Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 4/2014

01-04-2014 | Basic Science

The influence of axial length on confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography size measurements: a pilot study

Authors: T. Röck, B. Wilhelm, K. U. Bartz-Schmidt, D. Röck

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 4/2014

Login to get access

Abstract

Purpose

To investigate the influence of axial length on SD-OCT and cSLO size measurements from the Heidelberg Spectralis.

Methods

In this pilot study, eight emmetropic pseudophakic eyes with subretinal visual implant were selected. The axial length was measured in three short (<22.5 mm), three medium (22.51–25.50 mm) and two long (>25.52 mm) eyes. The known size of subretinal implant sensor field (2800 × 2800 μm) was measured on 15 images per eye with cSLO and SD-OCT.

Results

The mean axial length was 20.8 ± 0.8 mm in short eyes, 23.3 ± 0.4 mm in medium eyes, and 26.3 ± 0.5 mm in long eyes respectively. We found in short eyes, in medium eyes and in long eyes a mean value of sensor field size measurements from cSLO of 3327 ± 9 μm, 2800 ± 9 μm and 2589 ± 12 μm and from SD-OCT of 3328 ± 9 μm, 2800 ± 12 μm and 2585 ± 19 μm respectively. The size measurements decreased in SD-OCT and cSLO measurements with longer axial lengths significantly (p < 0.0001).

Conclusion

The present findings demonstrate accuracy of the scaling in cSLO and SD-OCT measurements of the Heidelberg Spectralis for emmetropic medium eyes. The size measurements from SD-OCT to those from cSLO were approximately equal. Caution is recommended when comparing the measured values of short and long eyes with the normative database of the instrument. Further studies with larger sample sizes are needed to confirm findings.
Literature
1.
go back to reference Geitzenauer W, Hitzenberger CK, Schmidt-Erfurth UM (2011) Retinal optical coherence tomography: past, present and future perspectives. Br J Ophthalmol 95:171–177PubMedCrossRef Geitzenauer W, Hitzenberger CK, Schmidt-Erfurth UM (2011) Retinal optical coherence tomography: past, present and future perspectives. Br J Ophthalmol 95:171–177PubMedCrossRef
2.
go back to reference Bae SH, Hwang JS, Yu HG (2012) Comparative analysis of macular microstructure by spectral-domain optical coherence tomography before and after silicone oil removal. Retina 32:1874–1883PubMed Bae SH, Hwang JS, Yu HG (2012) Comparative analysis of macular microstructure by spectral-domain optical coherence tomography before and after silicone oil removal. Retina 32:1874–1883PubMed
3.
go back to reference Bailey TJ, Davis DH, Vance JE, Hyde DR (2012) Spectral-domain optical coherence tomography as a noninvasive method to assess damaged and regenerating adult zebrafish retinas. Invest Ophthalmol Vis Sci 53:3126–3138PubMedCentralPubMedCrossRef Bailey TJ, Davis DH, Vance JE, Hyde DR (2012) Spectral-domain optical coherence tomography as a noninvasive method to assess damaged and regenerating adult zebrafish retinas. Invest Ophthalmol Vis Sci 53:3126–3138PubMedCentralPubMedCrossRef
4.
go back to reference Coscas G, Coscas F, Vismara S, Souied E, Soubrane G (2008) Spectral domain OCT in age-related macular degeneration: preliminary results with Spectralis HRA-OCT. J Fr Ophtalmol 31:353–361PubMedCrossRef Coscas G, Coscas F, Vismara S, Souied E, Soubrane G (2008) Spectral domain OCT in age-related macular degeneration: preliminary results with Spectralis HRA-OCT. J Fr Ophtalmol 31:353–361PubMedCrossRef
5.
go back to reference Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, Gekeler F, Greppmaier U, Harscher A, Kibbel S, Koch J, Kusnyerik A, Peters T, Stingl K, Sachs H, Stett A, Szurman P, Wilhelm B, Wilke R (2011) Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 278:1489–1497PubMedCentralPubMedCrossRef Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, Gekeler F, Greppmaier U, Harscher A, Kibbel S, Koch J, Kusnyerik A, Peters T, Stingl K, Sachs H, Stett A, Szurman P, Wilhelm B, Wilke R (2011) Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 278:1489–1497PubMedCentralPubMedCrossRef
6.
go back to reference Stingl K, Greppmaier U, Wilhelm B, Zrenner E (2010) Subretinal visual implants. Klin Monatsbl Augenheilkd 227:940–945PubMedCrossRef Stingl K, Greppmaier U, Wilhelm B, Zrenner E (2010) Subretinal visual implants. Klin Monatsbl Augenheilkd 227:940–945PubMedCrossRef
7.
go back to reference Stingl K, Bartz-Schmidt KU, Besch D, Braun A, Bruckmann A, Gekeler F, Greppmaier U, Hipp S, Hörtdörfer G, Kernstock C, Koitschev A, Kusnyerik A, Sachs H, Schatz A, Stingl KT, Peters T, Wilhelm B, Zrenner E (2013) Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc Biol Sci 280:20130077PubMedCentralPubMedCrossRef Stingl K, Bartz-Schmidt KU, Besch D, Braun A, Bruckmann A, Gekeler F, Greppmaier U, Hipp S, Hörtdörfer G, Kernstock C, Koitschev A, Kusnyerik A, Sachs H, Schatz A, Stingl KT, Peters T, Wilhelm B, Zrenner E (2013) Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc Biol Sci 280:20130077PubMedCentralPubMedCrossRef
8.
go back to reference Kusnyerik A, Greppmaier U, Wilke R, Gekeler F, Wilhelm B, Sachs HG, Bartz-Schmidt KU, Klose U, Stingl K, Resch MD, Hekmat A, Bruckmann A, Karacs K, Nemeth J, Suveges I, Zrenner E (2012) Positioning of electronic subretinal implants in blind retinitis pigmentosa patients through multimodal assessment of retinal structures. Invest Ophthalmol Vis Sci 53:3748–3755PubMedCrossRef Kusnyerik A, Greppmaier U, Wilke R, Gekeler F, Wilhelm B, Sachs HG, Bartz-Schmidt KU, Klose U, Stingl K, Resch MD, Hekmat A, Bruckmann A, Karacs K, Nemeth J, Suveges I, Zrenner E (2012) Positioning of electronic subretinal implants in blind retinitis pigmentosa patients through multimodal assessment of retinal structures. Invest Ophthalmol Vis Sci 53:3748–3755PubMedCrossRef
9.
go back to reference Leung CK, Cheng AC, Chong KK, Leung KS, Mohamed S, Lau CS, Cheung CY, Chu GC, Lai RY, Pang CC, Lam DS (2007) Optic disc measurements in myopia with optical coherence tomography and confocal scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 48:3178–3183PubMedCrossRef Leung CK, Cheng AC, Chong KK, Leung KS, Mohamed S, Lau CS, Cheung CY, Chu GC, Lai RY, Pang CC, Lam DS (2007) Optic disc measurements in myopia with optical coherence tomography and confocal scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 48:3178–3183PubMedCrossRef
10.
go back to reference Savini G, Barboni P, Parisi V, Carbonelli M (2012) The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectral-domain OCT. Br J Ophthalmol 96:57–61PubMedCrossRef Savini G, Barboni P, Parisi V, Carbonelli M (2012) The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectral-domain OCT. Br J Ophthalmol 96:57–61PubMedCrossRef
11.
go back to reference Bartz-Schmidt KU, Weber J, Heimann K (1994) Validity of two-dimensional data obtained with the Heidelberg retina tomograph as verified by direct measurements in normal optic nerve heads. Ger J Ophthalmol 3:400–405PubMed Bartz-Schmidt KU, Weber J, Heimann K (1994) Validity of two-dimensional data obtained with the Heidelberg retina tomograph as verified by direct measurements in normal optic nerve heads. Ger J Ophthalmol 3:400–405PubMed
12.
go back to reference Rudnicka AR, Burk RO, Edgar DF, Fitzke FW (1998) Magnification characteristics of fundus imaging systems. Ophthalmology 105:2186–2192PubMedCrossRef Rudnicka AR, Burk RO, Edgar DF, Fitzke FW (1998) Magnification characteristics of fundus imaging systems. Ophthalmology 105:2186–2192PubMedCrossRef
13.
go back to reference Rudnicka AR, Edgar DF, Bennett AG (1992) Construction of a model eye and its applications. Ophthalmic Physiol Opt 12:485–490PubMedCrossRef Rudnicka AR, Edgar DF, Bennett AG (1992) Construction of a model eye and its applications. Ophthalmic Physiol Opt 12:485–490PubMedCrossRef
14.
go back to reference Bennett AG, Rudnicka AR, Edgar DF (1994) Improvements on Littmann’s method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalmol 232:361–367PubMedCrossRef Bennett AG, Rudnicka AR, Edgar DF (1994) Improvements on Littmann’s method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalmol 232:361–367PubMedCrossRef
15.
go back to reference Garway-Heath DF, Rudnicka AR, Lowe T, Foster PJ, Fitzke FW, Hitchings RA (1998) Measurement of optic disc size: equivalence of methods to correct for ocular magnification. Br J Ophthalmol 82:643–649PubMedCentralPubMedCrossRef Garway-Heath DF, Rudnicka AR, Lowe T, Foster PJ, Fitzke FW, Hitchings RA (1998) Measurement of optic disc size: equivalence of methods to correct for ocular magnification. Br J Ophthalmol 82:643–649PubMedCentralPubMedCrossRef
16.
go back to reference Sanchez-Cano A, Baraibar B, Pablo LE, Honrubia FM (2008) Magnification characteristics of the optical coherence tomograph STRATUS OCT 3000. Ophthalmic Physiol Opt 28:21–28PubMedCrossRef Sanchez-Cano A, Baraibar B, Pablo LE, Honrubia FM (2008) Magnification characteristics of the optical coherence tomograph STRATUS OCT 3000. Ophthalmic Physiol Opt 28:21–28PubMedCrossRef
17.
go back to reference Bartling H, Wanger P, Martin L (2008) Measurement of optic disc parameters on digital fundus photographs: algorithm development and evaluation. Acta Ophthalmol 86:837–841PubMedCrossRef Bartling H, Wanger P, Martin L (2008) Measurement of optic disc parameters on digital fundus photographs: algorithm development and evaluation. Acta Ophthalmol 86:837–841PubMedCrossRef
18.
go back to reference Moghimi S, Hosseini H, Riddle J, Lee GY, Bitrian E, Giaconi J, Caprioli J, Nouri-Mahdavi K (2012) Measurement of optic disc size and rim area with spectral-domain OCT and scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 53:4519–4530PubMedCrossRef Moghimi S, Hosseini H, Riddle J, Lee GY, Bitrian E, Giaconi J, Caprioli J, Nouri-Mahdavi K (2012) Measurement of optic disc size and rim area with spectral-domain OCT and scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 53:4519–4530PubMedCrossRef
19.
go back to reference Littmann H (1982) Determination of the real size of an object on the fundus of the living eye. Klin Monatsbl Augenheilkd 180:286–289PubMedCrossRef Littmann H (1982) Determination of the real size of an object on the fundus of the living eye. Klin Monatsbl Augenheilkd 180:286–289PubMedCrossRef
20.
go back to reference Health Quality Ontario (2009) Optical coherence tomography for age-related macular degeneration and diabetic macular edema: an evidence-based analysis. Ont Health Technol Assess Ser 9:1–22 Health Quality Ontario (2009) Optical coherence tomography for age-related macular degeneration and diabetic macular edema: an evidence-based analysis. Ont Health Technol Assess Ser 9:1–22
21.
go back to reference Goldenberg D, Soiberman U, Loewenstein A, Goldstein M (2012) Heidelberg spectral-domain optical coherence tomographic findings in retinal artery macroaneurysm. Retina 32:990–995PubMedCrossRef Goldenberg D, Soiberman U, Loewenstein A, Goldstein M (2012) Heidelberg spectral-domain optical coherence tomographic findings in retinal artery macroaneurysm. Retina 32:990–995PubMedCrossRef
22.
go back to reference Oster SF, Mojana F, Bartsch DU, Goldbaum M, Freeman WR (2010) Dynamics of the macular hole-silicone oil tamponade interface with patient positioning as imaged by spectral domain-optical coherence tomography. Retina 30:924–992PubMedCentralPubMedCrossRef Oster SF, Mojana F, Bartsch DU, Goldbaum M, Freeman WR (2010) Dynamics of the macular hole-silicone oil tamponade interface with patient positioning as imaged by spectral domain-optical coherence tomography. Retina 30:924–992PubMedCentralPubMedCrossRef
23.
go back to reference Jumper JM, Gallemore RP, McCuen BW 2nd, Toth CA (2000) Features of macular hole closure in the early postoperative period using optical coherence tomography. Retina 20:232–237PubMedCrossRef Jumper JM, Gallemore RP, McCuen BW 2nd, Toth CA (2000) Features of macular hole closure in the early postoperative period using optical coherence tomography. Retina 20:232–237PubMedCrossRef
24.
go back to reference Stalmans P, Benz MS, Gandorfer A, Kampik A, Girach A, Pakola S, Haller JA, MIVI-TRUST Study Group (2012) Enzymatic vitreolysis with ocriplasmin for vitreomacular traction and macular holes. N Engl J Med 367:606–615PubMedCrossRef Stalmans P, Benz MS, Gandorfer A, Kampik A, Girach A, Pakola S, Haller JA, MIVI-TRUST Study Group (2012) Enzymatic vitreolysis with ocriplasmin for vitreomacular traction and macular holes. N Engl J Med 367:606–615PubMedCrossRef
Metadata
Title
The influence of axial length on confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography size measurements: a pilot study
Authors
T. Röck
B. Wilhelm
K. U. Bartz-Schmidt
D. Röck
Publication date
01-04-2014
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 4/2014
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-014-2578-6

Other articles of this Issue 4/2014

Graefe's Archive for Clinical and Experimental Ophthalmology 4/2014 Go to the issue