Skip to main content
Top
Published in: Breast Cancer Research 2/2005

01-06-2005 | Poster Presentation

The interaction of the ER with ERBB2 and PI3K results in elevated levels of AKT and p90RSK in tamoxifen-resistant MCF-7 cells

Authors: S Pancholi, A Lykkesfeldt, SRD Johnston, M Dowsett, L-A Martin

Published in: Breast Cancer Research | Special Issue 2/2005

Login to get access

Excerpt

Despite advances in endocrine therapies, the majority of patients receiving tamoxifen will eventually relapse while retaining functional estrogen receptors. We have previously shown, using an MCF-7 cell line (TamR) resistant to the anti-proliferative effects of tamoxifen, that elevated levels of phosphorylated AKT and p90RSK lead to an apparent ligand-independent phosphorylation of ERα ser167. Analysis of the growth factor receptors in these cells indicated elevated levels of both phosphorylated ERBB2 and total ERBB3, which we postulated formed heterodimers and activated the PI3 kinase pathway leading to elevated AKT. However, our recent data suggest that elevated AKT results from an interaction between ERα and ERBB2. This association is knocked out by treatment with the pure anti-estrogen ICI 182,780 and is absent in the WT parental cell line. Similarly, we have demonstrated an association between the p85 subunit of PI3K and ERα in TamR but not in WT cells. Treatment of the cell lines with the specific AKT inhibitor SH6 and the MEK1/2 inhibitor U0126 caused greater decrease in cell proliferation and concomitant ERα-directed transactivation in the TamR cells versus the WT, confirming that these pathways are integral to the TamR phenotype. To establish whether p90RSK or AKT was responsible for the phosphorylation of the estrogen receptor at ser167, TamR and WT cells were treated with SH6, U0126 or a combination of the two. Blocking either pathway individually had little effect on ERα ser167phosphorylation. However, a combination of the two inhibitors resulted in almost complete loss of phosphorylation. These data were confirmed using siRNA technology to suppress MAPK and AKT expression. Taken together these data suggest that, in this setting, the ER functions via a non-genomic mechanism, associating with ERBB2 and PI3K at the cell membrane leading to activation of both p90RSK and AKT. This in turn leads to phosphorylation of ERα ser167, ultimately regulating cell growth via genomic mechanisms. Although several of these complexes have previously been postulated, to our knowledge this is the first demonstration of this phenomenon in a tamoxifen-resistant cell line. …
Metadata
Title
The interaction of the ER with ERBB2 and PI3K results in elevated levels of AKT and p90RSK in tamoxifen-resistant MCF-7 cells
Authors
S Pancholi
A Lykkesfeldt
SRD Johnston
M Dowsett
L-A Martin
Publication date
01-06-2005
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue Special Issue 2/2005
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr1119

Other articles of this Special Issue 2/2005

Breast Cancer Research 2/2005 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine