Skip to main content
Top
Published in: International Journal of Hematology 2/2018

01-08-2018 | Original Article

The localization of α-synuclein in the process of differentiation of human erythroid cells

Authors: Katsuya Araki, Kotomi Sugawara, Eri H. Hayakawa, Kumi Ubukawa, Isuzu Kobayashi, Hideki Wakui, Naoto Takahashi, Kenichi Sawada, Hideki Mochizuki, Wataru Nunomura

Published in: International Journal of Hematology | Issue 2/2018

Login to get access

Abstract

Although the neuronal protein α-synuclein (α-syn) is thought to play a central role in the pathogenesis of Parkinson’s disease (PD), its physiological function remains unknown. It is known that α-syn is also abundantly expressed in erythrocytes. However, its role in erythrocytes is also unknown. In the present study, we investigated the localization of α-syn in human erythroblasts and erythrocytes. Protein expression of α-syn increased during terminal differentiation of erythroblasts (from day 7 to day 13), whereas its mRNA level peaked at day 11. α-syn was detected in the nucleus, and was also seen in the cytoplasm and at the plasma membrane after day 11. In erythroblasts undergoing nucleus extrusion (day 13), α-syn was detected at the periphery of the nucleus. Interestingly, we found that recombinant α-syn binds to trypsinized inside-out vesicles of erythrocytes and phosphatidylserine (PS) liposomes. The dissociation constants for binding to PS/phosphatidylcholine (PC) liposomes of N-terminally acetylated (NAc) α-syn was lower than that of non NAc α-syn. This suggests that N-terminal acetylation plays a significant functional role. The results of the present study collectively suggest that α-syn is involved in the enucleation of erythroblasts and the stabilization of erythroid membranes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Maroteaux L, Campanelli JT, Scheller RH. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci. 1988;8(8):2804–15.CrossRefPubMed Maroteaux L, Campanelli JT, Scheller RH. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci. 1988;8(8):2804–15.CrossRefPubMed
2.
go back to reference Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson disease and dementia with Lewy bodies. Proc Natl Acad Sci USA. 1998;95:6469–73.CrossRefPubMed Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson disease and dementia with Lewy bodies. Proc Natl Acad Sci USA. 1998;95:6469–73.CrossRefPubMed
3.
go back to reference Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, et al. Aggregation of α-synuclein in Lewy bodies of sporadic Parkinson disease and dementia with Lewy bodies. Am J Pathol. 1998;152:879–84.PubMedPubMedCentral Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, et al. Aggregation of α-synuclein in Lewy bodies of sporadic Parkinson disease and dementia with Lewy bodies. Am J Pathol. 1998;152:879–84.PubMedPubMedCentral
4.
go back to reference Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M. Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett. 1998;251:205–8.CrossRefPubMed Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M. Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett. 1998;251:205–8.CrossRefPubMed
5.
go back to reference Luk KC, Song C, O’Brien P, Stieber A, Branch JR, Brunden KR, et al. Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci USA. 2009;106:20051–6.CrossRefPubMed Luk KC, Song C, O’Brien P, Stieber A, Branch JR, Brunden KR, et al. Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci USA. 2009;106:20051–6.CrossRefPubMed
6.
go back to reference Barbour R, Kling K, Anderson JP, Banducci K, Cole T, Diep L, et al. Red blood cells are the major source of alpha-synuclein in blood. Neurodegener Dis. 2008;5:55–9.CrossRefPubMed Barbour R, Kling K, Anderson JP, Banducci K, Cole T, Diep L, et al. Red blood cells are the major source of alpha-synuclein in blood. Neurodegener Dis. 2008;5:55–9.CrossRefPubMed
7.
go back to reference Nakai M, Fujita M, Waragai M, Sugama S, Wei J, Akatsu H, et al. Expression of α-synuclein, a presynaptic protein implicated in Parkinson’s disease, in erythropoietic lineage. Biochem Biophys Res Commun. 2007;358:104–10.CrossRefPubMed Nakai M, Fujita M, Waragai M, Sugama S, Wei J, Akatsu H, et al. Expression of α-synuclein, a presynaptic protein implicated in Parkinson’s disease, in erythropoietic lineage. Biochem Biophys Res Commun. 2007;358:104–10.CrossRefPubMed
8.
go back to reference Sawada K, Krantz SB, Dai CH, Koury ST, Horn ST, Glick AD, et al. Purification of human erythroid colony-forming units and demonstration of specific binding of erythropoietin. J Clin Invest. 1987;80:357–66.CrossRefPubMedPubMedCentral Sawada K, Krantz SB, Dai CH, Koury ST, Horn ST, Glick AD, et al. Purification of human erythroid colony-forming units and demonstration of specific binding of erythropoietin. J Clin Invest. 1987;80:357–66.CrossRefPubMedPubMedCentral
9.
go back to reference Hebiguchi M, Hirokawa M, Guo YM, Saito K, Wakui H, Komatsuda A, et al. Dynamics of human erythroblast enucleation. Int J Hematol. 2008;88:498–507.CrossRefPubMed Hebiguchi M, Hirokawa M, Guo YM, Saito K, Wakui H, Komatsuda A, et al. Dynamics of human erythroblast enucleation. Int J Hematol. 2008;88:498–507.CrossRefPubMed
10.
go back to reference Ubukawa K, Guo YM, Takahashi M, Hirokawa M, Michishita Y, Nara M, et al. Enucleation of human erythroblasts involves non-muscle myosin IIB. Blood. 2012;119:1036–44.CrossRefPubMedPubMedCentral Ubukawa K, Guo YM, Takahashi M, Hirokawa M, Michishita Y, Nara M, et al. Enucleation of human erythroblasts involves non-muscle myosin IIB. Blood. 2012;119:1036–44.CrossRefPubMedPubMedCentral
11.
go back to reference Kobayashi I, Ubukawa K, Sugawara K, Asanuma K, Guo YM, Yamashita J, et al. Erythroblast enucleation is a dynein-dependent process. Exp Hematol. 2016;44:247–56.CrossRefPubMed Kobayashi I, Ubukawa K, Sugawara K, Asanuma K, Guo YM, Yamashita J, et al. Erythroblast enucleation is a dynein-dependent process. Exp Hematol. 2016;44:247–56.CrossRefPubMed
12.
go back to reference Ghio S, Kamp F, Cauchi R, Giese A, Vassallo N. Interaction of α-synuclein with biomembranes in Parkinson’s disease—role of cardiolipin. Prog Lipid Res. 2016;61:73–82.CrossRefPubMed Ghio S, Kamp F, Cauchi R, Giese A, Vassallo N. Interaction of α-synuclein with biomembranes in Parkinson’s disease—role of cardiolipin. Prog Lipid Res. 2016;61:73–82.CrossRefPubMed
14.
go back to reference Nakamura K, Nemani VM, Wallender EK, Kaehlcke K, Ott M, Edwards RH. Optical reporters for the conformation of α-synuclein reveal a specific interaction with mitochondria. J Neurosci. 2008;28:12305–17.CrossRefPubMed Nakamura K, Nemani VM, Wallender EK, Kaehlcke K, Ott M, Edwards RH. Optical reporters for the conformation of α-synuclein reveal a specific interaction with mitochondria. J Neurosci. 2008;28:12305–17.CrossRefPubMed
15.
go back to reference Dikiy I, Eliezer D. Folding and misfolding of α-synuclein on membranes. Biochim Biophys Acta. 2012;1818(4):1013–8.CrossRefPubMed Dikiy I, Eliezer D. Folding and misfolding of α-synuclein on membranes. Biochim Biophys Acta. 2012;1818(4):1013–8.CrossRefPubMed
16.
go back to reference Park JY, Kim KS, Lee SB, Ryu JS, Chung KC, Choo YK, et al. On the mechanism of internalization of α-synuclein into microglia: roles of ganglioside GM1 and lipid raft. J Neurochem. 2009;110:400–11.CrossRefPubMed Park JY, Kim KS, Lee SB, Ryu JS, Chung KC, Choo YK, et al. On the mechanism of internalization of α-synuclein into microglia: roles of ganglioside GM1 and lipid raft. J Neurochem. 2009;110:400–11.CrossRefPubMed
17.
go back to reference Lee HJ, Choi C, Lee SJ. Membrane-bound α-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J Biol Chem. 2002;277:671–8.CrossRefPubMed Lee HJ, Choi C, Lee SJ. Membrane-bound α-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J Biol Chem. 2002;277:671–8.CrossRefPubMed
19.
go back to reference Fauvet B, Fares MB, Samuel F, Dikiy I, Tandon A, Eliezer D, et al. Characterization of semisynthetic and naturally N-α-acetylated α-synuclein in vitro and inintact cells: implications for aggregation and cellular properties of α-synuclein. J Biol Chem. 2012;287:28243–62.CrossRefPubMedPubMedCentral Fauvet B, Fares MB, Samuel F, Dikiy I, Tandon A, Eliezer D, et al. Characterization of semisynthetic and naturally N-α-acetylated α-synuclein in vitro and inintact cells: implications for aggregation and cellular properties of α-synuclein. J Biol Chem. 2012;287:28243–62.CrossRefPubMedPubMedCentral
20.
go back to reference Araki K, Yagi N. Nakatani R, Sekiguchi H, So M, Yagi H, et al. A small-angle X-ray scattering study of alpha-synuclein from human red blood cells. Sci Rep. 2016;6:30473.CrossRefPubMedPubMedCentral Araki K, Yagi N. Nakatani R, Sekiguchi H, So M, Yagi H, et al. A small-angle X-ray scattering study of alpha-synuclein from human red blood cells. Sci Rep. 2016;6:30473.CrossRefPubMedPubMedCentral
21.
22.
go back to reference Nunomura W, Kinoshita K, Parra M, Gascard P, An X, Mohandas N, et al. Similarities and differences in the structure and function o4.1G and 4.1R135, two protein 4.1 paralogs expressed in erythroid cells. Biochem J. 2010;432:407–16.CrossRefPubMedPubMedCentral Nunomura W, Kinoshita K, Parra M, Gascard P, An X, Mohandas N, et al. Similarities and differences in the structure and function o4.1G and 4.1R135, two protein 4.1 paralogs expressed in erythroid cells. Biochem J. 2010;432:407–16.CrossRefPubMedPubMedCentral
23.
go back to reference Nunomura W, Parra M, Hebiguchi M, Sawada K, Mohandas N, Takakuwa Y. Marked difference in membrane protein binding properties of the two isoforms of protein 4.1R expressed at early and late stages of erythroid differentiation. Biochem J. 2009;417:141–8.CrossRefPubMed Nunomura W, Parra M, Hebiguchi M, Sawada K, Mohandas N, Takakuwa Y. Marked difference in membrane protein binding properties of the two isoforms of protein 4.1R expressed at early and late stages of erythroid differentiation. Biochem J. 2009;417:141–8.CrossRefPubMed
24.
go back to reference Hayakawa E, Tokumasu F, Nardone GA, Jin AJ, Hackley VA, Dvorak JA. A mycobacterium tuberculosis-derived lipid inhibits membrane fusion by modulating lipid membrane domains. Biophys J. 2007;93:4018–30.CrossRefPubMedPubMedCentral Hayakawa E, Tokumasu F, Nardone GA, Jin AJ, Hackley VA, Dvorak JA. A mycobacterium tuberculosis-derived lipid inhibits membrane fusion by modulating lipid membrane domains. Biophys J. 2007;93:4018–30.CrossRefPubMedPubMedCentral
25.
go back to reference van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry. 1998;31:1–9.CrossRefPubMed van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry. 1998;31:1–9.CrossRefPubMed
26.
go back to reference Iyer A, Roeters SJ, Schilderink N, Hommersom B, Heeren RM, Woutersen S, et al. The impact of N-terminal acetylation of α-synuclein on phospholipid membrane binding and fibril structure. J Biol Chem. 2016;291:21110–22.CrossRefPubMedPubMedCentral Iyer A, Roeters SJ, Schilderink N, Hommersom B, Heeren RM, Woutersen S, et al. The impact of N-terminal acetylation of α-synuclein on phospholipid membrane binding and fibril structure. J Biol Chem. 2016;291:21110–22.CrossRefPubMedPubMedCentral
27.
go back to reference López-Marqués RL, Poulsen LR, Bailly A, Geisler M, Pomorski TG, Palmgren MG. Structure and mechanism of ATP-dependent phospholipid transporters. Biochim Biophys Acta. 2015;1850(3):461–75.CrossRefPubMed López-Marqués RL, Poulsen LR, Bailly A, Geisler M, Pomorski TG, Palmgren MG. Structure and mechanism of ATP-dependent phospholipid transporters. Biochim Biophys Acta. 2015;1850(3):461–75.CrossRefPubMed
28.
29.
go back to reference Xiao W, Shameli A, Harding CV, Meyerson HJ, Maitta RW. Late stages of hematopoiesis and B cell lymphopoiesis are regulated by α-synuclein, a key player in Parkinson’s disease. Immunobiology. 2014;219:836–44.CrossRefPubMedPubMedCentral Xiao W, Shameli A, Harding CV, Meyerson HJ, Maitta RW. Late stages of hematopoiesis and B cell lymphopoiesis are regulated by α-synuclein, a key player in Parkinson’s disease. Immunobiology. 2014;219:836–44.CrossRefPubMedPubMedCentral
30.
go back to reference Shameli A, Xiao W, Zheng Y, Shyu S, Sumodi J, Meyerson HJ, et al. A critical role for α-synuclein in development and function of T lymphocytes. Immunobiology. 2016;221:333–40.CrossRefPubMed Shameli A, Xiao W, Zheng Y, Shyu S, Sumodi J, Meyerson HJ, et al. A critical role for α-synuclein in development and function of T lymphocytes. Immunobiology. 2016;221:333–40.CrossRefPubMed
31.
go back to reference Chaudhary H, Stefanovic AN, Subramaniam V, Claessens MM. Membrane interactions and fibrillization of alpha-synuclein play an essential role in membrane disruption. FEBS Lett. 2014;588:4457–63.CrossRefPubMed Chaudhary H, Stefanovic AN, Subramaniam V, Claessens MM. Membrane interactions and fibrillization of alpha-synuclein play an essential role in membrane disruption. FEBS Lett. 2014;588:4457–63.CrossRefPubMed
32.
go back to reference Fujiwara T, Harigae H. Biology of heme in mammalian erythroid cells and related disorders. BioMed Res Int. 2015; e278536. Fujiwara T, Harigae H. Biology of heme in mammalian erythroid cells and related disorders. BioMed Res Int. 2015; e278536.
33.
go back to reference Scherzer CR, Grass JA, Liao Z, Pepivani I, Zheng B, Eklund AC, et al. GATA transcription factors directly regulate the Parkinson’s disease-linked gene α-synuclein. Proc Natl Acad Sci USA. 2008;105:10907–12.CrossRefPubMed Scherzer CR, Grass JA, Liao Z, Pepivani I, Zheng B, Eklund AC, et al. GATA transcription factors directly regulate the Parkinson’s disease-linked gene α-synuclein. Proc Natl Acad Sci USA. 2008;105:10907–12.CrossRefPubMed
34.
go back to reference Nogueira-Pedro A, dos Santos GG, Oliveira DC, Hastreiter AA, Fock RA. Erythropoiesis in vertebrates: from ontogeny to clinical relevance. Front Biosci (Elite Ed). 2016;8:100–12. Nogueira-Pedro A, dos Santos GG, Oliveira DC, Hastreiter AA, Fock RA. Erythropoiesis in vertebrates: from ontogeny to clinical relevance. Front Biosci (Elite Ed). 2016;8:100–12.
35.
Metadata
Title
The localization of α-synuclein in the process of differentiation of human erythroid cells
Authors
Katsuya Araki
Kotomi Sugawara
Eri H. Hayakawa
Kumi Ubukawa
Isuzu Kobayashi
Hideki Wakui
Naoto Takahashi
Kenichi Sawada
Hideki Mochizuki
Wataru Nunomura
Publication date
01-08-2018
Publisher
Springer Japan
Published in
International Journal of Hematology / Issue 2/2018
Print ISSN: 0925-5710
Electronic ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-018-2457-8

Other articles of this Issue 2/2018

International Journal of Hematology 2/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine