Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2020

Open Access 01-12-2020 | Research article

The in vitro and in vivo wound-healing effects of royal jelly derived from Apis mellifera L. during blossom seasons of Castanea mollissima Bl. and Brassica napus L. in South China exhibited distinct patterns

Authors: Yan Lin, Meng Zhang, Luying Wang, Tianxing Lin, Guanggao Wang, Jianhua Peng, Songkun Su

Published in: BMC Complementary Medicine and Therapies | Issue 1/2020

Login to get access

Abstract

Background

Non-healing wounds have been a severe issue in the global healthcare system. Regrettably, royal jelly, a traditional remedy for various skin injuries, has not been widely applied in cutaneous wounds in clinical practice nowadays, which may be due to the confusion and the lack of knowledge about the efficacies of different types of royal jelly, the bioactive constituents, and the precise mechanisms underlying the wound repairing activity. Since the compositions and bioactivities of royal jelly are predominantly influenced by nectar plants, this study aims to explore the differences in the wound-healing properties of royal jelly produced by Apis mellifera L. during the blossom seasons of different floral sources, to provide guidelines for the future rational application of royal jelly in cutaneous wounds, and to promote the further discovery of wound repair-promoting substances.

Methods

Royal jelly samples were harvested during flowering seasons of Castanea mollissima Bl. (chestnut) and Brassica napus L. (rapeseed) in South China, from which hydrophilic and lipophilic fractions were extracted. The in vivo wound-healing potential was preliminarily assessed in Wistar rats’ excisional full-thickness wounds, followed by investigating the mechanisms of action through in vitro assays with human epidermal keratinocytes and LPS-stimulated inflammation in macrophages.

Results

The results indicated that different royal jelly samples exhibited distinct wound-healing potential, in which Castanea mollissima Bl. royal jelly was more potent. It sped up wound closure between day 2 and day 4 to 0.25 cm2/day (p < 0.05), and could accelerate wound repair by enhancing the proliferative and migratory capabilities of keratinocytes by 50.9% (p < 0.001) and 14.9% (p < 0.001), modulating inflammation through inhibiting nitric oxide production by 46.2% (p < 0.001), and promoting cell growth through increasing the secretion of transforming growth factor-β by 44.7% (p < 0.001). In contrast, Brassica napus L. royal jelly could regulate inflammation by reducing the amount of tumour necrosis factor-α by 21.3% (p < 0.001).

Conclusions

The present study improves the application of royal jelly for curing difficult-to-heal wounds, in which the hydrosoluble extract of Castanea mollissima Bl. royal jelly promises the greatest potential. It also provides clues which may lead towards the identification of substances derived from royal jelly to treat wounds.
Literature
1.
go back to reference Kamakura M. Royalactin induces queen differentiation in honeybees. Nature. 2011;473:478–83.CrossRef Kamakura M. Royalactin induces queen differentiation in honeybees. Nature. 2011;473:478–83.CrossRef
2.
go back to reference Pasupuleti VR, Sammugam L, Ramesh N, Gan SH. Honey, propolis, and royal jelly: a comprehensive review of their biological actions and health benefits. Oxidative Med Cell Longev. 2017;2017:1259510.CrossRef Pasupuleti VR, Sammugam L, Ramesh N, Gan SH. Honey, propolis, and royal jelly: a comprehensive review of their biological actions and health benefits. Oxidative Med Cell Longev. 2017;2017:1259510.CrossRef
3.
go back to reference Khazaei M, Ansarian A, Ghanbari E. New findings on biological actions and clinical applications of royal jelly: a review. J Diet Suppl. 2018;15:757–75.CrossRef Khazaei M, Ansarian A, Ghanbari E. New findings on biological actions and clinical applications of royal jelly: a review. J Diet Suppl. 2018;15:757–75.CrossRef
4.
go back to reference Bílikova K, Huang SC, Lin IP, Šimuth J, Peng CC. Structure and antimicrobial activity relationship of royalisin, an antimicrobial peptide from royal jelly of Apis mellifera. Peptides. 2015;68:190–6.CrossRef Bílikova K, Huang SC, Lin IP, Šimuth J, Peng CC. Structure and antimicrobial activity relationship of royalisin, an antimicrobial peptide from royal jelly of Apis mellifera. Peptides. 2015;68:190–6.CrossRef
5.
go back to reference Karaca T, Şimşek N, Uslu S, Kalkan Y, Can I, Kara A, et al. The effect of royal jelly on CD3(+), CD5(+), CD45(+) T-cell and CD68(+) cell distribution in the colon of rats with acetic acid-induced colitis. Allergol Immunopathol (Madr). 2012;40:357–61.CrossRef Karaca T, Şimşek N, Uslu S, Kalkan Y, Can I, Kara A, et al. The effect of royal jelly on CD3(+), CD5(+), CD45(+) T-cell and CD68(+) cell distribution in the colon of rats with acetic acid-induced colitis. Allergol Immunopathol (Madr). 2012;40:357–61.CrossRef
6.
go back to reference Pourmoradian S, Mahdavi R, Mobasseri M, Faramarzi E, Mobasseri M. Effects of royal jelly supplementation on glycemic control and oxidative stress factors in type 2 diabetic female: a randomized clinical trial. Chin J Integr Med. 2014;20:347–52.CrossRef Pourmoradian S, Mahdavi R, Mobasseri M, Faramarzi E, Mobasseri M. Effects of royal jelly supplementation on glycemic control and oxidative stress factors in type 2 diabetic female: a randomized clinical trial. Chin J Integr Med. 2014;20:347–52.CrossRef
7.
go back to reference Mihajlovic D, Vucevic D, Chinou I, Colic M. Royal jelly fatty acids modulate proliferation and cytokine production by human peripheral blood mononuclear cells. Eur Food Res Technol. 2014;238:881–7.CrossRef Mihajlovic D, Vucevic D, Chinou I, Colic M. Royal jelly fatty acids modulate proliferation and cytokine production by human peripheral blood mononuclear cells. Eur Food Res Technol. 2014;238:881–7.CrossRef
8.
go back to reference Kimura Y. Antitumor and antimetastatic actions of various natural products. Stud Nat Prod Chem. 2008;34(C):35–76.CrossRef Kimura Y. Antitumor and antimetastatic actions of various natural products. Stud Nat Prod Chem. 2008;34(C):35–76.CrossRef
9.
go back to reference Münstedt K, Bargello M, Hauenschild A. Royal jelly reduces the serum glucose levels in healthy subjects. J Med Food. 2009;12:1170–2.CrossRef Münstedt K, Bargello M, Hauenschild A. Royal jelly reduces the serum glucose levels in healthy subjects. J Med Food. 2009;12:1170–2.CrossRef
10.
go back to reference Abdelatif M, Yakoot M, Etmaan M. Safety and efficacy of a new honey ointment on diabetic foot ulcers: a prospective pilot study. J Wound Care. 2008;17:108–10.CrossRef Abdelatif M, Yakoot M, Etmaan M. Safety and efficacy of a new honey ointment on diabetic foot ulcers: a prospective pilot study. J Wound Care. 2008;17:108–10.CrossRef
11.
go back to reference El-Gayar MH, Aboshanab KM, Aboulwafa MM, Hassouna NA. Antivirulence and wound healing effects of royal jelly and garlic extract for the control of MRSA skin infections. Wound Med. 2016;13:18–27.CrossRef El-Gayar MH, Aboshanab KM, Aboulwafa MM, Hassouna NA. Antivirulence and wound healing effects of royal jelly and garlic extract for the control of MRSA skin infections. Wound Med. 2016;13:18–27.CrossRef
12.
go back to reference Temamogullari FK. Comparison of the royal jelly and povidone iodine on wound healing in rabbits. J Anim Vet Adv. 2007;6:203–5. Temamogullari FK. Comparison of the royal jelly and povidone iodine on wound healing in rabbits. J Anim Vet Adv. 2007;6:203–5.
13.
go back to reference Frank S, Kämpfer H, Wetzler C, Pfeilschifter J. Nitric oxide drives skin repair: novel functions of an established mediator. Kidney Int. 2002;61:882–8.CrossRef Frank S, Kämpfer H, Wetzler C, Pfeilschifter J. Nitric oxide drives skin repair: novel functions of an established mediator. Kidney Int. 2002;61:882–8.CrossRef
14.
go back to reference Sun BK, Siprashvili Z, Khavari PA. Advances in skin grafting and treatment of cutaneous wounds. Science. 2014;346:941–5.CrossRef Sun BK, Siprashvili Z, Khavari PA. Advances in skin grafting and treatment of cutaneous wounds. Science. 2014;346:941–5.CrossRef
15.
go back to reference Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83:835–70.CrossRef Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83:835–70.CrossRef
16.
go back to reference Gantwerker EA, Hom DB. Skin: histology and physiology of wound healing. Facial Plast Surg Clin North Am. 2011;19:441–53.CrossRef Gantwerker EA, Hom DB. Skin: histology and physiology of wound healing. Facial Plast Surg Clin North Am. 2011;19:441–53.CrossRef
17.
go back to reference Cheng CF, Sahu D, Tsen F, Zhao Z, Fan J, Kim R, et al. A fragment of secreted Hsp90α carries properties that enable it to accelerate effectively both acute and diabetic wound healing in mice. J Clin Invest. 2011;121:4348–61.CrossRef Cheng CF, Sahu D, Tsen F, Zhao Z, Fan J, Kim R, et al. A fragment of secreted Hsp90α carries properties that enable it to accelerate effectively both acute and diabetic wound healing in mice. J Clin Invest. 2011;121:4348–61.CrossRef
18.
go back to reference Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 2009;17:763–71.CrossRef Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 2009;17:763–71.CrossRef
19.
go back to reference Bucekova M, Sojka M, Valachova I, Martinotti S, Ranzato E, Szep Z, et al. Bee-derived antibacterial peptide, defensin-1, promotes wound re-epithelialisation in vitro and in vivo. Sci Rep. 2017;7:7340.CrossRef Bucekova M, Sojka M, Valachova I, Martinotti S, Ranzato E, Szep Z, et al. Bee-derived antibacterial peptide, defensin-1, promotes wound re-epithelialisation in vitro and in vivo. Sci Rep. 2017;7:7340.CrossRef
20.
go back to reference Kim J, Kim Y, Yun H, Park H, Kim SY, Lee KG, et al. Royal jelly enhances migration of human dermal fibroblasts and alters the levels of cholesterol and sphinganine in an in vitro wound healing model. Nutr Res Pract. 2010;4:362–8.CrossRef Kim J, Kim Y, Yun H, Park H, Kim SY, Lee KG, et al. Royal jelly enhances migration of human dermal fibroblasts and alters the levels of cholesterol and sphinganine in an in vitro wound healing model. Nutr Res Pract. 2010;4:362–8.CrossRef
22.
go back to reference Park HM, Hwang E, Lee KG, Han SM, Cho Y, Kim SY. Royal jelly protects against ultraviolet B-induced photoaging in human skin fibroblasts via enhancing collagen production. J Med Food. 2011;14:899–906.CrossRef Park HM, Hwang E, Lee KG, Han SM, Cho Y, Kim SY. Royal jelly protects against ultraviolet B-induced photoaging in human skin fibroblasts via enhancing collagen production. J Med Food. 2011;14:899–906.CrossRef
23.
go back to reference Tsuruma Y, Maruyama H, Araki Y. Effect of a glycoprotein (apisin) in royal jelly on proliferation and differentiation in skin fibroblast and osteoblastic cells. Nippon Shokuhin Kagaku Kagaku Kaishi. 2011;58:121–6.CrossRef Tsuruma Y, Maruyama H, Araki Y. Effect of a glycoprotein (apisin) in royal jelly on proliferation and differentiation in skin fibroblast and osteoblastic cells. Nippon Shokuhin Kagaku Kagaku Kaishi. 2011;58:121–6.CrossRef
24.
go back to reference Yang XY, Yang D, Zhang W, Wang JM, Li CY, Ye H, et al. 10-Hydroxy-2-decenoic acid from royal jelly: a potential medicine for RA. J Ethnopharmacol. 2010;128:314–21.CrossRef Yang XY, Yang D, Zhang W, Wang JM, Li CY, Ye H, et al. 10-Hydroxy-2-decenoic acid from royal jelly: a potential medicine for RA. J Ethnopharmacol. 2010;128:314–21.CrossRef
25.
go back to reference Zhao Y, Li Z, Tian W, Fang X, Su S, Peng W. Differential volatile organic compounds in royal jelly associated with different nectar plants. J Integr Agric. 2016;15:1157–65.CrossRef Zhao Y, Li Z, Tian W, Fang X, Su S, Peng W. Differential volatile organic compounds in royal jelly associated with different nectar plants. J Integr Agric. 2016;15:1157–65.CrossRef
26.
go back to reference Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412.CrossRef Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412.CrossRef
27.
go back to reference Gorin DR, Cordts PR, LaMorte WW, Menzoian JO. The influence of wound geometry on the measurement of wound healing rates in clinical trials. J Vasc Surg. 1996;23:524–8.CrossRef Gorin DR, Cordts PR, LaMorte WW, Menzoian JO. The influence of wound geometry on the measurement of wound healing rates in clinical trials. J Vasc Surg. 1996;23:524–8.CrossRef
28.
go back to reference Cukjati D, Reberšek S, Miklavčič D. A reliable method of determining wound healing rate. Med Biol Eng Comput. 2001;39:263–71.CrossRef Cukjati D, Reberšek S, Miklavčič D. A reliable method of determining wound healing rate. Med Biol Eng Comput. 2001;39:263–71.CrossRef
29.
go back to reference Gismondi A, Trionfera E, Canuti L, Di Marco G, Canini A. Royal jelly lipophilic fraction induces antiproliferative effects on SH-SY5Y human neuroblastoma cells. Oncol Rep. 2017;38:1833–44.CrossRef Gismondi A, Trionfera E, Canuti L, Di Marco G, Canini A. Royal jelly lipophilic fraction induces antiproliferative effects on SH-SY5Y human neuroblastoma cells. Oncol Rep. 2017;38:1833–44.CrossRef
30.
go back to reference Kure A, Nakagawa K, Kondo M, Kato S, Kimura F, Watanabe A, et al. Metabolic fate of luteolin in rats: its relationship to anti-inflammatory effect. J Agric Food Chem. 2016;64:4246–54.CrossRef Kure A, Nakagawa K, Kondo M, Kato S, Kimura F, Watanabe A, et al. Metabolic fate of luteolin in rats: its relationship to anti-inflammatory effect. J Agric Food Chem. 2016;64:4246–54.CrossRef
31.
go back to reference Wu Y, Han F, Luan S, Ai R, Zhang P, Li H, et al. Triterpenoids from Ganoderma lucidum and their potential anti-inflammatory effects. J Agric Food Chem. 2019;67:5147–58.CrossRef Wu Y, Han F, Luan S, Ai R, Zhang P, Li H, et al. Triterpenoids from Ganoderma lucidum and their potential anti-inflammatory effects. J Agric Food Chem. 2019;67:5147–58.CrossRef
32.
go back to reference Järbrink K, Ni G, Sönnergren H, Schmidtchen A, Pang C, Bajpai R, et al. Prevalence and incidence of chronic wounds and related complications: a protocol for a systematic review. Syst Rev. 2016;5:152.CrossRef Järbrink K, Ni G, Sönnergren H, Schmidtchen A, Pang C, Bajpai R, et al. Prevalence and incidence of chronic wounds and related complications: a protocol for a systematic review. Syst Rev. 2016;5:152.CrossRef
33.
go back to reference Hardwicke J, Schmaljohann D, Boyce D, Thomas D. Epidermal growth factor therapy and wound healing-past, present and future perspectives. Surgeon. 2008;6:172–7.CrossRef Hardwicke J, Schmaljohann D, Boyce D, Thomas D. Epidermal growth factor therapy and wound healing-past, present and future perspectives. Surgeon. 2008;6:172–7.CrossRef
34.
go back to reference Snyder RJ, Lantis J, Kirsner RS, Shah V, Molyneaux M, Carter MJ. Macrophages: a review of their role in wound healing and their therapeutic use. Wound Repair Regen. 2016;24:613–29.CrossRef Snyder RJ, Lantis J, Kirsner RS, Shah V, Molyneaux M, Carter MJ. Macrophages: a review of their role in wound healing and their therapeutic use. Wound Repair Regen. 2016;24:613–29.CrossRef
35.
go back to reference Liu Y, Song M, Zhu G, Xi X, Li K, Wu C, et al. Corynoline attenuates LPS-induced acute lung injury in mice by activating Nrf2. Int Immunopharmacol. 2017;48:96–101.CrossRef Liu Y, Song M, Zhu G, Xi X, Li K, Wu C, et al. Corynoline attenuates LPS-induced acute lung injury in mice by activating Nrf2. Int Immunopharmacol. 2017;48:96–101.CrossRef
36.
go back to reference Wang P, Qiao Q, Li J, Wang W, Yao LP, Fu YJ. Inhibitory effects of geraniin on LPS-induced inflammation via regulating NF-κB and Nrf2 pathways in RAW 264.7 cells. Chem Biol Interact. 2016;253:134–42.CrossRef Wang P, Qiao Q, Li J, Wang W, Yao LP, Fu YJ. Inhibitory effects of geraniin on LPS-induced inflammation via regulating NF-κB and Nrf2 pathways in RAW 264.7 cells. Chem Biol Interact. 2016;253:134–42.CrossRef
37.
go back to reference Abaffy P, Tomankova S, Naraine R, Kubista M, Sindelka R. The role of nitric oxide during embryonic wound healing. BMC Genomics. 2019;20:815.CrossRef Abaffy P, Tomankova S, Naraine R, Kubista M, Sindelka R. The role of nitric oxide during embryonic wound healing. BMC Genomics. 2019;20:815.CrossRef
38.
go back to reference Isenberg JS, Frazier WA, Roberts DD. Thrombospondins: from structure to therapeutics: Thrombospondin-1: a physiological regulator of nitric oxide signaling. Cell Mol Life Sci. 2008;65:728–42.CrossRef Isenberg JS, Frazier WA, Roberts DD. Thrombospondins: from structure to therapeutics: Thrombospondin-1: a physiological regulator of nitric oxide signaling. Cell Mol Life Sci. 2008;65:728–42.CrossRef
39.
go back to reference Wedler J, Daubitz T, Schlotterbeck G, Butterweck V. In vitro anti-inflammatory and wound-healing potential of a Phyllostachys edulis leaf extract – identification of isoorientin as an active compound. Planta Med. 2014;80:1678–84.CrossRef Wedler J, Daubitz T, Schlotterbeck G, Butterweck V. In vitro anti-inflammatory and wound-healing potential of a Phyllostachys edulis leaf extract – identification of isoorientin as an active compound. Planta Med. 2014;80:1678–84.CrossRef
Metadata
Title
The in vitro and in vivo wound-healing effects of royal jelly derived from Apis mellifera L. during blossom seasons of Castanea mollissima Bl. and Brassica napus L. in South China exhibited distinct patterns
Authors
Yan Lin
Meng Zhang
Luying Wang
Tianxing Lin
Guanggao Wang
Jianhua Peng
Songkun Su
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2020
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-020-03138-5

Other articles of this Issue 1/2020

BMC Complementary Medicine and Therapies 1/2020 Go to the issue