with illness severity scores and white matter abnormalities in very preterm infants. Pediatr Res 74:75–81CrossRefPubMedPubMedCentral Card D, Nossin-Manor R, Moore AM et al (2013) Brain metabolite concentrations are associated with illness severity scores and white matter abnormalities in very preterm infants. Pediatr Res 74:75–81CrossRefPubMedPubMedCentral
11.
go back to reference Wisnowski JL, Bluml S, Paquette L et al (2013) Altered glutamatergic metabolism associated with punctate white matter lesions in preterm infants. PLoS One 8:e56880CrossRefPubMedPubMedCentral Wisnowski JL, Bluml S, Paquette L et al (2013) Altered glutamatergic metabolism associated with punctate white matter lesions in preterm infants. PLoS One 8:e56880CrossRefPubMedPubMedCentral
12.
go back to reference Bapat R, Narayana PA, Zhou Y et al (2014) Magnetic resonance spectroscopy at term-equivalent age in extremely preterm infants: association with cognitive and language development. Pediatr Neurol 51:53–59CrossRefPubMed Bapat R, Narayana PA, Zhou Y et al (2014) Magnetic resonance spectroscopy at term-equivalent age in extremely preterm infants: association with cognitive and language development. Pediatr Neurol 51:53–59CrossRefPubMed
14.
go back to reference Kendall GS, Melbourne A, Johnson S et al (2014) White matter NAA/Cho and Cho/Cr ratios at MR spectroscopy are predictive of motor outcome in preterm infants. Radiology 271:230–238CrossRefPubMed Kendall GS, Melbourne A, Johnson S et al (2014) White matter NAA/Cho and Cho/Cr ratios at MR spectroscopy are predictive of motor outcome in preterm infants. Radiology 271:230–238CrossRefPubMed
16.
go back to reference Wisnowski JL, Schmithorst VJ, Rosser T et al (2014) Magnetic resonance spectroscopy markers of axons and astrogliosis in relation to specific features of white matter injury in preterm infants. Neuroradiology 56:771–779CrossRefPubMed Wisnowski JL, Schmithorst VJ, Rosser T et al (2014) Magnetic resonance spectroscopy markers of axons and astrogliosis in relation to specific features of white matter injury in preterm infants. Neuroradiology 56:771–779CrossRefPubMed
17.
go back to reference Koob M, Viola A, Le Fur Y et al (2016) Creatine, glutamine plus glutamate, and macromolecules are decreased in the central white matter of premature neonates around term. PLoS One 11:e0160990CrossRefPubMedPubMedCentral Koob M, Viola A, Le Fur Y et al (2016) Creatine, glutamine plus glutamate, and macromolecules are decreased in the central white matter of premature neonates around term. PLoS One 11:e0160990CrossRefPubMedPubMedCentral
18.
go back to reference Wisnowski JL, Ceschin RC, Choi SY et al (2015) Reduced thalamic volume in preterm infants is associated with abnormal white matter metabolism independent of injury. Neuroradiology 57:515–525CrossRefPubMedPubMedCentral Wisnowski JL, Ceschin RC, Choi SY et al (2015) Reduced thalamic volume in preterm infants is associated with abnormal white matter metabolism independent of injury. Neuroradiology 57:515–525CrossRefPubMedPubMedCentral
19.
go back to reference Bathen TF, Sjobakk TE, Skranes J et al (2006) Cerebral metabolite differences in adolescents with low birth weight: assessment with in vivo proton MR spectroscopy. Pediatr Radiol 36:802–809CrossRefPubMed Bathen TF, Sjobakk TE, Skranes J et al (2006) Cerebral metabolite differences in adolescents with low birth weight: assessment with in vivo proton MR spectroscopy. Pediatr Radiol 36:802–809CrossRefPubMed
20.
go back to reference Gimenez M, Soria-Pastor S, Junque C et al (2008) Proton magnetic resonance spectroscopy reveals medial temporal metabolic abnormalities in adolescents with history of preterm birth. Pediatr Res 64:572–577CrossRefPubMed Gimenez M, Soria-Pastor S, Junque C et al (2008) Proton magnetic resonance spectroscopy reveals medial temporal metabolic abnormalities in adolescents with history of preterm birth. Pediatr Res 64:572–577CrossRefPubMed
21.
go back to reference Phillips JP, Ruhl D, Montague E et al (2011) Anterior cingulate and frontal lobe white matter spectroscopy in early childhood of former very LBW premature infants. Pediatr Res 69:224–229CrossRefPubMedPubMedCentral Phillips JP, Ruhl D, Montague E et al (2011) Anterior cingulate and frontal lobe white matter spectroscopy in early childhood of former very LBW premature infants. Pediatr Res 69:224–229CrossRefPubMedPubMedCentral
22.
go back to reference Bluml S, Wisnowski JL, Nelson MD Jr et al (2013) Metabolic maturation of the human brain from birth through adolescence: insights from in vivo magnetic resonance spectroscopy. Cereb Cortex 23:2944–2955CrossRefPubMed Bluml S, Wisnowski JL, Nelson MD Jr et al (2013) Metabolic maturation of the human brain from birth through adolescence: insights from in vivo magnetic resonance spectroscopy. Cereb Cortex 23:2944–2955CrossRefPubMed
23.
go back to reference Posner MI, Rothbart MK, Sheese BE et al (2007) The anterior cingulate gyrus and the mechanism of self-regulation. Cogn Affect Behav Neurosci 7:391–395CrossRefPubMed Posner MI, Rothbart MK, Sheese BE et al (2007) The anterior cingulate gyrus and the mechanism of self-regulation. Cogn Affect Behav Neurosci 7:391–395CrossRefPubMed
24.
go back to reference Ohls RK, Kamath-Rayne BD, Christensen RD et al (2014) Cognitive outcomes of preterm infants randomized to darbepoetin, erythropoietin, or placebo. Pediatrics 133:1023–1030CrossRefPubMedPubMedCentral Ohls RK, Kamath-Rayne BD, Christensen RD et al (2014) Cognitive outcomes of preterm infants randomized to darbepoetin, erythropoietin, or placebo. Pediatrics 133:1023–1030CrossRefPubMedPubMedCentral
25.
go back to reference Ohls RK, Cannon DC, Phillips J et al (2016) Preschool assessment of preterm infants treated with darbepoetin and erythropoietin. Pediatrics 137:e20153859CrossRefPubMedPubMedCentral Ohls RK, Cannon DC, Phillips J et al (2016) Preschool assessment of preterm infants treated with darbepoetin and erythropoietin. Pediatrics 137:e20153859CrossRefPubMedPubMedCentral
26.
go back to reference Phillips J, Yeo RA, Caprihan A et al (2017) Neuroimaging in former preterm children who received erythropoiesis stimulating agents. Pediatr Res 82:685–690PubMedPubMedCentral Phillips J, Yeo RA, Caprihan A et al (2017) Neuroimaging in former preterm children who received erythropoiesis stimulating agents. Pediatr Res 82:685–690PubMedPubMedCentral
27.
go back to reference Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679CrossRefPubMed Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679CrossRefPubMed
28.
go back to reference Gasparovic C, Bedrick EJ, Mayer AR et al (2011) Test-retest reliability and reproducibility of short-echo-time spectroscopic imaging of human brain at 3T. Magn Reson Med 66:324–332CrossRefPubMedPubMedCentral Gasparovic C, Bedrick EJ, Mayer AR et al (2011) Test-retest reliability and reproducibility of short-echo-time spectroscopic imaging of human brain at 3T. Magn Reson Med 66:324–332CrossRefPubMedPubMedCentral
29.
go back to reference Faul F, Erdfelder E, Lang AG et al (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191CrossRefPubMed Faul F, Erdfelder E, Lang AG et al (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191CrossRefPubMed
30.
go back to reference Maxwell JR, Yellowhair TR, Oppong AY et al (2017) Cognitive development in preterm infants: multi-faceted deficits reflect vulnerability of rigorous neurodevelopmental pathways. Minerva Pediatr 69:298–313PubMed Maxwell JR, Yellowhair TR, Oppong AY et al (2017) Cognitive development in preterm infants: multi-faceted deficits reflect vulnerability of rigorous neurodevelopmental pathways. Minerva Pediatr 69:298–313PubMed
31.
go back to reference Kawakami M, Sekiguchi M, Sato K et al (2001) Erythropoietin receptor-mediated inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia. J Biol Chem 276:39469–39475CrossRefPubMed Kawakami M, Sekiguchi M, Sato K et al (2001) Erythropoietin receptor-mediated inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia. J Biol Chem 276:39469–39475CrossRefPubMed
32.
go back to reference Fan X, van Bel F, van der Kooij MA et al (2013) Hypothermia and erythropoietin for neuroprotection after neonatal brain damage. Pediatr Res 73:18–23CrossRefPubMed Fan X, van Bel F, van der Kooij MA et al (2013) Hypothermia and erythropoietin for neuroprotection after neonatal brain damage. Pediatr Res 73:18–23CrossRefPubMed
33.
go back to reference Gonzalez FF, Larpthaveesarp A, McQuillen P et al (2013) Erythropoietin increases neurogenesis and oligodendrogliosis of subventricular zone precursor cells after neonatal stroke. Stroke 44:753–758CrossRefPubMedPubMedCentral Gonzalez FF, Larpthaveesarp A, McQuillen P et al (2013) Erythropoietin increases neurogenesis and oligodendrogliosis of subventricular zone precursor cells after neonatal stroke. Stroke 44:753–758CrossRefPubMedPubMedCentral
34.
go back to reference Jantzie LL, Getsy PM, Firl DJ et al (2014) Erythropoietin attenuates loss of potassium chloride co-transporters following prenatal brain injury. Mol Cell Neurosci 61:152–162CrossRefPubMed Jantzie LL, Getsy PM, Firl DJ et al (2014) Erythropoietin attenuates loss of potassium chloride co-transporters following prenatal brain injury. Mol Cell Neurosci 61:152–162CrossRefPubMed
35.
go back to reference Lowe JR, Rieger RE, Moss NC et al (2017) Impact of erythropoiesis-stimulating agents on behavioral measures in children born preterm. J Pediatr 184:75–80.e1CrossRefPubMed Lowe JR, Rieger RE, Moss NC et al (2017) Impact of erythropoiesis-stimulating agents on behavioral measures in children born preterm. J Pediatr 184:75–80.e1CrossRefPubMed
Metadata
Title
The long-term effect of erythropoiesis stimulating agents given to preterm infants: a proton magnetic resonance spectroscopy study on neurometabolites in early childhood
Authors
Charles Gasparovic
Arvind Caprihan
Ronald A. Yeo
John Phillips
Jean R. Lowe
Richard Campbell
Robin K. Ohls
Publication date
01-03-2018
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 3/2018
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-017-4052-1

Other articles of this Issue 3/2018

Pediatric Radiology 3/2018 Go to the issue

Hermes

Hermes