Skip to main content
Top
Published in: Diabetologia 10/2011

01-10-2011 | Article

The Krüppel-like zinc finger protein GLIS3 transactivates neurogenin 3 for proper fetal pancreatic islet differentiation in mice

Authors: Y. Yang, B. H-J. Chang, V. Yechoor, W. Chen, L. Li, M.-J. Tsai, L. Chan

Published in: Diabetologia | Issue 10/2011

Login to get access

Abstract

Aims/hypothesis

Mutations in GLIS3, which encodes a Krüppel-like zinc finger transcription factor, were found to underlie sporadic neonatal diabetes. Inactivation of Glis3 by gene targeting in mice was previously shown to lead to neonatal diabetes, but the underlying mechanism remains largely unknown. We aimed to elucidate the mechanism of action of GLIS family zinc finger 3 (GLIS3) in Glis3 −/− mice and to further decipher its action in in-vitro systems.

Methods

We created Glis3 −/− mice and monitored the morphological and biochemical phenotype of their pancreatic islets at different stages of embryonic development. We combined these observations with experiments on Glis3 expressed in cultured cells, as well as in in vitro systems in the presence of other reconstituted components.

Results

In vivo and in vitro analyses placed Glis3 upstream of Neurog3, the endocrine pancreas lineage-defining transcription factor. We found that GLIS3 binds to specific GLIS3-response elements in the Neurog3 promoter, activating Neurog3 gene transcription both directly, and synergistically with hepatic nuclear factor 6 and forkhead box A2.

Conclusions/interpretation

These results indicate that GLIS3 controls fetal islet differentiation via direct transactivation of Neurog3, a perturbation that causes neonatal diabetes in mice.
Appendix
Available only for authorised users
Literature
3.
go back to reference Greeley SA, Tucker SE, Naylor RN, Bell GI, Philipson LH (2010) Neonatal diabetes mellitus: a model for personalized medicine. Trends Endocrinol Metab 21:464–472PubMedCrossRef Greeley SA, Tucker SE, Naylor RN, Bell GI, Philipson LH (2010) Neonatal diabetes mellitus: a model for personalized medicine. Trends Endocrinol Metab 21:464–472PubMedCrossRef
4.
go back to reference Taha D, Barbar M, Kanaan H, Williamson BJ (2003) Neonatal diabetes mellitus, congenital hypothyroidism, hepatic fibrosis, polycystic kidneys, and congenital glaucoma: a new autosomal recessive syndrome? Am J Med Genet A 122A:269–273PubMedCrossRef Taha D, Barbar M, Kanaan H, Williamson BJ (2003) Neonatal diabetes mellitus, congenital hypothyroidism, hepatic fibrosis, polycystic kidneys, and congenital glaucoma: a new autosomal recessive syndrome? Am J Med Genet A 122A:269–273PubMedCrossRef
5.
go back to reference Kim YS, Nakanishi G, Lewandoski M, Jetten AM (2003) GLIS3, a novel member of the GLIS subfamily of Kruppel-like zinc finger proteins with repressor and activation functions. Nucleic Acids Res 31:5513–5525PubMedCrossRef Kim YS, Nakanishi G, Lewandoski M, Jetten AM (2003) GLIS3, a novel member of the GLIS subfamily of Kruppel-like zinc finger proteins with repressor and activation functions. Nucleic Acids Res 31:5513–5525PubMedCrossRef
6.
go back to reference Senee V, Chelala C, Duchatelet S, Feng D, Blanc H, Cossec JC et al (2006) Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet 38:682–687PubMedCrossRef Senee V, Chelala C, Duchatelet S, Feng D, Blanc H, Cossec JC et al (2006) Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet 38:682–687PubMedCrossRef
7.
go back to reference Yang Y, Chang BH, Samson SL, Li MV, Chan L (2009) The Kruppel-like zinc finger protein Glis3 directly and indirectly activates insulin gene transcription. Nucleic Acids Res 37:2529–2538PubMedCrossRef Yang Y, Chang BH, Samson SL, Li MV, Chan L (2009) The Kruppel-like zinc finger protein Glis3 directly and indirectly activates insulin gene transcription. Nucleic Acids Res 37:2529–2538PubMedCrossRef
8.
go back to reference Watanabe N, Hiramatsu K, Miyamoto R et al (2009) A murine model of neonatal diabetes mellitus in Glis3-deficient mice. FEBS Lett 583:2108–2113PubMedCrossRef Watanabe N, Hiramatsu K, Miyamoto R et al (2009) A murine model of neonatal diabetes mellitus in Glis3-deficient mice. FEBS Lett 583:2108–2113PubMedCrossRef
9.
go back to reference Kang HS, Kim YS, ZeRuth G et al (2009) Transcription factor Glis3, a novel critical player in the regulation of pancreatic beta-cell development and insulin gene expression. Mol Cell Biol 29:6366–6379PubMedCrossRef Kang HS, Kim YS, ZeRuth G et al (2009) Transcription factor Glis3, a novel critical player in the regulation of pancreatic beta-cell development and insulin gene expression. Mol Cell Biol 29:6366–6379PubMedCrossRef
10.
go back to reference Gu G, Dubauskaite J, Melton DA (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129:2447–2457PubMed Gu G, Dubauskaite J, Melton DA (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129:2447–2457PubMed
11.
go back to reference Apelqvist A, Li H, Sommer L et al (1999) Notch signalling controls pancreatic cell differentiation. Nature 400:877–881PubMedCrossRef Apelqvist A, Li H, Sommer L et al (1999) Notch signalling controls pancreatic cell differentiation. Nature 400:877–881PubMedCrossRef
12.
go back to reference Schwitzgebel VM, Scheel DW, Conners JR et al (2000) Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 127:3533–3542PubMed Schwitzgebel VM, Scheel DW, Conners JR et al (2000) Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 127:3533–3542PubMed
13.
go back to reference Jensen J, Heller RS, Funder-Nielsen T et al (2000) Independent development of pancreatic alpha- and beta-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation. Diabetes 49:163–176PubMedCrossRef Jensen J, Heller RS, Funder-Nielsen T et al (2000) Independent development of pancreatic alpha- and beta-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation. Diabetes 49:163–176PubMedCrossRef
14.
go back to reference Lee EC, Yu D, Martinez DV et al (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56–65PubMedCrossRef Lee EC, Yu D, Martinez DV et al (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56–65PubMedCrossRef
15.
go back to reference Nagy A, Rossant J, Nagy R, Bramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 90:8424–8428PubMedCrossRef Nagy A, Rossant J, Nagy R, Bramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 90:8424–8428PubMedCrossRef
16.
go back to reference O’Gorman S, Dagenais NA, Qian M, Marchuk Y (1997) Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc Natl Acad Sci USA 94:14602–14607PubMedCrossRef O’Gorman S, Dagenais NA, Qian M, Marchuk Y (1997) Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc Natl Acad Sci USA 94:14602–14607PubMedCrossRef
17.
go back to reference Schreiber FS, Deramaudt TB, Brunner TB et al (2004) Successful growth and characterization of mouse pancreatic ductal cells: functional properties of the Ki-RAS(G12V) oncogene. Gastroenterology 127:250–260PubMedCrossRef Schreiber FS, Deramaudt TB, Brunner TB et al (2004) Successful growth and characterization of mouse pancreatic ductal cells: functional properties of the Ki-RAS(G12V) oncogene. Gastroenterology 127:250–260PubMedCrossRef
18.
go back to reference Mizushima S, Nagata S (1990) pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res 18:5322PubMedCrossRef Mizushima S, Nagata S (1990) pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res 18:5322PubMedCrossRef
19.
go back to reference Sander M, Sussel L, Conners J et al (2000) Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development 127:5533–5540PubMed Sander M, Sussel L, Conners J et al (2000) Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development 127:5533–5540PubMed
20.
go back to reference Nelson SB, Schaffer AE, Sander M (2007) The transcription factors Nkx6.1 and Nkx6.2 possess equivalent activities in promoting beta-cell fate specification in Pdx1+ pancreatic progenitor cells. Development 134:2491–2500PubMedCrossRef Nelson SB, Schaffer AE, Sander M (2007) The transcription factors Nkx6.1 and Nkx6.2 possess equivalent activities in promoting beta-cell fate specification in Pdx1+ pancreatic progenitor cells. Development 134:2491–2500PubMedCrossRef
21.
22.
go back to reference Jorgensen MC, Ahnfelt-Ronne J, Hald J, Madsen OD, Serup P, Hecksher-Sorensen J (2007) An illustrated review of early pancreas development in the mouse. Endocr Rev 28:685–705PubMedCrossRef Jorgensen MC, Ahnfelt-Ronne J, Hald J, Madsen OD, Serup P, Hecksher-Sorensen J (2007) An illustrated review of early pancreas development in the mouse. Endocr Rev 28:685–705PubMedCrossRef
23.
go back to reference Gradwohl G, Dierich A, LeMeur M, Guillemot F (2000) Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 97:1607–1611PubMedCrossRef Gradwohl G, Dierich A, LeMeur M, Guillemot F (2000) Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 97:1607–1611PubMedCrossRef
24.
go back to reference Murtaugh LC (2007) Pancreas and beta-cell development: from the actual to the possible. Development 134:427–438PubMedCrossRef Murtaugh LC (2007) Pancreas and beta-cell development: from the actual to the possible. Development 134:427–438PubMedCrossRef
25.
go back to reference Huang HP, Liu M, El-Hodiri HM, Chu K, Jamrich M, Tsai MJ (2000) Regulation of the pancreatic islet-specific gene BETA2 (neuroD) by neurogenin 3. Mol Cell Biol 20:3292–3307PubMedCrossRef Huang HP, Liu M, El-Hodiri HM, Chu K, Jamrich M, Tsai MJ (2000) Regulation of the pancreatic islet-specific gene BETA2 (neuroD) by neurogenin 3. Mol Cell Biol 20:3292–3307PubMedCrossRef
26.
go back to reference Gasa R, Mrejen C, Leachman N et al (2004) Proendocrine genes coordinate the pancreatic islet differentiation program in vitro. Proc Natl Acad Sci USA 101:13245–13250PubMedCrossRef Gasa R, Mrejen C, Leachman N et al (2004) Proendocrine genes coordinate the pancreatic islet differentiation program in vitro. Proc Natl Acad Sci USA 101:13245–13250PubMedCrossRef
27.
go back to reference Heremans Y, van de Casteele M, In’t Veld P et al (2002) Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J Cell Biol 159:303–312PubMedCrossRef Heremans Y, van de Casteele M, In’t Veld P et al (2002) Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J Cell Biol 159:303–312PubMedCrossRef
28.
go back to reference Oliver-Krasinski JM, Kasner MT, Yang J et al (2009) The diabetes gene Pdx1 regulates the transcriptional network of pancreatic endocrine progenitor cells in mice. J Clin Invest 119:1888–1898PubMedCrossRef Oliver-Krasinski JM, Kasner MT, Yang J et al (2009) The diabetes gene Pdx1 regulates the transcriptional network of pancreatic endocrine progenitor cells in mice. J Clin Invest 119:1888–1898PubMedCrossRef
29.
go back to reference Jiang J, Au M, Lu K et al (2007) Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25:1940–1953PubMedCrossRef Jiang J, Au M, Lu K et al (2007) Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25:1940–1953PubMedCrossRef
30.
go back to reference Miyazaki S, Yamato E, Miyazaki J (2004) Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes 53:1030–1037PubMedCrossRef Miyazaki S, Yamato E, Miyazaki J (2004) Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes 53:1030–1037PubMedCrossRef
31.
go back to reference Jacquemin P, Durviaux SM, Jensen J et al (2000) Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol Cell Biol 20:4445–4454PubMedCrossRef Jacquemin P, Durviaux SM, Jensen J et al (2000) Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol Cell Biol 20:4445–4454PubMedCrossRef
32.
go back to reference Lynn FC, Smith SB, Wilson ME, Yang KY, Nekrep N, German MS (2007) Sox9 coordinates a transcriptional network in pancreatic progenitor cells. Proc Natl Acad Sci USA 104:10500–10505PubMedCrossRef Lynn FC, Smith SB, Wilson ME, Yang KY, Nekrep N, German MS (2007) Sox9 coordinates a transcriptional network in pancreatic progenitor cells. Proc Natl Acad Sci USA 104:10500–10505PubMedCrossRef
33.
go back to reference Lee JC, Smith SB, Watada H et al (2001) Regulation of the pancreatic pro-endocrine gene neurogenin3. Diabetes 50:928–936PubMedCrossRef Lee JC, Smith SB, Watada H et al (2001) Regulation of the pancreatic pro-endocrine gene neurogenin3. Diabetes 50:928–936PubMedCrossRef
34.
go back to reference Maestro MA, Boj SF, Luco RF et al (2003) Hnf6 and Tcf2 (MODY5) are linked in a gene network operating in a precursor cell domain of the embryonic pancreas. Hum Mol Genet 12:3307–3314PubMedCrossRef Maestro MA, Boj SF, Luco RF et al (2003) Hnf6 and Tcf2 (MODY5) are linked in a gene network operating in a precursor cell domain of the embryonic pancreas. Hum Mol Genet 12:3307–3314PubMedCrossRef
35.
go back to reference Hald J, Hjorth JP, German MS, Madsen OD, Serup P, Jensen J (2003) Activated Notch1 prevents differentiation of pancreatic acinar cells and attenuate endocrine development. Dev Biol 260:426–437PubMedCrossRef Hald J, Hjorth JP, German MS, Madsen OD, Serup P, Jensen J (2003) Activated Notch1 prevents differentiation of pancreatic acinar cells and attenuate endocrine development. Dev Biol 260:426–437PubMedCrossRef
36.
go back to reference Murtaugh LC, Stanger BZ, Kwan KM, Melton DA (2003) Notch signaling controls multiple steps of pancreatic differentiation. Proc Natl Acad Sci USA 100:14920–14925PubMedCrossRef Murtaugh LC, Stanger BZ, Kwan KM, Melton DA (2003) Notch signaling controls multiple steps of pancreatic differentiation. Proc Natl Acad Sci USA 100:14920–14925PubMedCrossRef
37.
go back to reference Dichmann DS, Yassin H, Serup P (2006) Analysis of pancreatic endocrine development in GDF11-deficient mice. Dev Dyn 235:3016–3025PubMedCrossRef Dichmann DS, Yassin H, Serup P (2006) Analysis of pancreatic endocrine development in GDF11-deficient mice. Dev Dyn 235:3016–3025PubMedCrossRef
38.
go back to reference Harmon EB, Apelqvist AA, Smart NG, Gu X, Osborne DH, Kim SK (2004) GDF11 modulates NGN3+ islet progenitor cell number and promotes beta-cell differentiation in pancreas development. Development 131:6163–6174PubMedCrossRef Harmon EB, Apelqvist AA, Smart NG, Gu X, Osborne DH, Kim SK (2004) GDF11 modulates NGN3+ islet progenitor cell number and promotes beta-cell differentiation in pancreas development. Development 131:6163–6174PubMedCrossRef
39.
go back to reference Grapin-Botton A, Majithia AR, Melton DA (2001) Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes. Genes Dev 15:444–454PubMedCrossRef Grapin-Botton A, Majithia AR, Melton DA (2001) Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes. Genes Dev 15:444–454PubMedCrossRef
40.
go back to reference Johansson KA, Dursun U, Jordan N et al (2007) Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev Cell 12:457–465PubMedCrossRef Johansson KA, Dursun U, Jordan N et al (2007) Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev Cell 12:457–465PubMedCrossRef
41.
go back to reference Yechoor V, Liu V, Espiritu C et al (2009) Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes. Dev Cell 16:358–373PubMedCrossRef Yechoor V, Liu V, Espiritu C et al (2009) Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes. Dev Cell 16:358–373PubMedCrossRef
Metadata
Title
The Krüppel-like zinc finger protein GLIS3 transactivates neurogenin 3 for proper fetal pancreatic islet differentiation in mice
Authors
Y. Yang
B. H-J. Chang
V. Yechoor
W. Chen
L. Li
M.-J. Tsai
L. Chan
Publication date
01-10-2011
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 10/2011
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-011-2255-9

Other articles of this Issue 10/2011

Diabetologia 10/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine