Skip to main content
Top
Published in: Child's Nervous System 2/2018

01-02-2018 | Original Paper

The Liebau phenomenon: a translational approach to new paradigms of CSF circulation and related flow disturbances

Author: Pierluigi Longatti

Published in: Child's Nervous System | Issue 2/2018

Login to get access

Abstract

Purpose

The aim of the study is to provide a comparison between Liebau’s effect, underlying the working principles of impedance pumps, and the cerebrospinal fluid (CSF) circulation.

Methods

Gerhard Liebau was a cardiologist with a specific interest in severe aortic regurgitation. Such interest drew his scientific attention to the flow-driven efficiency of valveless pumps. During one of his experiments, he assembled two rubber tubes of different sizes and documented how water could be aspirated against gravity when the tube of larger diameter underwent rhythmic compression. He subsequently tested an elastic tube connected to glass pipes of the same size on both ends, immersed in a water bucket. When the elastic tube was periodically pumped with a finger, a net flow could be observed in both directions; depending on the pumping site on the elastic tube, the flow was directed towards the most closely connected glass tube. The principles of a hydraulic system of different elasticity and compliance were also recently applied to the physiology and fluid dynamics of embryonic hearts.

Results

Impedance pumps and the CSF dynamics model are both valveless systems and can both be activated by the effects of the cardiac cycle. The novel hydraulic model of impedance pumps was the foundation for the development of modern valveless micropumps and contributes to explain how the embryonic valveless tubular heart is capable of generating blood flow.

Conclusions

Liebau’s effect and the mechanism of impedance pumps can enlighten some of the aspects of CSF dynamics and related flow disturbances.
Literature
1.
go back to reference Bringley TT, Childress S, Vandenberghe N, Zhang J (2008) An experimental investigation and a simple model of a valveless pump. Phys Fluids 20(3):033602–033606CrossRef Bringley TT, Childress S, Vandenberghe N, Zhang J (2008) An experimental investigation and a simple model of a valveless pump. Phys Fluids 20(3):033602–033606CrossRef
2.
go back to reference Cheng C-H, Yang A-S, Chih JL, Wei-Jui H (2017) Characteristic studies of a novel piezoelectric impedance micropump. Microsyst Technol 23(6):1709–1717CrossRef Cheng C-H, Yang A-S, Chih JL, Wei-Jui H (2017) Characteristic studies of a novel piezoelectric impedance micropump. Microsyst Technol 23(6):1709–1717CrossRef
3.
go back to reference Dichiro G, Reames PM, Matthews WB (1964) RISA-ventriculography and RISAcisternography. Neurology 14:185–191CrossRefPubMed Dichiro G, Reames PM, Matthews WB (1964) RISA-ventriculography and RISAcisternography. Neurology 14:185–191CrossRefPubMed
4.
go back to reference Di Rocco C, Di Trapani G, Pettorossi VE, Caldarelli M (1979) On the pathology of experimental hydrocephalus induced by artificial increase in endoventricular CSF pulse pressure. Childs Brain 5(2):81–95PubMed Di Rocco C, Di Trapani G, Pettorossi VE, Caldarelli M (1979) On the pathology of experimental hydrocephalus induced by artificial increase in endoventricular CSF pulse pressure. Childs Brain 5(2):81–95PubMed
5.
go back to reference Egnor M, Zheng L, Rosiello A, Gutman F, Davis R (2002) A model of pulsations in communicating hydrocephalus. Pediatr Neurosurg 36(6):281–303CrossRefPubMed Egnor M, Zheng L, Rosiello A, Gutman F, Davis R (2002) A model of pulsations in communicating hydrocephalus. Pediatr Neurosurg 36(6):281–303CrossRefPubMed
6.
go back to reference Enzmann DR, Norman D, Price DC, Newton TH (1979) Metrizamide and radionuclide cisternography in communicating hydrocephalus. Radiology 130(3):681–686CrossRefPubMed Enzmann DR, Norman D, Price DC, Newton TH (1979) Metrizamide and radionuclide cisternography in communicating hydrocephalus. Radiology 130(3):681–686CrossRefPubMed
7.
go back to reference Forouhar AS, Liebling M, Hickerson A, NasiraeiMoghaddam A, Tsai HJ, Hove JR, Fraser SE, Dickinson ME, Gharib M (2006) The embryonic vertebrate heart tube is a dynamic suction pump. Science 312:751–753CrossRefPubMed Forouhar AS, Liebling M, Hickerson A, NasiraeiMoghaddam A, Tsai HJ, Hove JR, Fraser SE, Dickinson ME, Gharib M (2006) The embryonic vertebrate heart tube is a dynamic suction pump. Science 312:751–753CrossRefPubMed
8.
go back to reference Gangemi M, Maiuri F, Buonamassa S, Colella G, de Divitiis E (2004) Endoscopic third ventriculostomy in idiopathic normal pressure hydrocephalus. Neurosurgery 55(1):129–134CrossRefPubMed Gangemi M, Maiuri F, Buonamassa S, Colella G, de Divitiis E (2004) Endoscopic third ventriculostomy in idiopathic normal pressure hydrocephalus. Neurosurgery 55(1):129–134CrossRefPubMed
9.
go back to reference Greitz D (2004) Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev 27:145–165PubMed Greitz D (2004) Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev 27:145–165PubMed
10.
go back to reference Greitz D (2007) Paradigm shift in hydrocephalus research in legacy of Dandy’s pioneering work: rationale for third ventriculostomy in communicating hydrocephalus. Childs Nerv Syst 23(5):487–489CrossRefPubMedPubMedCentral Greitz D (2007) Paradigm shift in hydrocephalus research in legacy of Dandy’s pioneering work: rationale for third ventriculostomy in communicating hydrocephalus. Childs Nerv Syst 23(5):487–489CrossRefPubMedPubMedCentral
11.
go back to reference Kim DS, Choi JU, Huh R, Yun PH, Kim DI (1999) Quantitative assessment of cerebrospinal fluid hydrodynamics using a phase-contrast cine MR image in hydrocephalus. Childs Nerv Syst 15:461–467CrossRefPubMed Kim DS, Choi JU, Huh R, Yun PH, Kim DI (1999) Quantitative assessment of cerebrospinal fluid hydrodynamics using a phase-contrast cine MR image in hydrocephalus. Childs Nerv Syst 15:461–467CrossRefPubMed
12.
go back to reference Lee VCC, Abakr YA, Woo KC (2013) Valveless pumping using a twostage impedance pump. Front Mech Eng 8(3):311–318CrossRef Lee VCC, Abakr YA, Woo KC (2013) Valveless pumping using a twostage impedance pump. Front Mech Eng 8(3):311–318CrossRef
13.
go back to reference Liebau G (1954) Über ein ventilloses pumpprinzip. Naturwissenschaften 41(14):327–328CrossRef Liebau G (1954) Über ein ventilloses pumpprinzip. Naturwissenschaften 41(14):327–328CrossRef
14.
go back to reference Liebau G (1955) Die stromungsprinzipien des herzens. Zietschrift für Kreislauf-forschung 44:677–684 Liebau G (1955) Die stromungsprinzipien des herzens. Zietschrift für Kreislauf-forschung 44:677–684
15.
go back to reference Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341CrossRefPubMedPubMedCentral Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341CrossRefPubMedPubMedCentral
16.
go back to reference Manner J, Wessel A, Yelbuz TM (2010) How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube. Dev Dyn 239(4):1035–1046CrossRefPubMed Manner J, Wessel A, Yelbuz TM (2010) How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube. Dev Dyn 239(4):1035–1046CrossRefPubMed
17.
go back to reference Moser M, Huang JW, Schwarz GS, Kenner T, Noordergraaf A (1998) Impedance defined flow: generalization of William Harvey’s concept of the circulation 370 years later. International Journal of Cardiovascular Medicine and Science 1(3/4):205–211 Moser M, Huang JW, Schwarz GS, Kenner T, Noordergraaf A (1998) Impedance defined flow: generalization of William Harvey’s concept of the circulation 370 years later. International Journal of Cardiovascular Medicine and Science 1(3/4):205–211
18.
go back to reference Penn RD, Basati S, Sweetman B, Guo X, Linninger A (2011) Ventricle wall movements and cerebrospinal fluid flow in hydrocephalus. J Neurosurg 115(1):159–164CrossRefPubMed Penn RD, Basati S, Sweetman B, Guo X, Linninger A (2011) Ventricle wall movements and cerebrospinal fluid flow in hydrocephalus. J Neurosurg 115(1):159–164CrossRefPubMed
19.
go back to reference Rinderknecht D, Hickerson AI, Gharib M (2005) A valveless micro impedance pump driven by electromagnetic actuation. J Micromech Microeng 15:861–866CrossRef Rinderknecht D, Hickerson AI, Gharib M (2005) A valveless micro impedance pump driven by electromagnetic actuation. J Micromech Microeng 15:861–866CrossRef
20.
go back to reference Timmermann S, Ottesen J T, (2009) Novel characteristics of valveless pumping. Physics of Fluids 21(5): 053601 8CrossRef Timmermann S, Ottesen J T, (2009) Novel characteristics of valveless pumping. Physics of Fluids 21(5): 053601 8CrossRef
21.
go back to reference Ringstad G, Emblem KE, Eide PK (2016) Phase-contrast magnetic resonance imagingreveals net retrograde aqueductal flow in idiopathic normal pressure hydrocephalus. J Neurosurg 124(6):1850–1857CrossRefPubMed Ringstad G, Emblem KE, Eide PK (2016) Phase-contrast magnetic resonance imagingreveals net retrograde aqueductal flow in idiopathic normal pressure hydrocephalus. J Neurosurg 124(6):1850–1857CrossRefPubMed
Metadata
Title
The Liebau phenomenon: a translational approach to new paradigms of CSF circulation and related flow disturbances
Author
Pierluigi Longatti
Publication date
01-02-2018
Publisher
Springer Berlin Heidelberg
Published in
Child's Nervous System / Issue 2/2018
Print ISSN: 0256-7040
Electronic ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-017-3653-1

Other articles of this Issue 2/2018

Child's Nervous System 2/2018 Go to the issue