Skip to main content
Top
Published in: Trials 1/2016

Open Access 01-12-2016 | Study protocol

The influence of a home-based exercise intervention on human health indices in individuals with chronic spinal cord injury (HOMEX-SCI): study protocol for a randomised controlled trial

Authors: Tom E. Nightingale, Jean-Philippe Walhin, James E. Turner, Dylan Thompson, James L. J. Bilzon

Published in: Trials | Issue 1/2016

Login to get access

Abstract

Background

Spinal cord injury (SCI) creates a complex pathology that can lead to an increase in sedentary behaviours and deleterious changes in body composition. Consequently, individuals with SCI are at increased risk of developing cardiovascular disease and type-2 diabetes mellitus. While the role of physical activity on the reduction of chronic disease risk is well documented in non-disabled individuals the evidence is less conclusive for persons with SCI. The aim of this methodological paper is to outline the design of a study that will assess the role of a home-based exercise intervention on biomarkers of metabolic and cardiovascular health in persons with SCI: the HOMEX-SCI study.

Methods/design

Eligible participants will be inactive (physical activity level ≤1.60) individuals, with a chronic (more than 1 year) spinal cord lesion between the second thoracic and the fifth lumbar vertebrae, and aged between 18 and 65 years. Following baseline laboratory testing and lifestyle monitoring, participants will be randomly allocated to a control (CON) group or a 6-week home-based exercise intervention (INT) group. The INT consists of 45 minutes of moderate-intensity (60–65 % peak oxygen uptake) arm-crank exercise four times per week. Participants assigned to the CON group will be asked to maintain their normal lifestyle. The main outcomes of this study (biomarkers of metabolic and cardiovascular health) are obtained from venous blood samples, collected in the fasted and postprandial state. Eight other measurement categories will be assessed: (1) body composition, (2) physical activity, (3) energy intake, (4) measures of health and wellbeing, (5) resting metabolic rate, heart rate and blood pressure, (6) aerobic capacity, (7) immune function, and (8) adipose tissue gene expression.

Discussion

This study will explore the feasibility of home-based moderate-intensity exercise and ascertain its impact on metabolic and cardiovascular health in comparison to a lifestyle maintenance CON group. Findings from this study may help to inform new evidence-based physical activity guidelines and also help to elucidate the physiological mechanisms whereby exercise might exert beneficial effects in persons with chronic SCI. The results will also act as a scientific platform for further intervention studies in other diverse and at-risk populations.

Trial registration

International Standard Randomised Controlled Trial Number: ISRCTN57096451. Registered on 11 July 2014.
Literature
1.
go back to reference Middleton JW, Dayton A, Walsh J, Rutkowski SB, Leong G, Duong S. Life expectancy after spinal cord injury: a 50-year study. Spinal Cord. 2012;50(11):803–11.CrossRefPubMed Middleton JW, Dayton A, Walsh J, Rutkowski SB, Leong G, Duong S. Life expectancy after spinal cord injury: a 50-year study. Spinal Cord. 2012;50(11):803–11.CrossRefPubMed
2.
go back to reference Groah SL, Charlifue S, Tate D, Jensen MP, Molton IR, Forchheimer M, Krause JS, Lammertse DP, Campbell M. Spinal cord injury and aging challenges and recommendations for future research. Am J Phys Med Rehabil. 2012;91(1):80–93. Groah SL, Charlifue S, Tate D, Jensen MP, Molton IR, Forchheimer M, Krause JS, Lammertse DP, Campbell M. Spinal cord injury and aging challenges and recommendations for future research. Am J Phys Med Rehabil. 2012;91(1):80–93.
3.
go back to reference LaVela SL, Evans CT, Prohaska TR, Miskevics S, Ganesh SP, Weaver FM. Males aging with a spinal cord injury: prevalence of cardiovascular and metabolic conditions. Arch Phys Med Rehabil. 2012;93(1):90–5.CrossRefPubMed LaVela SL, Evans CT, Prohaska TR, Miskevics S, Ganesh SP, Weaver FM. Males aging with a spinal cord injury: prevalence of cardiovascular and metabolic conditions. Arch Phys Med Rehabil. 2012;93(1):90–5.CrossRefPubMed
4.
go back to reference van den Berg MEL, Castellote JM, de Pedro-Cuesta J, Mahillo-Fernandez I. Survival after spinal cord injury: a systematic review. J Neurotrauma. 2010;27(8):1517–28.CrossRefPubMed van den Berg MEL, Castellote JM, de Pedro-Cuesta J, Mahillo-Fernandez I. Survival after spinal cord injury: a systematic review. J Neurotrauma. 2010;27(8):1517–28.CrossRefPubMed
5.
go back to reference Garshick E, Kelley A, Cohen SA, Garrison A, Tun CG, Gagnon D, Brown R. A prospective assessment of mortality in chronic spinal cord injury. Spinal Cord. 2005;43(7):408–16. Garshick E, Kelley A, Cohen SA, Garrison A, Tun CG, Gagnon D, Brown R. A prospective assessment of mortality in chronic spinal cord injury. Spinal Cord. 2005;43(7):408–16.
6.
go back to reference LaVela SL, Weaver FM, Goldstein B, Chen K, Miskevics S, Rajan S, Gater DR. Diabetes mellitus in individuals with spinal cord injury or disorder. J Spinal Cord Med. 2006;29(4):387–95. LaVela SL, Weaver FM, Goldstein B, Chen K, Miskevics S, Rajan S, Gater DR. Diabetes mellitus in individuals with spinal cord injury or disorder. J Spinal Cord Med. 2006;29(4):387–95.
7.
go back to reference Cragg JJ, Noonan VK, Dvorak M, Krassioukov A, Mancini GBJ, Borisoff JF. Spinal cord injury and type 2 diabetes. Results from a population health survey. Neurology. 2013;81(21):1864–8.CrossRefPubMedPubMedCentral Cragg JJ, Noonan VK, Dvorak M, Krassioukov A, Mancini GBJ, Borisoff JF. Spinal cord injury and type 2 diabetes. Results from a population health survey. Neurology. 2013;81(21):1864–8.CrossRefPubMedPubMedCentral
8.
go back to reference Lai YJ, Lin CL, Chang YJ, Lin MC, Lee ST, Sung FC, Lee WY, Kao CH. Spinal cord injury increases the risk of type 2 diabetes: a population-based cohort study. Spine J. 2014;14(9):1957–64. Lai YJ, Lin CL, Chang YJ, Lin MC, Lee ST, Sung FC, Lee WY, Kao CH. Spinal cord injury increases the risk of type 2 diabetes: a population-based cohort study. Spine J. 2014;14(9):1957–64.
9.
go back to reference Bauman WA, Spungen AM. Disorders of carbohydrate and lipid-metabolism in veterans with paraplegia or quadriplegia—a model of premature aging. Metab-Clin Exp. 1994;43(6):749–56.CrossRefPubMed Bauman WA, Spungen AM. Disorders of carbohydrate and lipid-metabolism in veterans with paraplegia or quadriplegia—a model of premature aging. Metab-Clin Exp. 1994;43(6):749–56.CrossRefPubMed
10.
go back to reference Kesaniemi YA, Danforth E, Jensen MD, Kopelman PG, Lefebvre P, Reeder BA. Dose-response issues concerning physical activity and health: an evidence-based symposium. Med Sci Sports Exerc. 2001;33(6):S351–8.PubMed Kesaniemi YA, Danforth E, Jensen MD, Kopelman PG, Lefebvre P, Reeder BA. Dose-response issues concerning physical activity and health: an evidence-based symposium. Med Sci Sports Exerc. 2001;33(6):S351–8.PubMed
11.
go back to reference Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, Macera CA, Heath GW, Thompson PD, Bauman A. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1423–34. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, Macera CA, Heath GW, Thompson PD, Bauman A. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1423–34.
12.
go back to reference Glaser RM, Janssen TWJ, Suryaprasad AG, Gupta SC, Mathews T. The physiology of exercise. In: Sowell TT, editor. Physical fitness: a guide for individuals with spinal cord injury. Baltimore: Department of Veterans Affairs; 1996. p. 110. Glaser RM, Janssen TWJ, Suryaprasad AG, Gupta SC, Mathews T. The physiology of exercise. In: Sowell TT, editor. Physical fitness: a guide for individuals with spinal cord injury. Baltimore: Department of Veterans Affairs; 1996. p. 110.
13.
go back to reference Nash MS. Exercise as a health-promoting activity following spinal cord injury. J Neurol Phys Ther. 2005;29(2):87–106.CrossRefPubMed Nash MS. Exercise as a health-promoting activity following spinal cord injury. J Neurol Phys Ther. 2005;29(2):87–106.CrossRefPubMed
14.
go back to reference Myers J, Lee M, Kiratli J. Cardiovascular disease in spinal cord injury. Am J Phys Med Rehabil. 2007;86(2):142–52.CrossRefPubMed Myers J, Lee M, Kiratli J. Cardiovascular disease in spinal cord injury. Am J Phys Med Rehabil. 2007;86(2):142–52.CrossRefPubMed
15.
go back to reference Rimmer JH, Riley B, Wang E, Rauworth A, Jurkowski J. Physical activity participation among persons with disabilities—barriers and facilitators. Am J Prev Med. 2004;26(5):419–25.CrossRefPubMed Rimmer JH, Riley B, Wang E, Rauworth A, Jurkowski J. Physical activity participation among persons with disabilities—barriers and facilitators. Am J Prev Med. 2004;26(5):419–25.CrossRefPubMed
17.
go back to reference Kehn M, Kroll T. Staying physically active after spinal cord injury: a qualitative exploration of barriers and facilitators to exercise participation. BMC Public Health. 2009;9:168.CrossRefPubMedPubMedCentral Kehn M, Kroll T. Staying physically active after spinal cord injury: a qualitative exploration of barriers and facilitators to exercise participation. BMC Public Health. 2009;9:168.CrossRefPubMedPubMedCentral
18.
go back to reference Craig A, Tran Y, Wijesuriya N, Middleton J. Fatigue and tiredness in people with spinal cord injury. J Psychosomat Res. 2012;73(3):205–10.CrossRef Craig A, Tran Y, Wijesuriya N, Middleton J. Fatigue and tiredness in people with spinal cord injury. J Psychosomat Res. 2012;73(3):205–10.CrossRef
19.
go back to reference Buchholz AC, McGillivray CF, Pencharz PB. Physical activity levels are low in free-living adults with chronic paraplegia. Obes Res. 2003;11(4):563–70.CrossRefPubMed Buchholz AC, McGillivray CF, Pencharz PB. Physical activity levels are low in free-living adults with chronic paraplegia. Obes Res. 2003;11(4):563–70.CrossRefPubMed
20.
go back to reference Tanhoffer RA, Tanhoffer AIP, Raymond J, Hills AP, Davis GM. Exercise, energy expenditure, and body composition in people with spinal cord injury. J Phys Act Health. 2014;11(7):1393–400.CrossRefPubMed Tanhoffer RA, Tanhoffer AIP, Raymond J, Hills AP, Davis GM. Exercise, energy expenditure, and body composition in people with spinal cord injury. J Phys Act Health. 2014;11(7):1393–400.CrossRefPubMed
21.
go back to reference Tanhoffer RA, Tanhoffer AIP, Raymond J, Johnson NA, Hills AP, Davis GM. Energy expenditure in individuals with spinal cord injury quantified by doubly labeled water and a multi-sensor armband. J Phys Act Health. 2015;12(2):163–70.CrossRefPubMed Tanhoffer RA, Tanhoffer AIP, Raymond J, Johnson NA, Hills AP, Davis GM. Energy expenditure in individuals with spinal cord injury quantified by doubly labeled water and a multi-sensor armband. J Phys Act Health. 2015;12(2):163–70.CrossRefPubMed
22.
go back to reference Noreau L, Shephard RJ. Spinal-cord injury, exercise and quality-of-life. Sports Med. 1995;20(4):226–50.CrossRefPubMed Noreau L, Shephard RJ. Spinal-cord injury, exercise and quality-of-life. Sports Med. 1995;20(4):226–50.CrossRefPubMed
23.
go back to reference Spungen AM, Adkins RH, Stewart CA, Wang J, Pierson RN, Waters RL, Bauman WA. Factors influencing body composition in persons with spinal cord injury: a cross-sectional study. J Appl Physiol. 2003;95(6):2398–407. Spungen AM, Adkins RH, Stewart CA, Wang J, Pierson RN, Waters RL, Bauman WA. Factors influencing body composition in persons with spinal cord injury: a cross-sectional study. J Appl Physiol. 2003;95(6):2398–407.
24.
go back to reference Gorgey AS, Mather KJ, Gater DR. Central adiposity associations to carbohydrate and lipid metabolism in individuals with complete motor spinal cord injury. Metabolism. 2011;60(6):843–51.CrossRefPubMed Gorgey AS, Mather KJ, Gater DR. Central adiposity associations to carbohydrate and lipid metabolism in individuals with complete motor spinal cord injury. Metabolism. 2011;60(6):843–51.CrossRefPubMed
25.
go back to reference Castro MJ, Apple DF, Staron RS, Campos GER, Dudley GA. Influence of complete spinal cord injury on skeletal muscle within 6 mo of injury. J Appl Physiol. 1999;86(1):350–8.PubMed Castro MJ, Apple DF, Staron RS, Campos GER, Dudley GA. Influence of complete spinal cord injury on skeletal muscle within 6 mo of injury. J Appl Physiol. 1999;86(1):350–8.PubMed
26.
go back to reference Gorgey AS, Dudley GA. Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury. Spinal Cord. 2007;45(4):304–9.PubMed Gorgey AS, Dudley GA. Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury. Spinal Cord. 2007;45(4):304–9.PubMed
27.
go back to reference Edwards LA, Bugaresti JM, Buchholz AC. Visceral adipose tissue and the ratio of visceral to subcutaneous adipose tissue are greater in adults with than in those without spinal cord injury, despite matching waist circumferences. Am J Clin Nutr. 2008;87(3):600–7.PubMed Edwards LA, Bugaresti JM, Buchholz AC. Visceral adipose tissue and the ratio of visceral to subcutaneous adipose tissue are greater in adults with than in those without spinal cord injury, despite matching waist circumferences. Am J Clin Nutr. 2008;87(3):600–7.PubMed
28.
go back to reference Gorgey AS, Mather KJ, Poarch HJ, Gater DR. Influence of motor complete spinal cord injury on visceral and subcutaneous adipose tissue measured by multi-axial magnetic resonance imaging. J Spinal Cord Med. 2011;34(1):99–109.CrossRefPubMedPubMedCentral Gorgey AS, Mather KJ, Poarch HJ, Gater DR. Influence of motor complete spinal cord injury on visceral and subcutaneous adipose tissue measured by multi-axial magnetic resonance imaging. J Spinal Cord Med. 2011;34(1):99–109.CrossRefPubMedPubMedCentral
29.
go back to reference Cirnigliaro CM, LaFountaine MF, Dengel DR, Bosch TA, Emmons RR, Kirshblum SC, et al. Visceral adiposity in persons with chronic spinal cord injury determined by dual energy X-ray absorptiometry. Obesity (Silver Spring, Md). 2015;23(9):1811–7.CrossRef Cirnigliaro CM, LaFountaine MF, Dengel DR, Bosch TA, Emmons RR, Kirshblum SC, et al. Visceral adiposity in persons with chronic spinal cord injury determined by dual energy X-ray absorptiometry. Obesity (Silver Spring, Md). 2015;23(9):1811–7.CrossRef
30.
go back to reference Duckworth WC, Solomon SS, Jallepalli P, Heckemeyer C, Finnern J, Powers A. Glucose-intolerance due to insulin resistance in patients with spinal-cord injuries. Diabetes. 1980;29(11):906–10.CrossRefPubMed Duckworth WC, Solomon SS, Jallepalli P, Heckemeyer C, Finnern J, Powers A. Glucose-intolerance due to insulin resistance in patients with spinal-cord injuries. Diabetes. 1980;29(11):906–10.CrossRefPubMed
31.
go back to reference Bauman WA, Spungen AM. Coronary heart disease in individuals with spinal cord injury: assessment of risk factors. Spinal Cord. 2008;46(7):466–76.CrossRefPubMed Bauman WA, Spungen AM. Coronary heart disease in individuals with spinal cord injury: assessment of risk factors. Spinal Cord. 2008;46(7):466–76.CrossRefPubMed
32.
go back to reference Bauman WA, Spungen AM, Zhong YG, Rothstein JL, Petry C, Gordon SK. Depressed serum high-density-lipoprotein cholesterol levels in veterans with spinal-cord injury. Paraplegia. 1992;30(10):697–703.CrossRefPubMed Bauman WA, Spungen AM, Zhong YG, Rothstein JL, Petry C, Gordon SK. Depressed serum high-density-lipoprotein cholesterol levels in veterans with spinal-cord injury. Paraplegia. 1992;30(10):697–703.CrossRefPubMed
33.
go back to reference Frost F, Roach MJ, Kushner I, Schreiber P. Inflammatory C-reactive protein and cytokine levels in asymptomatic people with chronic spinal cord injury. Arch Phys Med Rehabil. 2005;86(2):312–7.CrossRefPubMed Frost F, Roach MJ, Kushner I, Schreiber P. Inflammatory C-reactive protein and cytokine levels in asymptomatic people with chronic spinal cord injury. Arch Phys Med Rehabil. 2005;86(2):312–7.CrossRefPubMed
34.
go back to reference Davies AL, Hayes KC, Dekaban GA. Clinical correlates of elevated serum concentrations of cytokines and autoantibodies in patients with spinal cord injury. Arch Phys Med Rehabil. 2007;88(11):1384–93.CrossRefPubMed Davies AL, Hayes KC, Dekaban GA. Clinical correlates of elevated serum concentrations of cytokines and autoantibodies in patients with spinal cord injury. Arch Phys Med Rehabil. 2007;88(11):1384–93.CrossRefPubMed
35.
go back to reference Gibson AE, Buchholz AC, Martin Ginis KA. C-Reactive protein in adults with chronic spinal cord injury: increased chronic inflammation in tetraplegia vs paraplegia. Spinal Cord. 2008;46(9):616–21.CrossRefPubMed Gibson AE, Buchholz AC, Martin Ginis KA. C-Reactive protein in adults with chronic spinal cord injury: increased chronic inflammation in tetraplegia vs paraplegia. Spinal Cord. 2008;46(9):616–21.CrossRefPubMed
37.
go back to reference Hansson GK. Mechanisms of disease—inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–95.CrossRefPubMed Hansson GK. Mechanisms of disease—inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–95.CrossRefPubMed
39.
go back to reference Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor-necrosis-factor-alpha—direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91.CrossRefPubMed Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor-necrosis-factor-alpha—direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91.CrossRefPubMed
40.
go back to reference Zhang YY, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homolog. Nature. 1994;372(6505):425–32.CrossRefPubMed Zhang YY, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homolog. Nature. 1994;372(6505):425–32.CrossRefPubMed
42.
go back to reference Maury E, Brichard SM. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol. 2010;314(1):1–16.CrossRefPubMed Maury E, Brichard SM. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol. 2010;314(1):1–16.CrossRefPubMed
43.
go back to reference Huang TS, Wang YH, Chen SY. The relation of serum leptin to body mass index and to serum cortisol in men with spinal cord injury. Arch Phys Med Rehabil. 2000;81(12):1582–6.CrossRefPubMed Huang TS, Wang YH, Chen SY. The relation of serum leptin to body mass index and to serum cortisol in men with spinal cord injury. Arch Phys Med Rehabil. 2000;81(12):1582–6.CrossRefPubMed
44.
go back to reference Maruyama Y, Mizuguchi M, Yaginuma T, Kusaka M, Yoshida H, Yokoyama K, Kasahara Y, Hosoya T. Serum leptin, abdominal obesity and the metabolic syndrome in individuals with chronic spinal cord injury. Spinal Cord. 2008;46(7):494–9. Maruyama Y, Mizuguchi M, Yaginuma T, Kusaka M, Yoshida H, Yokoyama K, Kasahara Y, Hosoya T. Serum leptin, abdominal obesity and the metabolic syndrome in individuals with chronic spinal cord injury. Spinal Cord. 2008;46(7):494–9.
45.
go back to reference Louie JK, Acosta M, Samuel MC, Schechter R, Vugia DJ, Harriman K, Matyas BT, Calif Pandem HNWG. A novel risk factor for a novel virus: obesity and 2009 pandemic influenza a (H1N1). Clin Infect Dis. 2011;52(3):301–12. Louie JK, Acosta M, Samuel MC, Schechter R, Vugia DJ, Harriman K, Matyas BT, Calif Pandem HNWG. A novel risk factor for a novel virus: obesity and 2009 pandemic influenza a (H1N1). Clin Infect Dis. 2011;52(3):301–12.
46.
go back to reference O’Shea D, Corrigan M, Dunne MR, Jackson R, Woods C, Gaoatswe G, Moynagh PN, O'Connell J, Hogan AE. Changes in human dendritic cell number and function in severe obesity may contribute to increased susceptibility to viral infection. Int J Obes. 2013;37(11):1510–3. O’Shea D, Corrigan M, Dunne MR, Jackson R, Woods C, Gaoatswe G, Moynagh PN, O'Connell J, Hogan AE. Changes in human dendritic cell number and function in severe obesity may contribute to increased susceptibility to viral infection. Int J Obes. 2013;37(11):1510–3.
47.
go back to reference Sheridan PA, Paich HA, Handy J, Karlsson EA, Hudgens MG, Sammon AB, Holland LA, Weir S, Noah TL, Beck MA. Obesity is associated with impaired immune response to influenza vaccination in humans. Int J Obes. 2012;36(8):1072–7. Sheridan PA, Paich HA, Handy J, Karlsson EA, Hudgens MG, Sammon AB, Holland LA, Weir S, Noah TL, Beck MA. Obesity is associated with impaired immune response to influenza vaccination in humans. Int J Obes. 2012;36(8):1072–7.
48.
go back to reference Keylock KT, Lowder T, Leifheit KA, Cook M, Mariani RA, Ross K, Kim K, Chapman-Novakofski K, McAuley E, Woods JA. Higher antibody, but not cell-mediated, responses to vaccination in high physically fit elderly. J Appl Physiol. 2007;102(3):1090–8. Keylock KT, Lowder T, Leifheit KA, Cook M, Mariani RA, Ross K, Kim K, Chapman-Novakofski K, McAuley E, Woods JA. Higher antibody, but not cell-mediated, responses to vaccination in high physically fit elderly. J Appl Physiol. 2007;102(3):1090–8.
49.
go back to reference Turner JE, Aldred S, Witard OC, Drayson MT, Moss PM, Bosch JA. Latent Cytomegalovirus infection amplifies CD8 T-lymphocyte mobilisation and egress in response to exercise. Brain Behav Immun. 2010;24(8):1362–70.CrossRefPubMed Turner JE, Aldred S, Witard OC, Drayson MT, Moss PM, Bosch JA. Latent Cytomegalovirus infection amplifies CD8 T-lymphocyte mobilisation and egress in response to exercise. Brain Behav Immun. 2010;24(8):1362–70.CrossRefPubMed
50.
go back to reference Leicht CA, Goosey-Toffrey VL, Bishop NC. Spinal cord injury: known and possible influences on the immune response to exercise. Exerc Immunol Rev. 2013;19:144–63.PubMed Leicht CA, Goosey-Toffrey VL, Bishop NC. Spinal cord injury: known and possible influences on the immune response to exercise. Exerc Immunol Rev. 2013;19:144–63.PubMed
51.
go back to reference Bergouignan A, Rudwill F, Simon C, Blanc S. Physical inactivity as the culprit of metabolic inflexibility: evidence from bed-rest studies. J Appl Physiol. 2011;111(4):1201–10.CrossRefPubMed Bergouignan A, Rudwill F, Simon C, Blanc S. Physical inactivity as the culprit of metabolic inflexibility: evidence from bed-rest studies. J Appl Physiol. 2011;111(4):1201–10.CrossRefPubMed
52.
go back to reference Evans N, Wingo B, Sasso E, Hicks A, Gorgey AS, Harness E. Exercise recommendations and considerations for persons with spinal cord injury. Arch Phys Med Rehabil. 2015;96(9):1749–50.CrossRefPubMed Evans N, Wingo B, Sasso E, Hicks A, Gorgey AS, Harness E. Exercise recommendations and considerations for persons with spinal cord injury. Arch Phys Med Rehabil. 2015;96(9):1749–50.CrossRefPubMed
53.
go back to reference Martin Ginis KA, Latimer AE, Buchholz AC, Bray SR, Craven BC, Hayes KC, Hicks AL, McColl MA, Potter PJ, Smith K, et al. Establishing evidence-based physical activity guidelines: methods for the Study of Health and Activity in People with Spinal Cord Injury (SHAPE SCI). Spinal Cord. 2007;46(3):216–21. Martin Ginis KA, Latimer AE, Buchholz AC, Bray SR, Craven BC, Hayes KC, Hicks AL, McColl MA, Potter PJ, Smith K, et al. Establishing evidence-based physical activity guidelines: methods for the Study of Health and Activity in People with Spinal Cord Injury (SHAPE SCI). Spinal Cord. 2007;46(3):216–21.
54.
go back to reference Hicks AL, Ginis KAM, Pelletier CA, Ditor DS, Foulon B, Wolfe DL. The effects of exercise training on physical capacity, strength, body composition and functional performance among adults with spinal cord injury: a systematic review. Spinal Cord. 2011;49(11):1103–27.CrossRefPubMed Hicks AL, Ginis KAM, Pelletier CA, Ditor DS, Foulon B, Wolfe DL. The effects of exercise training on physical capacity, strength, body composition and functional performance among adults with spinal cord injury: a systematic review. Spinal Cord. 2011;49(11):1103–27.CrossRefPubMed
55.
go back to reference Nery MB, Driver S, Vanderbom KA. Systematic framework to classify the status of research on spinal cord injury and physical activity. Arch Phys Med Rehabil. 2013;94(10):2027–31.CrossRefPubMed Nery MB, Driver S, Vanderbom KA. Systematic framework to classify the status of research on spinal cord injury and physical activity. Arch Phys Med Rehabil. 2013;94(10):2027–31.CrossRefPubMed
56.
go back to reference Carlson KF, Wilt TJ, Taylor BC, Goldish GD, Niewoehner CB, Shamliyan TA, Kane RL. Effect of exercise on disorders of carbohydrate and lipid metabolism in adults with traumatic spinal cord injury: systematic review of the evidence. J Spinal Cord Med. 2009;32(4):361–78. Carlson KF, Wilt TJ, Taylor BC, Goldish GD, Niewoehner CB, Shamliyan TA, Kane RL. Effect of exercise on disorders of carbohydrate and lipid metabolism in adults with traumatic spinal cord injury: systematic review of the evidence. J Spinal Cord Med. 2009;32(4):361–78.
57.
go back to reference El-Sayed MS, Younesian A. Lipid profiles are influenced by arm cranking exercise and training in individuals with spinal cord injury. Spinal Cord. 2005;43(5):299–305.CrossRefPubMed El-Sayed MS, Younesian A. Lipid profiles are influenced by arm cranking exercise and training in individuals with spinal cord injury. Spinal Cord. 2005;43(5):299–305.CrossRefPubMed
58.
go back to reference Rosety-Rodriguez M, Camacho A, Rosety I, Fornieles G, Rosety MA, Diaz AJ, Bernardi M, Rosety M, Ordonez FJ. Low-grade systemic inflammation and leptin levels were improved by arm cranking exercise in adults with chronic spinal cord injury. Arch Phys Med Rehabil. 2014;95(2):297–302. Rosety-Rodriguez M, Camacho A, Rosety I, Fornieles G, Rosety MA, Diaz AJ, Bernardi M, Rosety M, Ordonez FJ. Low-grade systemic inflammation and leptin levels were improved by arm cranking exercise in adults with chronic spinal cord injury. Arch Phys Med Rehabil. 2014;95(2):297–302.
59.
go back to reference Bakkum AJT, Paulson TAW, Bishop NC, Goosey-Tolfrey VL, Stolwijk-Swuste JM, van Kuppevelt DJ, de Groot S, Janssen TWJ. Effects of hybrid cycle and handcycle exercise on cardiovascular disease risk factors in people with spinal cord injury: a randomized controlled trial. J Rehabil Med. 2015;47(6):523–30. Bakkum AJT, Paulson TAW, Bishop NC, Goosey-Tolfrey VL, Stolwijk-Swuste JM, van Kuppevelt DJ, de Groot S, Janssen TWJ. Effects of hybrid cycle and handcycle exercise on cardiovascular disease risk factors in people with spinal cord injury: a randomized controlled trial. J Rehabil Med. 2015;47(6):523–30.
60.
go back to reference Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:32.CrossRef Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:32.CrossRef
61.
go back to reference Pulido JME, Salazar MA. Changes in insulin sensitivity, secretion and glucose effectiveness during menstrual cycle. Arch Med Res. 1999;30(1):19–22.CrossRef Pulido JME, Salazar MA. Changes in insulin sensitivity, secretion and glucose effectiveness during menstrual cycle. Arch Med Res. 1999;30(1):19–22.CrossRef
62.
go back to reference Nary DE, Froehlich-Grobe K, Aaronson L. Recruitment issues in a randomized controlled exercise trial targeting wheelchair users. Contemp Clin Trials. 2011;32(2):188–95.CrossRefPubMed Nary DE, Froehlich-Grobe K, Aaronson L. Recruitment issues in a randomized controlled exercise trial targeting wheelchair users. Contemp Clin Trials. 2011;32(2):188–95.CrossRefPubMed
63.
go back to reference Ross S, Grant A, Counsell C, Gillespie W, Russell I, Prescott R. Barriers to participation in randomised controlled trials: a systematic review. J Clin Epidemiol. 1999;52(12):1143–56.CrossRefPubMed Ross S, Grant A, Counsell C, Gillespie W, Russell I, Prescott R. Barriers to participation in randomised controlled trials: a systematic review. J Clin Epidemiol. 1999;52(12):1143–56.CrossRefPubMed
64.
go back to reference Kosma M, Cardinal BJ, McCubbin JA. Recruitment techniques among understudied populations and their implications for physical activity promotion. Quest. 2004;56(4):413–20.CrossRef Kosma M, Cardinal BJ, McCubbin JA. Recruitment techniques among understudied populations and their implications for physical activity promotion. Quest. 2004;56(4):413–20.CrossRef
65.
go back to reference Yilmaz DDCB. Recruitment of spinal cord injury patients to clinical trials: challenges and solutions. Top Spinal Cord Inj Rehabil. 2006;11(3):12–23.CrossRef Yilmaz DDCB. Recruitment of spinal cord injury patients to clinical trials: challenges and solutions. Top Spinal Cord Inj Rehabil. 2006;11(3):12–23.CrossRef
66.
go back to reference Bell KR, Hammond F, Hart T, Bickett AK, Temkin NR, Dikmen S. Participant recruitment and retention in rehabilitation research. Am J Phys Med Rehabil. 2008;87(4):330–8.CrossRefPubMed Bell KR, Hammond F, Hart T, Bickett AK, Temkin NR, Dikmen S. Participant recruitment and retention in rehabilitation research. Am J Phys Med Rehabil. 2008;87(4):330–8.CrossRefPubMed
67.
go back to reference Altman DG, Bland JM. Treatment allocation by minimisation. Br Med J. 2005;330(7495):843–3.CrossRef Altman DG, Bland JM. Treatment allocation by minimisation. Br Med J. 2005;330(7495):843–3.CrossRef
69.
go back to reference Dumville JC, Hahn S, Miles JNV, Torgerson DJ. The use of unequal randomisation ratios in clinical trials: a review. Contemp Clin Trials. 2006;27(1):1–12.CrossRefPubMed Dumville JC, Hahn S, Miles JNV, Torgerson DJ. The use of unequal randomisation ratios in clinical trials: a review. Contemp Clin Trials. 2006;27(1):1–12.CrossRefPubMed
70.
go back to reference Goosey-Tolfrey VL. The disabled athlete. In: Winter EM, Jones AM, Davison RCR, Bromley PD, Mercer TH, editors. Sport and exercise physiology testing guidelines. USA: Routledge; 2007. Goosey-Tolfrey VL. The disabled athlete. In: Winter EM, Jones AM, Davison RCR, Bromley PD, Mercer TH, editors. Sport and exercise physiology testing guidelines. USA: Routledge; 2007.
71.
go back to reference Nightingale TE, Walhin JP, Thompson D, Bilzon JLJ. Predicting physical activity energy expenditure in wheelchair users with a multisensor device. BMJ Open Sport Exercise Medicine. 2015;1(1):bmjsem-2015-000008.CrossRefPubMedPubMedCentral Nightingale TE, Walhin JP, Thompson D, Bilzon JLJ. Predicting physical activity energy expenditure in wheelchair users with a multisensor device. BMJ Open Sport Exercise Medicine. 2015;1(1):bmjsem-2015-000008.CrossRefPubMedPubMedCentral
72.
go back to reference Clasey J, Gater D. Body composition assessment in adults with spinal cord injury. Top Spinal Cord Inj Rehabil. 2007;12(4):8–19.CrossRef Clasey J, Gater D. Body composition assessment in adults with spinal cord injury. Top Spinal Cord Inj Rehabil. 2007;12(4):8–19.CrossRef
73.
go back to reference Betts JA, Thompson D. Thinking outside of the bag (not necessarily outside the lab). Med Sci Sports Exerc. 2012;44(10):2040.CrossRefPubMed Betts JA, Thompson D. Thinking outside of the bag (not necessarily outside the lab). Med Sci Sports Exerc. 2012;44(10):2040.CrossRefPubMed
74.
go back to reference Ferrannini E. The theoretical bases of indirect calorimetry—a review. Metab-Clin Exp. 1988;37(3):287–301.CrossRefPubMed Ferrannini E. The theoretical bases of indirect calorimetry—a review. Metab-Clin Exp. 1988;37(3):287–301.CrossRefPubMed
75.
go back to reference Compher C, Frankenfield D, Keim N, Roth-Yousey L. Evidence Analysis Working G. Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc. 2006;106(6):881–903.CrossRefPubMed Compher C, Frankenfield D, Keim N, Roth-Yousey L. Evidence Analysis Working G. Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc. 2006;106(6):881–903.CrossRefPubMed
76.
go back to reference Walhin JP, Richardson JD, Betts JA, Thompson D. Exercise counteracts the effects of short-term overfeeding and reduced physical activity independent of energy imbalance in healthy young men. J Physiol Lond. 2013;591(24):6231–43.CrossRefPubMedPubMedCentral Walhin JP, Richardson JD, Betts JA, Thompson D. Exercise counteracts the effects of short-term overfeeding and reduced physical activity independent of energy imbalance in healthy young men. J Physiol Lond. 2013;591(24):6231–43.CrossRefPubMedPubMedCentral
77.
go back to reference Nightingale TE, Walhin JP, Thompson D, Bilzon JLJ. Influence of accelerometer type and placement on physical activity energy expenditure prediction in manual wheelchair users. PLoS One. 2015;10(5):e0126086.CrossRefPubMedPubMedCentral Nightingale TE, Walhin JP, Thompson D, Bilzon JLJ. Influence of accelerometer type and placement on physical activity energy expenditure prediction in manual wheelchair users. PLoS One. 2015;10(5):e0126086.CrossRefPubMedPubMedCentral
78.
go back to reference Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–12.CrossRefPubMed Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–12.CrossRefPubMed
79.
go back to reference Matthews JNS, Altman DG, Campbell MJ, Royston P. Analysis of serial measurements in medical-research. Br Med J. 1990;300(6719):230–5.CrossRef Matthews JNS, Altman DG, Campbell MJ, Royston P. Analysis of serial measurements in medical-research. Br Med J. 1990;300(6719):230–5.CrossRef
80.
go back to reference Wolever TMS, Jenkins DJA. The use of the glycemic index in predicting the blood-glucose response to mixed meals. Am J Clin Nutr. 1986;43(1):167–72.PubMed Wolever TMS, Jenkins DJA. The use of the glycemic index in predicting the blood-glucose response to mixed meals. Am J Clin Nutr. 1986;43(1):167–72.PubMed
81.
go back to reference Wolever TMS. Effect of blood sampling schedule and method of calculating the area under the curve on validity and precision of glycaemic index values. Br J Nutr. 2004;91(2):295–300.CrossRefPubMed Wolever TMS. Effect of blood sampling schedule and method of calculating the area under the curve on validity and precision of glycaemic index values. Br J Nutr. 2004;91(2):295–300.CrossRefPubMed
82.
go back to reference Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing—comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–70.CrossRefPubMed Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing—comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–70.CrossRefPubMed
83.
go back to reference Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care. 1998;21(12):2191–2.CrossRefPubMed Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care. 1998;21(12):2191–2.CrossRefPubMed
84.
go back to reference Ware JE, The SCD, MOS. 36-item short-form health survey (SF-36_. 1. Conceptual-framework and item selection. Med Care. 1992;30(6):473–83.CrossRefPubMed Ware JE, The SCD, MOS. 36-item short-form health survey (SF-36_. 1. Conceptual-framework and item selection. Med Care. 1992;30(6):473–83.CrossRefPubMed
85.
go back to reference Herdman M, Gudex C, Lloyd A, Janssen MF, Kind P, Parkin D, Bonsel G, Badia X. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5 L). Qual Life Res. 2011;20(10):1727–36. Herdman M, Gudex C, Lloyd A, Janssen MF, Kind P, Parkin D, Bonsel G, Badia X. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5 L). Qual Life Res. 2011;20(10):1727–36.
86.
go back to reference Leduc BE, Lepage Y. Health-related quality of life after spinal cord injury. Disabil Rehabil. 2002;24(4):196–202.CrossRefPubMed Leduc BE, Lepage Y. Health-related quality of life after spinal cord injury. Disabil Rehabil. 2002;24(4):196–202.CrossRefPubMed
87.
go back to reference Whitehurst DGT, Suryaprakash N, Engel L, Mittmann N, Noonan VK, Dvorak MFS, Bryan S. Perceptions of individuals living with spinal cord injury toward preference-based quality of life instruments: a qualitative exploration. Health Qual Life Outcomes. 2014;12:9. Whitehurst DGT, Suryaprakash N, Engel L, Mittmann N, Noonan VK, Dvorak MFS, Bryan S. Perceptions of individuals living with spinal cord injury toward preference-based quality of life instruments: a qualitative exploration. Health Qual Life Outcomes. 2014;12:9.
88.
go back to reference Curtis KA, Roach KE, Applegate EB, Amar T, Benbow CS, Genecco TD, Gualano J. Development of the wheelchair users shoulder pain index (WUSPI). Paraplegia. 1995;33(5):290–3. Curtis KA, Roach KE, Applegate EB, Amar T, Benbow CS, Genecco TD, Gualano J. Development of the wheelchair users shoulder pain index (WUSPI). Paraplegia. 1995;33(5):290–3.
89.
go back to reference Krupp LB, Larocca NG, Muirnash J, Steinberg AD. The Fatigue Severity Scale—application to patients with multiple-sclerosis and systemic lupus erythematosus. Arch Neurol. 1989;46(10):1121–3.CrossRefPubMed Krupp LB, Larocca NG, Muirnash J, Steinberg AD. The Fatigue Severity Scale—application to patients with multiple-sclerosis and systemic lupus erythematosus. Arch Neurol. 1989;46(10):1121–3.CrossRefPubMed
91.
go back to reference Kroll T, Kehn M, Ho PS, Groah S. The SCI Exercise Self-efficacy Scale (ESES): development and psychometric properties. Int J Behav Nutr Phys Act. 2007;4:6.CrossRef Kroll T, Kehn M, Ho PS, Groah S. The SCI Exercise Self-efficacy Scale (ESES): development and psychometric properties. Int J Behav Nutr Phys Act. 2007;4:6.CrossRef
92.
go back to reference Matthews CE, Ainsworth BE, Thompson RW, Bassett DR. Sources of variance in daily physical activity levels as measured by an accelerometer. Med Sci Sports Exerc. 2002;34(8):1376–81.CrossRefPubMed Matthews CE, Ainsworth BE, Thompson RW, Bassett DR. Sources of variance in daily physical activity levels as measured by an accelerometer. Med Sci Sports Exerc. 2002;34(8):1376–81.CrossRefPubMed
93.
go back to reference Buchholz AC, Martin Ginis KA, Bray SR, Craven BC, Hicks AL, Hayes KC, Latimer AE, McColl MA, Potter PJ, Wolfe DL. Greater daily leisure time physical activity is associated with lower chronic disease risk in adults with spinal cord injury. Appl Physiol Nutr Metab. 2009;34(4):640–7. Buchholz AC, Martin Ginis KA, Bray SR, Craven BC, Hicks AL, Hayes KC, Latimer AE, McColl MA, Potter PJ, Wolfe DL. Greater daily leisure time physical activity is associated with lower chronic disease risk in adults with spinal cord injury. Appl Physiol Nutr Metab. 2009;34(4):640–7.
94.
go back to reference Whybrow S, Horgan G, Stubbs RJ. Low-energy reporting and duration of recording period. Eur J Clin Nutr. 2008;62(9):1148–50.CrossRefPubMed Whybrow S, Horgan G, Stubbs RJ. Low-energy reporting and duration of recording period. Eur J Clin Nutr. 2008;62(9):1148–50.CrossRefPubMed
95.
go back to reference Gittelsohn J, Shankar AV, Pokhrel RP, West KP. Accuracy of estimating food-intake by observation. J Am Diet Assoc. 1994;94(11):1273–7.CrossRefPubMed Gittelsohn J, Shankar AV, Pokhrel RP, West KP. Accuracy of estimating food-intake by observation. J Am Diet Assoc. 1994;94(11):1273–7.CrossRefPubMed
96.
go back to reference Martin GS, Tapsell LC, Batterham MJ, Russell KG. Relative bias in diet history measurements: a quality control technique for dietary intervention trials. Public Health Nutr. 2002;5(4):537–45.CrossRefPubMed Martin GS, Tapsell LC, Batterham MJ, Russell KG. Relative bias in diet history measurements: a quality control technique for dietary intervention trials. Public Health Nutr. 2002;5(4):537–45.CrossRefPubMed
97.
go back to reference Atkinson G. Analysis of repeated measurements in physical therapy research: multiple comparisons amongst level means and multifactoral designs. Phys Ther Sport. 2002;3:191–203.CrossRef Atkinson G. Analysis of repeated measurements in physical therapy research: multiple comparisons amongst level means and multifactoral designs. Phys Ther Sport. 2002;3:191–203.CrossRef
98.
go back to reference Cohen J. Statistical power analysis for the behavioural sciences. 2nd ed. Hillsdale: Lawrence Erlbaum Associates; 1988. Cohen J. Statistical power analysis for the behavioural sciences. 2nd ed. Hillsdale: Lawrence Erlbaum Associates; 1988.
100.
go back to reference Murray D, Meldrum D, Moloney R, Campion A, Horgan F, Hardiman O. The effects of a home-based arm ergometry exercise programme on physical fitness, fatigue and activity in polio survivors: protocol for a randomised controlled trial. BMC Neurol. 2012;12:7.CrossRef Murray D, Meldrum D, Moloney R, Campion A, Horgan F, Hardiman O. The effects of a home-based arm ergometry exercise programme on physical fitness, fatigue and activity in polio survivors: protocol for a randomised controlled trial. BMC Neurol. 2012;12:7.CrossRef
101.
go back to reference de Groot PCE, Hjeltnes N, Heijboer AC, Stal W, Birkeland K. Effect of training intensity on physical capacity, lipid profile and insulin sensitivity in early rehabilitation of spinal cord injured individuals. Spinal Cord. 2003;41(12):673–9.CrossRefPubMed de Groot PCE, Hjeltnes N, Heijboer AC, Stal W, Birkeland K. Effect of training intensity on physical capacity, lipid profile and insulin sensitivity in early rehabilitation of spinal cord injured individuals. Spinal Cord. 2003;41(12):673–9.CrossRefPubMed
102.
go back to reference Jeon JY, Weiss CB, Steadward RD, Ryan E, Burnham RS, Bell G, Chilibeck P, Wheeler GD. Improved glucose tolerance and insulin sensitivity after electrical stimulation-assisted cycling in people with spinal cord injury. Spinal Cord. 2002;40(3):110–7. Jeon JY, Weiss CB, Steadward RD, Ryan E, Burnham RS, Bell G, Chilibeck P, Wheeler GD. Improved glucose tolerance and insulin sensitivity after electrical stimulation-assisted cycling in people with spinal cord injury. Spinal Cord. 2002;40(3):110–7.
103.
go back to reference Bougenot MP, Tordi N, Betik AC, Martin X, Le Foll D, Parratte B, Lonsdorfer J, Rouillon JD. Effects of a wheelchair ergometer training programme on spinal cord-injured persons. Spinal Cord. 2003;41(8):451–6. Bougenot MP, Tordi N, Betik AC, Martin X, Le Foll D, Parratte B, Lonsdorfer J, Rouillon JD. Effects of a wheelchair ergometer training programme on spinal cord-injured persons. Spinal Cord. 2003;41(8):451–6.
104.
go back to reference Turner JE, Markovitch D, Betts JA, Thompson D. Nonprescribed physical activity energy expenditure is maintained with structured exercise and implicates a compensatory increase in energy intake. Am J Clin Nutr. 2010;92(5):1009–16.CrossRefPubMed Turner JE, Markovitch D, Betts JA, Thompson D. Nonprescribed physical activity energy expenditure is maintained with structured exercise and implicates a compensatory increase in energy intake. Am J Clin Nutr. 2010;92(5):1009–16.CrossRefPubMed
105.
go back to reference Lammers G, Poelkens F, van Duijnhoven NTL, Pardoel EM, Hoenderop JG, Thijssen DHJ, Hopman MTE. Expression of genes involved in fatty acid transport and insulin signaling is altered by physical inactivity and exercise training in human skeletal muscle. Am J Physiol-Endocrinol Metab. 2012;303(10):E1245–51. Lammers G, Poelkens F, van Duijnhoven NTL, Pardoel EM, Hoenderop JG, Thijssen DHJ, Hopman MTE. Expression of genes involved in fatty acid transport and insulin signaling is altered by physical inactivity and exercise training in human skeletal muscle. Am J Physiol-Endocrinol Metab. 2012;303(10):E1245–51.
106.
go back to reference Woods JA, Keylock KT, Lowder T, Vieira VJ, Zelkovich W, Dumich S, Colantuano K, Lyons K, Leifheit K, Cook M, et al. Cardiovascular exercise training extends influenza vaccine seroprotection in sedentary older adults: the immune function intervention trial. J Am Geriatr Soc. 2009;57(12):2183–91. Woods JA, Keylock KT, Lowder T, Vieira VJ, Zelkovich W, Dumich S, Colantuano K, Lyons K, Leifheit K, Cook M, et al. Cardiovascular exercise training extends influenza vaccine seroprotection in sedentary older adults: the immune function intervention trial. J Am Geriatr Soc. 2009;57(12):2183–91.
107.
go back to reference Campbell JP, Edwards KM, Ring C, Drayson MT, Bosch JA, Inskip A, Long JE, Pulsford D, Burns VE. The effects of vaccine timing on the efficacy of an acute eccentric exercise intervention on the immune response to an influenza vaccine in young adults. Brain Behav Immun. 2010;24(2):236–42. Campbell JP, Edwards KM, Ring C, Drayson MT, Bosch JA, Inskip A, Long JE, Pulsford D, Burns VE. The effects of vaccine timing on the efficacy of an acute eccentric exercise intervention on the immune response to an influenza vaccine in young adults. Brain Behav Immun. 2010;24(2):236–42.
108.
go back to reference Silverman SR, Schertz LA, Yuen HK, Lowman JD, Bickel CS. Systematic review of the methodological quality and outcome measures utilized in exercise interventions for adults with spinal cord injury. Spinal Cord. 2012;50(10):718–27.CrossRefPubMed Silverman SR, Schertz LA, Yuen HK, Lowman JD, Bickel CS. Systematic review of the methodological quality and outcome measures utilized in exercise interventions for adults with spinal cord injury. Spinal Cord. 2012;50(10):718–27.CrossRefPubMed
Metadata
Title
The influence of a home-based exercise intervention on human health indices in individuals with chronic spinal cord injury (HOMEX-SCI): study protocol for a randomised controlled trial
Authors
Tom E. Nightingale
Jean-Philippe Walhin
James E. Turner
Dylan Thompson
James L. J. Bilzon
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Trials / Issue 1/2016
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-016-1396-z

Other articles of this Issue 1/2016

Trials 1/2016 Go to the issue