Skip to main content
Top
Published in: BMC Pediatrics 1/2013

Open Access 01-12-2013 | Research article

The intensity of physical activity influences bone mineral accrual in childhood: the childhood health, activity and motor performance school (the CHAMPS) study, Denmark

Authors: Malene Heidemann, Christian Mølgaard, Steffen Husby, Anders J Schou, Heidi Klakk, Niels Chr Møller, René Holst, Niels Wedderkopp

Published in: BMC Pediatrics | Issue 1/2013

Login to get access

Abstract

Background

Studies indicate genetic and lifestyle factors can contribute to optimal bone development. In particular, the intensity level of physical activity may have an impact on bone health. This study aims to assess the relationship between physical activity at different intensities and Bone Mineral Content (BMC), Bone Mineral Density (BMD) and Bone Area (BA) accretion.

Methods

This longitudinal study is a part of The CHAMPS study-DK. Whole-body DXA scans were performed at baseline and after two years follows up. BMC, BMD, and BA were measured. The total body less head (TBLH) values were used. Physical activity (PA) was recorded by accelerometers (ActiGraph, model GT3X). Percentages of different PA intensity levels were calculated and log odds of two intensity levels of activity relative to the third level were calculated. Multilevel regression analyses were used to assess the relationship between the categories of physical activity and bone traits.

Results

Of 800 invited children, 742 (93%) accepted to participate. Of these, 682/742 (92%) participated at follow up. Complete datasets were obtained in 602/742 (81%) children. Mean (range) of age was 11.5 years (9.7-13.9). PA at different intensity levels was for boys and girls respectively, sedentary 62% and 64%, low 29% for both genders and moderate to high 9% and 7% of the total time. Mean (range) BMC, BMD, and BA was 1179 g (563–2326), 0.84 g/cm2 (0.64-1.15) and 1393 cm2 (851–2164), respectively. Valid accelerometer data were obtained for a mean of 6.1 days, 13 hours per day.

Conclusions

There 7was a positive relationship between the log odds of moderate to high-level PA versus low level activity and BMC, BMD and BA. Children with an increased proportion of time in moderate to high-level activity as opposed to sedentary and low-level activity achieved positive effects on BMC, BMD and BA.
Appendix
Available only for authorised users
Literature
1.
go back to reference Winsloe C, Earl S, Dennison EM, Cooper C, Harvey NC: Early life factors in the pathogenesis of osteoporosis. Curr Osteoporos Rep. 2009, 7 (4): 140-144. 10.1007/s11914-009-0024-1.CrossRefPubMed Winsloe C, Earl S, Dennison EM, Cooper C, Harvey NC: Early life factors in the pathogenesis of osteoporosis. Curr Osteoporos Rep. 2009, 7 (4): 140-144. 10.1007/s11914-009-0024-1.CrossRefPubMed
2.
go back to reference NIH Consensus Development Panel on Osteoporosis Prevention D, and Therapy: Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001, 285 (6): 785-795. 10.1001/jama.285.6.785.CrossRef NIH Consensus Development Panel on Osteoporosis Prevention D, and Therapy: Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001, 285 (6): 785-795. 10.1001/jama.285.6.785.CrossRef
4.
go back to reference Kanis JA, Melton LJ, Christiansen C, Johnston CC, Khaltaev N: The diagnosis of osteoporosis. J Bone Miner Res. 1994, 9 (8): 1137-1141.CrossRefPubMed Kanis JA, Melton LJ, Christiansen C, Johnston CC, Khaltaev N: The diagnosis of osteoporosis. J Bone Miner Res. 1994, 9 (8): 1137-1141.CrossRefPubMed
5.
go back to reference Gunter KB, Almstedt HC, Janz KF: Physical activity in childhood may be the key to optimizing lifespan skeletal health. Exerc Sport Sci Rev. 2012, 40 (1): 13-21. 10.1097/JES.0b013e318236e5ee.CrossRefPubMedPubMedCentral Gunter KB, Almstedt HC, Janz KF: Physical activity in childhood may be the key to optimizing lifespan skeletal health. Exerc Sport Sci Rev. 2012, 40 (1): 13-21. 10.1097/JES.0b013e318236e5ee.CrossRefPubMedPubMedCentral
6.
go back to reference Berger C, Goltzman D, Langsetmo L, Joseph L, Jackson S, Kreiger N, Tenenhouse A, Davison KS, Josse RG, Prior JC, et al: Peak bone mass from longitudinal data: implications for the prevalence, pathophysiology, and diagnosis of osteoporosis. J Bone Miner Res. 2010, 25 (9): 1948-1957. 10.1002/jbmr.95.CrossRefPubMed Berger C, Goltzman D, Langsetmo L, Joseph L, Jackson S, Kreiger N, Tenenhouse A, Davison KS, Josse RG, Prior JC, et al: Peak bone mass from longitudinal data: implications for the prevalence, pathophysiology, and diagnosis of osteoporosis. J Bone Miner Res. 2010, 25 (9): 1948-1957. 10.1002/jbmr.95.CrossRefPubMed
7.
go back to reference Bachrach LK: Acquisition of optimal bone mass in childhood and adolescence. Trends Endocrinol Metab. 2001, 12 (1): 22-28. 10.1016/S1043-2760(00)00336-2.CrossRefPubMed Bachrach LK: Acquisition of optimal bone mass in childhood and adolescence. Trends Endocrinol Metab. 2001, 12 (1): 22-28. 10.1016/S1043-2760(00)00336-2.CrossRefPubMed
8.
go back to reference Hind K, Burrows M: Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone. 2007, 40 (1): 14-27. 10.1016/j.bone.2006.07.006.CrossRefPubMed Hind K, Burrows M: Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone. 2007, 40 (1): 14-27. 10.1016/j.bone.2006.07.006.CrossRefPubMed
9.
go back to reference Hughes JM, Novotny SA, Wetzsteon RJ, Petit MA: Lessons learned from school-based skeletal loading intervention trials: putting research into practice. Med Sport Sci. 2007, 51: 137-158.CrossRefPubMed Hughes JM, Novotny SA, Wetzsteon RJ, Petit MA: Lessons learned from school-based skeletal loading intervention trials: putting research into practice. Med Sport Sci. 2007, 51: 137-158.CrossRefPubMed
10.
go back to reference Eston RG, Rowlands AV, Ingledew DK: Validity of heart rate, pedometry, and accelerometry for predicting the energy cost of children’s activities. J Appl Physiol. 1998, 84 (1): 362-371.PubMed Eston RG, Rowlands AV, Ingledew DK: Validity of heart rate, pedometry, and accelerometry for predicting the energy cost of children’s activities. J Appl Physiol. 1998, 84 (1): 362-371.PubMed
11.
go back to reference Sasaki JE, John D, Freedson PS: Validation and comparison of ActiGraph activity monitors. J Sci Med Sport. 2011, 14 (5): 411-416. 10.1016/j.jsams.2011.04.003.CrossRefPubMed Sasaki JE, John D, Freedson PS: Validation and comparison of ActiGraph activity monitors. J Sci Med Sport. 2011, 14 (5): 411-416. 10.1016/j.jsams.2011.04.003.CrossRefPubMed
12.
go back to reference Sayers A, Mattocks C, Deere K, Ness A, Riddoch C, Tobias JH: Habitual levels of vigorous, but not moderate or light, physical activity is positively related to cortical bone mass in adolescents. J Clin Endocrinol Metab. 2011, 96 (5): E793-E802. 10.1210/jc.2010-2550.CrossRefPubMedPubMedCentral Sayers A, Mattocks C, Deere K, Ness A, Riddoch C, Tobias JH: Habitual levels of vigorous, but not moderate or light, physical activity is positively related to cortical bone mass in adolescents. J Clin Endocrinol Metab. 2011, 96 (5): E793-E802. 10.1210/jc.2010-2550.CrossRefPubMedPubMedCentral
13.
go back to reference Tobias JH, Steer CD, Mattocks CG, Riddoch C, Ness AR: Habitual levels of physical activity influence bone mass in 11-year-old children from the United Kingdom: findings from a large population-based cohort. J Bone Miner Res. 2007, 22 (1): 101-109.CrossRefPubMedPubMedCentral Tobias JH, Steer CD, Mattocks CG, Riddoch C, Ness AR: Habitual levels of physical activity influence bone mass in 11-year-old children from the United Kingdom: findings from a large population-based cohort. J Bone Miner Res. 2007, 22 (1): 101-109.CrossRefPubMedPubMedCentral
14.
go back to reference Wedderkopp N, Jespersen E, Franz C, Klakk H, Heidemann M, Christiansen C, Moeller NC, Leboeuf-Yde C: Study protocol. The childhood health, activity, and motor performance school study Denmark (the CHAMPS-study DK). BMC Pediatr. 2012, 12 (1): 128-10.1186/1471-2431-12-128.CrossRefPubMedPubMedCentral Wedderkopp N, Jespersen E, Franz C, Klakk H, Heidemann M, Christiansen C, Moeller NC, Leboeuf-Yde C: Study protocol. The childhood health, activity, and motor performance school study Denmark (the CHAMPS-study DK). BMC Pediatr. 2012, 12 (1): 128-10.1186/1471-2431-12-128.CrossRefPubMedPubMedCentral
15.
go back to reference Margulies L, Horlick M, Thornton JC, Wang J, Ioannidou E, Heymsfield SB: Reproducibility of pediatric whole body bone and body composition measures by dual-energy X-ray absorptiometry using the GE Lunar Prodigy. J Clin Densitom. 2005, 8 (3): 298-304. 10.1385/JCD:8:3:298.CrossRefPubMed Margulies L, Horlick M, Thornton JC, Wang J, Ioannidou E, Heymsfield SB: Reproducibility of pediatric whole body bone and body composition measures by dual-energy X-ray absorptiometry using the GE Lunar Prodigy. J Clin Densitom. 2005, 8 (3): 298-304. 10.1385/JCD:8:3:298.CrossRefPubMed
16.
go back to reference Tanner JM: Growth at adolescence. 1962, Blackwell Scientific Publications, 2 edn Tanner JM: Growth at adolescence. 1962, Blackwell Scientific Publications, 2 edn
17.
go back to reference Duke PM, Litt IF, Gross RT: Adolescents’ self-assessment of sexual maturation. Pediatrics. 1980, 66 (6): 918-920.PubMed Duke PM, Litt IF, Gross RT: Adolescents’ self-assessment of sexual maturation. Pediatrics. 1980, 66 (6): 918-920.PubMed
18.
go back to reference Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG: Calibration of two objective measures of physical activity for children. J Sports Sci. 2008, 26 (14): 1557-1565. 10.1080/02640410802334196.CrossRefPubMed Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG: Calibration of two objective measures of physical activity for children. J Sports Sci. 2008, 26 (14): 1557-1565. 10.1080/02640410802334196.CrossRefPubMed
19.
go back to reference Rowlands AV: Accelerometer assessment of physical activity in children: an update. Pediatr Exerc Sci. 2007, 19 (3): 252-266.PubMed Rowlands AV: Accelerometer assessment of physical activity in children: an update. Pediatr Exerc Sci. 2007, 19 (3): 252-266.PubMed
21.
go back to reference Prentice A, Parsons TJ, Cole TJ: Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr. 1994, 60 (6): 837-842.PubMed Prentice A, Parsons TJ, Cole TJ: Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr. 1994, 60 (6): 837-842.PubMed
22.
go back to reference Boreham CA, McKay HA: Physical activity in childhood and bone health. Br J Sports Med. 2011, 45 (11): 877-879. 10.1136/bjsports-2011-090188.CrossRefPubMed Boreham CA, McKay HA: Physical activity in childhood and bone health. Br J Sports Med. 2011, 45 (11): 877-879. 10.1136/bjsports-2011-090188.CrossRefPubMed
23.
go back to reference Rowlands AV, Stiles VH: Accelerometer counts and raw acceleration output in relation to mechanical loading. J Biomech. 2012, 45 (3): 448-454. 10.1016/j.jbiomech.2011.12.006.CrossRefPubMed Rowlands AV, Stiles VH: Accelerometer counts and raw acceleration output in relation to mechanical loading. J Biomech. 2012, 45 (3): 448-454. 10.1016/j.jbiomech.2011.12.006.CrossRefPubMed
24.
go back to reference Trost SG, Pate RR, Freedson PS, Sallis JF, Taylor WC: Using objective physical activity measures with youth: how many days of monitoring are needed?. Med Sci Sports Exerc. 2000, 32 (2): 426-431. 10.1097/00005768-200002000-00025.CrossRefPubMed Trost SG, Pate RR, Freedson PS, Sallis JF, Taylor WC: Using objective physical activity measures with youth: how many days of monitoring are needed?. Med Sci Sports Exerc. 2000, 32 (2): 426-431. 10.1097/00005768-200002000-00025.CrossRefPubMed
25.
go back to reference Kristensen PL, Korsholm L, Moller NC, Wedderkopp N, Andersen LB, Froberg K: Sources of variation in habitual physical activity of children and adolescents: the European youth heart study. Scand J Med Sci Sports. 2008, 18 (3): 298-308. 10.1111/j.1600-0838.2007.00668.x.CrossRefPubMed Kristensen PL, Korsholm L, Moller NC, Wedderkopp N, Andersen LB, Froberg K: Sources of variation in habitual physical activity of children and adolescents: the European youth heart study. Scand J Med Sci Sports. 2008, 18 (3): 298-308. 10.1111/j.1600-0838.2007.00668.x.CrossRefPubMed
26.
go back to reference Sardinha LB, Baptista F, Ekelund U: Objectively measured physical activity and bone strength in 9-year-old boys and girls. Pediatrics. 2008, 122 (3): e728-e736. 10.1542/peds.2007-2573.CrossRefPubMed Sardinha LB, Baptista F, Ekelund U: Objectively measured physical activity and bone strength in 9-year-old boys and girls. Pediatrics. 2008, 122 (3): e728-e736. 10.1542/peds.2007-2573.CrossRefPubMed
27.
go back to reference Harvey NC, Cole ZA, Crozier SR, Kim M, Ntani G, Goodfellow L, Robinson SM, Inskip HM, Godfrey KM, Dennison EM, et al: Physical activity, calcium intake and childhood bone mineral: a population-based cross-sectional study. Osteoporos Int. 2012, 23 (1): 121-130. 10.1007/s00198-011-1641-y.CrossRefPubMed Harvey NC, Cole ZA, Crozier SR, Kim M, Ntani G, Goodfellow L, Robinson SM, Inskip HM, Godfrey KM, Dennison EM, et al: Physical activity, calcium intake and childhood bone mineral: a population-based cross-sectional study. Osteoporos Int. 2012, 23 (1): 121-130. 10.1007/s00198-011-1641-y.CrossRefPubMed
28.
go back to reference Taylor WC, Blair SN, Cummings SS, Wun CC, Malina RM: Childhood and adolescent physical activity patterns and adult physical activity. Med Sci Sports Exerc. 1999, 31 (1): 118-123. 10.1097/00005768-199901000-00019.CrossRefPubMed Taylor WC, Blair SN, Cummings SS, Wun CC, Malina RM: Childhood and adolescent physical activity patterns and adult physical activity. Med Sci Sports Exerc. 1999, 31 (1): 118-123. 10.1097/00005768-199901000-00019.CrossRefPubMed
29.
go back to reference Craigie AM, Lake AA, Kelly SA, Adamson AJ, Mathers JC: Tracking of obesity-related behaviours from childhood to adulthood: a systematic review. Maturitas. 2011, 70 (3): 266-284. 10.1016/j.maturitas.2011.08.005.CrossRefPubMed Craigie AM, Lake AA, Kelly SA, Adamson AJ, Mathers JC: Tracking of obesity-related behaviours from childhood to adulthood: a systematic review. Maturitas. 2011, 70 (3): 266-284. 10.1016/j.maturitas.2011.08.005.CrossRefPubMed
30.
go back to reference Knuth AG, Hallal PC: Temporal trends in physical activity: a systematic review. J Phys Act Health. 2009, 6 (5): 548-559.PubMed Knuth AG, Hallal PC: Temporal trends in physical activity: a systematic review. J Phys Act Health. 2009, 6 (5): 548-559.PubMed
31.
go back to reference Moller NC, Kristensen PL, Wedderkopp N, Andersen LB, Froberg K: Objectively measured habitual physical activity in 1997/1998 vs 2003/2004 in Danish children: the European Youth Heart Study. Scand J Med Sci Sports. 2009, 19 (1): 19-29.CrossRefPubMed Moller NC, Kristensen PL, Wedderkopp N, Andersen LB, Froberg K: Objectively measured habitual physical activity in 1997/1998 vs 2003/2004 in Danish children: the European Youth Heart Study. Scand J Med Sci Sports. 2009, 19 (1): 19-29.CrossRefPubMed
32.
go back to reference Ekelund U, Tomkinson G, Armstrong N: What proportion of youth are physically active? Measurement issues, levels and recent time trends. Br J Sports Med. 2011, 45 (11): 859-865. 10.1136/bjsports-2011-090190.CrossRefPubMed Ekelund U, Tomkinson G, Armstrong N: What proportion of youth are physically active? Measurement issues, levels and recent time trends. Br J Sports Med. 2011, 45 (11): 859-865. 10.1136/bjsports-2011-090190.CrossRefPubMed
33.
go back to reference Krall EA, Dawson-Hughes B: Heritable and life-style determinants of bone mineral density. J Bone Miner Res. 1993, 8 (1): 1-9.CrossRefPubMed Krall EA, Dawson-Hughes B: Heritable and life-style determinants of bone mineral density. J Bone Miner Res. 1993, 8 (1): 1-9.CrossRefPubMed
Metadata
Title
The intensity of physical activity influences bone mineral accrual in childhood: the childhood health, activity and motor performance school (the CHAMPS) study, Denmark
Authors
Malene Heidemann
Christian Mølgaard
Steffen Husby
Anders J Schou
Heidi Klakk
Niels Chr Møller
René Holst
Niels Wedderkopp
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2013
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/1471-2431-13-32

Other articles of this Issue 1/2013

BMC Pediatrics 1/2013 Go to the issue